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Abstract

A phased translation function, which takes advantage
of prior phase information to determine the position
of an oriented molecular replacement model, is
examined. The function is the coefficient of correlation
between the electron density computed with the prior
phases and the electron density of the translated
model, evaluated in reciprocal space as a Fourier
transform. The correlation coefficient used in this
work is closely related to an overlap function devised
by Colman, Fehlhammer & Bartels [in Crystallo-
graphic Computing Techniques (1976), edited by F. R.
Ahmed, K. Huml & B. Sedlacek, pp. 248-258.
Copenhagen: Munksgaard]. Tests with two protein
structures, one of which was solved with the help of
the phased translation function, show that little phase
information is required to resolve the translation
problem, and that the function is relatively insensitive
to misorientation of the model.

I. Introduction

Protein crystal structures are solved using phase
information from either isomorphous replacement
(Blow & Crick, 1959) or molecular replacement (Ross-
mann, 1972). In some circumstances, neither method
is in itself sufficient to solve a structure, and it is
desirable to be able to use both simultaneously. We
will deal here with the particular question of how to
use prior phase information, normally from isomor-
phous replacement, to solve the translation part of the
molecular replacement problem.

It is not uncommon to find that the rotation
function (Rossmann & Blow, 1962) gives an appa-
rently unambiguous orientation for a search model,
but that the translation problem still cannot be solved.
This can arise because the orientation is too much in
error; in this case, it can be useful to combine the
translation search with a limited systematic variation
of the orientation parameters (Lifchitz, Bally &
Mornon, 1982; Fujinaga & Read, 1987). If the trans-
lation search is still not clear, it is necessary to obtain
additional phase information from isomorphous re-
placement. We will show that one poor derivative can
be sufficient to resolve the translation problem; it is
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not necessary to be able to recognize the molecule in a
map computed with the isomorphous replacement
phases.

There are a number of examples in the literature of
the use of isomorphous replacement data to clarify
molecular replacement. Most recent examples involve
some form of real-space search. Reynolds, Remington,
Weaver, Fisher, Anderson, Ammon & Matthews
(1985) identified in a twofold averaged single isomor-
phous replacement (SIR) map of rat mast cell protease
the density corresponding to a single molecule; a six-
dimensional real-space search within this density
found the orientation and position for an ax-chy-
motrypsin model. Taylor (1983) used interactive
computer graphics techniques to position a molecular
replacement model in a 5 A resolution map of Mucor
pusillus pepsin. Similarly, Bode, Chen, Bartels, Kutz-
bach, Schmidt-Kastner & Bartunik (1983) could recog-
nize features of a trypsin-like molecule in a multiple
isomorphous replacement (MIR) map of kallik-
rein. A novel method of exploiting isomorphous
replacement data has been devised by Cygler &
Anderson (1988). They used oriented molecular re-
placement models of domains of an immunoglobulin
Fab to phase heavy-atom differences, expanded to
space group P1: from the relationships among the
heavy-atom peaks the positions of the symmetry
elements, and thus the translation vector, could be
deduced.

The background theory to a reciprocal-space ap-
proach has existed for some time. Rossmann & Blow
(1962) described an overlap function that finds non-
crystallographic symmetry operations relating regions
of electron density within a single map. With the help
of that function the non-crystallographic twofold axis
relating molecules of x-chymotrypsin could be found
(Blow, Rossmann & Jeffery, 1964). A straightforward
generalization leads to a general molecular replace-
ment equation (Rossmann, 1972; Argos & Rossmann,
1980) computing the overlap of regions of density in
two maps with different unit cells. The reciprocal-
space expression [equation (10-20) of Argos &
Rossmann (1980)] involves degrees of freedom for the
position and shape of the integration volume, as well
as the relative orientations of the two coordinate
systems. However, it reduces to a simple Fourier
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transform when the two unit cells have the samc
dimensions and the same orientation, and when the
overlap integral is evaluated over the entire unit cell.
These conditions are easily arranged for an oriented
molecular replacement model. Colman, Fehlhammer
& Bartels (1976) have derived such a phased trans-
lation function. To the best of our knowledge, this
function has been used in only two structure determi-
nations (Colman, Deisenhofer, Huber & Palm, 1976;
Deisenhofer, Colman, Huber, Haupt & Schwick,
1976). Perhaps this valuable technique has gone un-
noticed because it was described only in the proceed-
ings of a school on crystallographic computing.

