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Recently, there has been a resurgence in phasing using the

single-wavelength anomalous diffraction (SAD) experiment;

data from a single wavelength in combination with techniques

such as density modi®cation have been used to solve

macromolecular structures, even with a very small anomalous

signal. Here, a formulation for SAD phasing and re®nement

employing multivariate statistical techniques is presented. The

equation developed accounts explicitly for the correlations

among the observed and calculated Friedel mates in a SAD

experiment. The correlated SAD equation has been imple-

mented and test cases performed on real diffraction data have

revealed better results compared with currently used

programs in terms of correlation with the ®nal map and

obtaining more reliable phase probability statistics.
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1. Introduction

The power of the anomalous signal collected at a single

wavelength to solve macromolecular structures was realised in

the 1980s when Hendrickson & Teeter (1981) solved the

structure of crambin using SAD data. Furthermore, Wang

(1985) had shown using simulated data that the anomalous

signal from two S atoms was suf®cient to solve a structure of a

small protein. Recently, data from a single wavelength have

been used to solve structures, even with a very weak anom-

alous signal (Dauter et al., 1999, 2002; Brodersen et al., 2000;

Rice et al., 2000; Weiss et al., 2001; Dauter & Adamiak, 2001;

de Graaff et al., 2001; Gordon et al., 2001; Debreczeni,

Bunkoczi, Girmann et al., 2003; Debreczeni, Bunkoczi, Ma et

al., 2003). Furthermore, SAD can be preferable to MAD in a

case where a crystal exhibits radiation decay during the course

of a MAD experiment (Rice et al., 2000).

Currently, to re®ne the anomalous substructure and phase a

SAD data set, conventional techniques employ a Gaussian

distribution either on the Bijvoet differences (North, 1965;

Matthews, 1966) or the Friedel pairs (Blow & Rossmann,

1961). For example, the phasing package SHARP (de La

Fortelle & Bricogne, 1997) employs a phase and amplitude

integrated Gaussian distribution on Bijvoet differences for

SAD data,

PSHARP �
R1
0

R2�
0

exp ÿ ��obs ÿ� calc�2
2V

� �
d� djFj; �1�

where �obs is the Bijvoet difference of the observed Friedel

pairs jF�j and jFÿj, V is the variance of the distribution and

�calc = |F + H�c | ÿ |F + Hÿc | is the Bijvoet difference deter-

mined from H�c and Hÿc , the calculated structure factors from

the anomalous substructure, and an assumed value of the true

amplitude jFj and phase � that is averaged/integrated out.



Since data from a SAD experiment come from the same

crystal and share the same model of anomalous scatterers,

explicitly accounting for the correlation of substructure model

error may improve results further. Recently, the work on joint

probability distributions of Hauptman (1982) and Giacovazzo

(1983) has been further developed and generalized for

substructure detection (Burla et al., 2002) and phasing

(Giacovazzo & Siliqi, 2001a,b) assuming a cumulative

(Terwilliger & Eisenberg, 1987) and uncorrelated error term.

The above-mentioned distributions, however, neglect some of

the important correlations that occur in a SAD experiment.

Fig. 1 depicts a vector diagram of the bimodal phase

information obtained in a SAD experiment. In this ®gure, FA

is de®ned as the structure factor only considering the f 00

atomic scattering factor for the anomalously scattering atoms,

FA =
P

j f 00j exp(2�ih�xj), and F is the structure factor not

including the f 00 contribution for the anomalous scatterers. The

component F is shared between a re¯ection and the complex

conjugate of its Friedel mate, whereas FA contributes with

opposite sign. The blue circle centred on ÿFA of radius jF�j
with thickness corresponding to the measurement error of

jF�j restricts all the possible values of F imposed by jF�j.
Similarly, the red circle centred on FA of radius jFÿj with

thickness relating to the measurement error of jFÿj restricts

all possible values of F imposed by jFÿj. Therefore, the

possible values of F consistent with both measurements are at

the intersection of the two circles. The ®gure, however, only

shows a SAD experiment considering the effect of measure-

ment error of jF�j and jFÿj and assumes no errors in the

anomalous substructure. Obviously, since the anomalous

scatterer(s) come from the same crystal, the anomalous

(sub)structure factors and their errors are correlated and

modelling these correlations will have an effect on the possible

values of F.

2. Implementation and test cases

An analysis of the complex multivariate distribution applied

to many crystallographic experiments, including heavy-atom

phasing by anomalous scattering, has been performed (Pannu

et al., 2003). The distribution discussed in this paper can be

applied to explicitly account for the correlations in a SAD

experiment. The multivariate distribution for the re®nement

of the two observed structure factors, jF�j and jFÿj, given the

Friedel (sub)structure factors calculated from the model,

H�c = |H�c |exp(i��c ), (Hÿc )* = |Hÿc |exp(ÿi�ÿc ) with correlated

errors is derived in Appendix A and shown below.

PSAD � P�jF�j; jFÿj; jH�c j; ��c ; jHÿc j; �ÿc � �
2jF�jjFÿj det��2�

� det���
� expfÿa11jF�j2 ÿ a22jFÿj2 ÿ �a33 ÿ c33�jH�c j2
ÿ �a44 ÿ c44�jHÿc j2 ÿ 2jH�c jjHÿc j��a34 ÿ c34� cos���c ÿ �ÿc �
ÿ �b34 ÿ d34� sin���c ÿ �ÿc ��g

� R2�
0

expfÿ2jFÿjjH�c j�a23 cos��ÿ ÿ ��c � ÿ b23 sin��ÿ ÿ ��c ��g

� expfÿ2jFÿjjHÿc j�a24 cos��ÿ ÿ �ÿc � ÿ b24 sin��ÿ ÿ �ÿc ��g
� I0���jF�j; jFÿj; jH�c j; ��c ; jHÿc j; �ÿc ;�ÿ1�1=2� d�ÿ; �2�

where

��jF�j;jFÿj; �ÿ; jH�c j; ��c ; jHÿc j; �ÿc ;�ÿ1� � 4jF�j2
� f�a12jFÿj cos��ÿ� � b12jFÿj sin��ÿ� � a13jH�c j cos���c �
� b13jH�c j sin���c � � a14jHÿc j cos��ÿc � � b14jHÿc j sin��ÿc ��2
� �a12jFÿj sin��ÿ� ÿ b12jFÿj cos��ÿ� � a13jH�c j sin���c �
ÿ b13jH�c j cos���c � � a14jHÿc j sin��ÿc � ÿ b14jHÿc j cos��ÿc ��2g:

�3�

In the above equations, � is the (Hermitian) covariance

matrix of the complex Gaussian distribution P(F�, Fÿ, H�c ,

Hÿc ), with the elements of its inverse denoted zjk = ajk + ibjk. �2

is the covariance matrix of the bivariate Gaussian distribution

P(H�c , Hÿc ), with the real and imaginary components of its

inverse denoted cij and dij. The covariance matrices � and �2

were calculated using the expressions derived previously

(Pannu et al., 2003) and account for experimental errors and

the correlation between structure factors. The SAD likelihood

function discussed below is the sum over all re¯ections of the

minus natural logarithm of the derived probability distribution

(equation 2, or equivalently equation 12 in Appendix A) to

obtain a function suitable for minimization. To ensure that the

matrix remains positive de®nite, the inverse of the covariance

matrix was calculated from the eigenvalues and eigenvectors
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Figure 1
Phase information from a SAD experiment considering only measure-
ment errors. The intersection of the two circles de®nes possible values for
F, the structure factor not including the f 00j contribution of atoms.
FA =

P
j f 00j exp(2�ih�xj). The blue circle centred on ÿFA of radius jF�j

with thickness corresponding to the measurement error of jF�j restricts
all the possible values of F imposed by jF�j. The red circle centred on FA

of radius jFÿj with thickness relating to the measurement error of jFÿj
restricts all possible values of F imposed by jFÿj [i.e. F = F� ÿ FA = �Fÿ�*
+ FA].
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using singular value decomposition (e.g. Golub & van Loan,

1996; Cowtan & Ten Eyck, 2000) from LAPACK routines

(Anderson et al., 1999) to remove negative eigenvalues.

Automatic differentiation (Griewank et al., 1996) was used to

obtain the necessary partial derivatives of the SAD function.