Our version of the phased translation function
differs in being placed on an absolute scale, which we
feel is valuable in interpreting the results. We have also
derived a full-symmetry version, which should have
increased sensitivity to the correct translation. The
derivations of these functions are given in § I1. In § I11
we summarize the results of some tests, which demon-
strate the power of the phased translation function
even in the presence of large phase errors.

II. Derivation of the phased translation function

When the oriented model is translated to the correct
position in the unit cell, its electron density should
agree optimally with the density in the map computed
using the prior phase information. A reasonable
measure of agreement is the coefficient of correlation
between the two sets of electron density. This measure
has two key advantages: it is on an absolute scale and,
more important, it can be evaluated as a Fourier
transform.

The correlation coefficient is the following function
of the translation to be applied to the model:

C(t) = ‘J; [pp(X) — ppllom(X — t) — pp] dx
x {l [pp(x) — pp)* dx
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Xi‘;[PM(X—t)—f’M]Z dx} -

In this equation, p, is the electron density computed
using prior phase information, p,, is the density of a
single molecule, oriented but arbitrarily positioned in
the unit cell, t is the translation vector and g indicates
the mean density in the cell. The integral is taken over
the volume of the unit cell, V. We can easily ensure
that the mean density is zero by omitting the F(000)
term from the corresponding Fourier summations.
Note also that the mean square model density is
independent of t, so that (1) becomes

C(t) = [ pa(X)pulx ~ 0 dx

-172
X [‘,[ pp(x)? dx i[ Pu(x)? dx:| . (2
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The numerator of (2) is the convolution of pp(X)
with p,(—x), which can be evaluated as a Fourier
transform. The two integrals in the denominator can
be evaluated using Parseval’s theorem. First we note
that

pp(x)= V7! %mplFo(h)lexp(idp) exp(— 2nih.x)

pu(—X) =V 'Y F(h) exp(— 2nih.x)
h
where mp is the figure of merit associated with the
phase ap, and F3# is the complex conjugate of the
structure factor computed from the oriented model.
Sums are taken over a sphere in reciprocal space,
excluding the origin term. Then

C(1) = V™'Y, mplF(W)lexp (iop) F 3(h) exp ( — 2mih.1)
h

-1/2

X(I/V)—1I:;(mPIFo(h)’)Z;'F.M(h”Z:] (3)

or
C() :(k/V);mPIFo(h)”FM(h)Iexp [i(axp — 2pr)]
X exp (— 2nih.t) (4a)

where

k= V/[;(mP|Fo(h)|)2%|FM(h)|2]1/2' (4b)
The reciprocal-space expression for the numerator in
(3) is in essence the phased translation function of
Colman, Fehlhammer & Bartels (1976). Doesburg &
Beurskens (1983) also use a similar overlap function in
their program TRADIR.

The phased translation function defined by (4) is
simple and efficient to evaluate. The observed
amplitudes and prior phases must be expanded to
space group P1 (or the centered-lattice equivalent) to
generate a hemisphere of data, and structure factors
must be computed for the oriented model in a P1 cell
(or the centered-lattice equivalent) of the same dimen-
sions. Then the amplitudes [mp|F (h)||Fy(h)|] and
phases (ap — a,,) serve as input to a P1 map calcula-
tion. The scale factor k normalizes the results to give
correlation coefficients. [Note that the sums in (4b)
must be corrected by a factor of 2 when they are taken
over a hemisphere in reciprocal space.] Phases from
isomorphous replacement may have the incorrect
hand, so a second map should be computed with
phases ( — ap — a,,). The highest peak should indicate
the translation vector to be applied to the model.

Full-symmetry phased translation function

It is worth considering what would be the result of
including the rotational symmetry operations in the
model electron density. Referring to (2), we can see
that the numerator would increase by the factor N, the
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number of rotational symmetry operations, because
we would be summing N symmetry-related integrals.
If the symmetry-related model densities did not inter-
penetrate, the second integral in the denominator of
(2), the integral of the squared model density, would
similarly increase by a factor of N. Thus, for the
correct translation, where we expect little overlap of
the models, the correlation would increase by a factor
of N 1“2 if the full symmetry were included. ( This fact is
useful for comparing results in space groups with
different values of N.) However, overlap of the
symmetry-related models will increase the squared-
density integral in the denominator of (2), thus reduc-
ing the correlation coefficient. Since overlap is more
likely to occur for incorrect translations, this should
increase the signal for the correct translation.

The derivation of the full-symmetry correlation
coefficient can be carried out as for (3), leading to the
result

C(1) = (N/V) 3 mp|F(h)lexp (ip) F §(h) exp (— 2mih.1)
h

-1:2
x(1/V)~ ‘[;(mPIFo(h)I)Z%IF((h, t)q (5)

where F (h, t) is the structure factor calculated, includ-
ing symmetry, as a function of the translation applied
to the model. Harada, Lifchitz, Berthou & Jolles

(1981) have shown that ) |F(h, t)|* can be evaluated

h
as a Fourier transform. We have not tested (95),
primarily because (3) has been sufficient for our
problems. However, as Harada er al. (1981) have
shown for their translation function, some improve-
ment in signal would be expected from the correction
for overlap of model densities.

111. Applications of the phased translation function

The phased translation function has been tested on
Streptomyces griseus trypsin (SGT) and has been used
in the structure solution of lipoamide dehydrogenase
(LIPDH). Information on these proteins, and on the
molecular replacement search models, is summarized
in Table 1.

Two factors were considered in choosing the reso-
lution range of data for the tests. First, one might hope
to optimize the signal by using resolutions in which a
properly positioned molecular replacement model will
give the best agreement with the observed data. Use of
the resolution shell from 4-8 A should avoid most
problems arising from coordinate errors and from the
omission of disordered solvent. Second, comparisons
with results from the program BRUTE (Fujinaga &
Read, 1987) would be most meaningful if the same
data were used. Because of the large size of the LIPDH
unit cell (Table 1), the computer-intensive BRUTE

A PHASED TRANSLATION FUNCTION

runs were carried out using data in the 5-8 A reso-
lution shell. No attempt was made to evaluate the
effect of different choices of the resolution limits.

SGT

The structure of SGT was solved by molecular
replacement with bovine trypsin (BT), though with
some difficulty (Read & James, 1988). Some phase
information had been available from heavy-atom
derivatives, so we were interested to see if this infor-
mation could have facilitated the solution of the
molecular replacement problem for SGT.

The results in Table 2 show that this structure
solution could have been much more straightforward.
The correct translation can be recognized easily even
with the original orientation of the molecular replace-
ment model, which was in error by 6:9°. All other
translation functions that have been tested fail with
this orientation for BT (Fujinaga & Read, 1987). As
the orientation improves, the signal from the phased
translation function also improves. Results from the
program BRUTE, which computes intensity correla-
tion coefficients (Fujinaga & Read, 1987), are shown
for comparison in Table 2. BRUTE is more sensitive
to misorientations and, while the answer is clear for
sufficiently accurate orientations, it gives a much
weaker signal than the phased translation function.

LIPDH

Extensive efforts to solve the molecular replacement
problem for LIPDH met with little success before
phase information was available from isomorphous
replacement. The fast rotation function of Crowther
(1972) indicated the orientation of a glutathione
reductase (GR) dimer in the LIPDH crystal, but
numerous attempts to solve the translation problem
with the Crowther & Blow (1967) translation function
or with intensity correlation coefficients computed by
the program BRU TE failed to give a clear answer.