The SAD function derived above was compared with the

programs MLPHARE (version 4.0; Otwinowski, 1991; Colla-

borative Computational Project, Number 4, 1994), SOLVE

(version 2.03; Terwilliger & Berendzen, 1997) and SHARP

(version 2.0.1; de La Fortelle & Bricogne, 1997) using the two

test systems shown below. In all tests, the default or example

scripts were used in running each program unless speci®ed

otherwise. The tests involved re®ning atomic parameters

(coordinates, occupancies and isotropic B factors) and asso-

ciated anomalous error parameters (if that option is available

in the particular program) together. In the running of SHARP,

the global and local imperfection parameters on anomalous

differences were re®ned. In the SOLVE DNA-oligomer data-

set test cases, the minimum atomic B factor was set to zero. In

the running of MLPHARE, the occupancies were not re®ned,

as holding them constant produced better results. All data sets

used were scaled using TRUNCATE (French & Wilson, 1978)

from CCP4 (Collaborative Computational Project, Number 4,

1994) to obtain jF�j, jFÿj, the mean jFj and Bijvoet differ-

ences. The Friedel pairs and their corresponding standard

deviations were used in SOLVE and by the SAD function,

whereas MLPHARE and SHARP employed the mean jFj and

Bijvoet differences with their corresponding standard devia-

tions. The statistics in the tables shown were all computed with

SFTOOLS (B. Hazes, unpublished work) from CCP4. The

statistics for the SAD function were calculated using the

standard de®nitions of the ®gure of merit (FOM) and `best

phase' (Blow & Crick, 1959; Drenth, 1999) with the prob-

ability distribution shown in (2).

2.1. Lysozyme in-house data set

The ®rst test case used a lysozyme data set collected on an

in-house source using the anomalous signal from the intrinsic

S atoms and solvent chloride ions described further elsewhere

(de Graaff et al., 2001). The atomic parameters input to all

programs were the 17 Cl and S atoms found by the program

CRUNCH (de Graaff et al., 2001), with the occupancies set to

one and the B factors set to 20 AÊ 2 in all programs. Results of

the test are shown in Table 1 where the phase errors and map

correlations are calculated against phases generated from the

®nal re®ned model coordinates from this data set (de Graaff et

al., 2001).

From the table, SHARP and the SAD function outperform

the other functions. The SAD function gives essentially the

same phase error as with SHARP, but a better estimate of the

®gure of merit (FOM). Thus, the SAD function gives a better

map correlation with the ®nal map than SHARP.

2.2. DNA-oligomer data set

The second test case is from a previously described DNA

oligomer (Dauter & Adamiak, 2001). This data set was

collected to 1.5 AÊ resolution at beamline X8C at the Brook-

haven National Laboratory Synchrotron at a wavelength of

1.54 AÊ and had an anomalous signal from the intrinsic P

atoms. Images were processed corresponding to 360, 270, 180

and 90� of the total rotation to test the effect of redundancy on

the SAD structure-solution process. Tests from the 360 and 90�

data sets are considered below. The atomic parameters input

to all programs were the ten P atoms obtained by the program

CRUNCH (de Graaff et al., 2001). For the 360� data set, the

coordinates found had only a 0.08 AÊ average absolute error

from the ®nal coordinates, while for the 90� data set the

coordinates had a 0.124 AÊ error. Results of the tests from the

360 and 90� passes are shown in Tables 2 and 3, respectively,

where the phase errors and map correlations are calculated

against phases generated from the ®nal re®ned coordinates

from a model built at 0.95 AÊ resolution (Dauter & Adamiak,

2001).

From Tables 2 and 3, the results of these test cases mirror

the results obtained from the lysozyme data. SHARP and the

SAD function perform the best, but the SAD function gives

better phase errors and considerably better ®gure-of-merit

estimates, all of which lead to better correlations with the ®nal

re®ned map.

3. Discussion

The above test cases show that the SAD function produced

better statistics in terms of map correlation and phase errors

compared with the ®nal re®ned structures. Furthermore, the

Table 1
Statistics for SAD re®nement and phasing of lysozyme.

MLPHARE SOLVE SHARP SAD

Map correlation 0.433 0.493 0.529 0.546
Reported FOM 0.352 0.353 0.421 0.459
Mean cos(phase error) 0.335 0.413 0.447 0.451
Mean phase error (�) 65.59 59.86 57.11 56.80

Table 2
Statistics for SAD re®nement and phasing of the DNA oligomer: 360�

pass.

MLPHARE SOLVE SHARP SAD

Map correlation 0.593 0.579 0.693 0.723
Reported FOM 0.563 0.494 0.564 0.640
Mean cos(phase error) 0.493 0.560 0.605 0.642
Mean phase error (�) 54.18 50.02 44.86 41.97

Table 3
Statistics for SAD re®nement and phasing of the DNA oligomer: 90� pass.