Two useful heavy-atom derivatives were found, and
the resulting MIR phases were improved by the
solvent flattening procedure of Wang (1985). The
electron density map was not of sufficient quality to
trace the polypeptide chain, but the phased translation
function using the correct hand of these phases
was absolutely unambiguous. (Results of this and
other tests are summarized in Table 2.) A local
six-dimensional correlation search with BRUTE im-
proved the molecular replacement solution, chang-
ing the orientation of the GR dimer by 2:9°. A full
report of the LIPDH structure determination will be
published elsewhere.

In retrospect it seemed that the position of the
oriented GR dimer could have been determined by
inspection of the density at low resolution. We were
therefore interested in learning how sensitive the
phased translation function would be to the accuracy
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Table 1. Structures used in test calculations

Cell parameters

Space group (A) Search model Sequence identity
Streptomyces griseus €222, a=723 Bovine trypsin 33%
trypsin (SGT)* b=510 (BT)Z
(223 a.a.) ¢ =1201 (223 a.a.)
Lipoamide dehydrogenase P2,2,2, a=0641 Glutathione reductase 26%§
(LIPDH)*f b=2838 (GR)}
(476 a.a.) =192 (478 a.a.)

*Structure report: Read & James (1988).

tCrystallization report: Schierbeek, Van der Laan, Groendijk, Wierenga & Drenth (1983).

tCoordinates of BT (Chambers & Stroud, 1979) and of GR (Thieme, Pai, Schirmer & Schulz, 1981) were obtained from the Brookhaven
Protein Data Bank (Bernstein et al., 1977).

§LIPDH sequence and alignment with GR: Westphal & de Kok (1988).

Table 2. Results of test calculations
All calculations were performed with data between 4 and 8 A resolution for SGT and between 5 and § A for LIPDH.

(a) Phased translation function

Orientation Correct hand for phases Incorrect hand for phases

Source of Mean figure error* First peak Second peak First peak Second peak

Structure phases of merit () (r.m.s. units)+ (r.m.s. units) (r.m.s. units) (r.m.s. units)
SGT MIR: 0-68 69 0-053(5-8)** 0-042(4-6) 0-:042(4-5) 0-039(4-2)
SGT MIR 0-68 35 0-089(9-5)** 0042(4:4) 0-042(4:5) 0-040(4-2)
SGT MIR 0-68 0-0 0-094( 10-0)** 0046(4-9) 0-042(4:4) 0-041(4-4)
LIPDH MIRSF§ 0-80 29 0-068(11-0)** 0-036(5:7) 0-028(4-4) 0-027(4-4)
LIPDH MIRSF 0-80 00 0093(14-8)** 0031(5-0) 0-033(5-2) 0-032(51)
LIPDH MIR§ 0-60 29 0-065(10-2)** 0030(4:8) 0-030(4.7) 0-029(4-5)
LIPDH MIR 0-60 0-0 0-093(14-4)** 0032(5-0) 0-030(4-6) 0-030(4-6)
LIPDH SIR® 0-43 29 0-056(8-2)** 0034(4-9) 0-030(4-4) 0-030(4-4)
LIPDH SIR 0-43 0-0 0-077(11-8)** 0032(4:8) 0031(4:7) 0-029(4-4)

(b) BRUTE (correlation of intensities)

Orientation

error First peak Second peak
Structure ) (r.m.s. units) (r.m.s. units)
SGT 69 0-14(4-3) 0-13(4-0)
SGT 35 0-22(5-7)** 0-19(4-5)
SGT 00 0-26(6:6)** 0-21(4:5)
LIPDH 29 0-088(4-2) 0-086(3-9)**
LIPDH 0-0 0-113(4:2)** 0-109(4-0)

*Error defined relative to orientation from final six-dimensional BRU TE search.

TR.m.s. units = peak height measured in terms of root mean square deviation from the mean.

+SGT MIR phases obtained from three derivatives, described by Read & James (1988). All derivatives have the same major site, so the
phase accuracy is probably overestimated.

§LIPDH MIR phases obtained from ethylmercury phosphate (EMP) and p-chloromercury benzenesulfonate derivatives. MIRSF denotes
MIR phases improved by the solvent flattening procedure of Wang (1985); the apparent figure of merit for these phases 1s not strictly
comparable to the other figures of merit.

“LIPDH SIR phases obtained from EMP derivative, without solvent flattening.

**Peaks giving the correct translation vector.

of the phases and of the model orientation. The results
in Table 2 demonstrate that the correct translation is
clear even with single isomorphous replacement (SIR)
phases and the initial less accurate orientation. As one
would expect, the clarity of the solution improves with
the quality of the phases and of the orientation. For

comparison, Table 2 also presents the results of
BRUTE translation searches using the initial and final
orientations. The correct translation gives the highest
correlation only for the final orientation, but even
then the discrimination from the highest noise peak
is small.
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The key conclusion to be drawn from the experience
with LIPDH is that very little phase information was
actually needed to resolve the translation problem: a
single derivative would have been sufficient. The SIR
map in which the GR dimer could be recognized by
the phased translation function is quite uninterpret-
able by eye. Fig. 1(a) shows part of GR in the SIR
electron density; though the relationship between
model and density is not random, it is also not
obvious. In contrast, Fig. 1(b) shows that the fit of
model to density is much better in the current electron
density map. The work required for further improve-
ments to both model and density is in progress.

IV. Summary

The phased translation function is a simple and
efficient algorithm that exploits prior phase infor-
mation to solve the translation part of the molecular
replacement problem. The prior phase information
comes from isomorphous replacement in the cases we
have tested; with the addition of even weak phase
information, difficult translation problems become

(b)
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straightforward. We anticipate that this procedure
would also be effective if the phase information came
from a partial molecular replacement model, for
example a protein model omitting a flexible domain,
or one member of a complex of two proteins.

Because the phased translation function is
computed as a Fourier transform, it is quite efficient to
evaluate. For example, one run with SGT, including
structure-factor calculation and map calculations for
both hands, requires about 25 min on a VAX 11/750.
This efficiency, coupled with the relatively low sensi-
tivity to errors in the orientation of the model, implies
that fairly extensive six-dimensional molecular re-
placement searches can be performed. Searches of the
orientational parameters could be centered on peaks
in the rotation function but, with some optimization
of the algorithm on a supercomputer, even a full six-
dimensional search could be contemplated. However,
if the boundaries of a single molecule are visible, the
domain rotation function of Colman, Fehlhammer &
Bartels (1976) probably gives a more efficient method
of exploiting prior phase information to solve the
rotation problem.

8 ~\?‘3
@ /Q
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Fig. 1. (a) A portion of the GR model
in the SIR electron density map of
LIPDH. This region. part of the
flavine-adenine dinucleotide (FAD)
coenzyme binding site in the interior
of the molecule, is highly conserved
between GR and LIPDH. Thus. one
would expect the model to fit the
density as well here as in any other
region of the map. The electron den-
sity is contoured at the level of the
rool mean square (r.m.s.) value of the
map. (h) The same region of LIPDH
in the current electron density map.
contoured at the r.m.s. value of the
map.



RANDY J. READ AND ABRAHAM J. SCHIERBEEK

It is notoriously difficult to be convinced that
molecular replacement is failing. Many parameters
can be varied in the attempt to obtain a clear result.
There is a strong incentive to continue because, when
successful, molecular replacement requires much less
work than isomorphous replacement. Our experiences
suggest that an entire structure determination by
isomorphous replacement is not the only alternative.
A single poor derivative might well provide all the
extra information that is needed.

We thank Professor Wim G.J. Hol for his en-
couragement of this work. A. K. Muir pointed out the
analogy between the phased translation function and
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work by a post-doctoral fellowship from the Alberta
Heritage Foundation for Medical Research. This re-
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dation of Chemical Rescarch (SON) with financial aid
from the Dutch Organization for the Advancement of
Pure Research (ZWO).
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