MLPHARE SOLVE SHARP SAD

Map correlation 0.488 0.478 0.630 0.647
Reported FOM 0.403 0.349 0.459 0.563
Mean cos(phase error) 0.416 0.484 0.551 0.565
Mean phase error (�) 59.66 55.16 49.08 48.02



SAD function produced more reliable phase probability

distribution estimates, as assessed by the agreement of the

mean cosine of the phase difference with the ®nal model and

the reported ®gure of merit from the program. However, more

test cases will be performed to determine whether this trend

continues.

To maintain consistency with the previous reported results

on these data sets (e.g. Dauter & Adamiak, 2001; Dauter et al.,

2002), the test cases were reported using only acentric data.

However, centric data can and should be used in SAD

phasing, as including re¯ections, even with low phasing power/

®gures of merit, is preferable to leaving them unphased (T. C.

Terwilliger, personal communication)

The program SHELXD (UsoÂ n & Sheldrick, 1999; Schneider

& Sheldrick, 2002) was also able to ®nd accurate sites for the

same (or very similar) data sets as were used here (Dauter et

al., 2002). Furthermore, SHELXE (Sheldrick, 2002), when

provided with the coordinates determined by CRUNCH, was

able to generate phases with no heavy-atom re®nement for the

360� oligomer data set, giving a map correlation of 0.685, a

phase error of 46.30 and a mean cosine of the phase error of

0.583 when compared with the ®nal model. However,

SHELXE gave a ®gure of merit of 0.485, an underestimation

of the mean cosine of the phase error. The map correlation is

comparable to that of SHARP. It should be noted that the

SAD likelihood function was also able to generate phase

information with no atomic or error-parameter re®nement,

giving similar values of the map correlation. However, by not

re®ning parameters, suboptimal ®gures of merit resulted. In all

the test cases described, the re®nement of atomic and error

parameters was necessary to obtain the best map correlation

combined with the most accurate phase probability statistics in

the SAD likelihood function.

This equation can not only be used for anomalous structure

factor phasing with jF�j and jFÿj, but also for model re®ne-

ment using a SAD data set, an idea initially proposed by Garib

Murshudov (personal communication). Efforts are currently

under way to test the SAD function for model re®nement as a

direct way of incorporating prior experimental phase infor-

mation into re®nement, rather than using information derived

from phasing probabilities (e.g. Hendrickson±Lattman co-

ef®cients) as described previously (Pannu et al., 1998). Simi-

larly, the SAD function applied to re®nement would only

require a one-dimensional numerical integration.

APPENDIX A
Derivation of the required distribution

To apply a maximum-likelihood analysis to a SAD phasing

experiment, the probability distribution of the observations

(jF�j, jFÿj) given the calculated Friedel (sub)structure factors

[H�c , �Hÿc �*] is required. For generality, F� will be denoted by

F1 = |F1|exp(i�1) and �Fÿ�* (the complex conjugate of Fÿ) will

be labelled by F2 = |F2|exp(i�2). For the structure factors

calculated from the anomalous substructure, H�c will be

denoted F3 = |F3|exp(i�3) and �Hÿc �* (the complex conjugate

of Hÿc ) will be labelled F4 = |F4|exp(i�4). This distribution can

be obtained from the formula

P�jF1j;jF2j; jF3j; �3; jF4j; �4�

�

R2�
0

R2�
0

P�jF1j; �1; jF2j; �2; jF3j; �3; jF4j; �4� d�1 d�2

P�jF3j; �3; jF4j; �4�
:

�4�

The above distribution requires a two-dimensional integra-

tion. However, one integral can be computed analytically,

leaving only a one-dimensional integration to be carried out

numerically. To show this, ®rst consider only the numerator in

the above expression. The distribution P(|F1|, �1, |F2|, �2, |F3|,

�3, |F4|, �4) can be obtained from P(F1, F2, F3, F4), a distri-

bution that will be approximated by a complex multivariate

normal of mean zero and covariance � (Pannu et al., 2003),

P�F1; F2; F3;F4�

� 1

�4 det��� exp ÿ

F�1
F�2
F�3
F�4

0BBB@
1CCCA

T
z11 z12 z13 z14

z�12 z22 z23 z24

z�13 z�23 z33 z34

z�14 z�24 z�34 z44

0BBB@
1CCCA

F1

F2

F3

F4

0BBB@
1CCCA

266664
377775

� 1

�4 det��� exp�ÿz11F1F�1 ÿ z22F2F�2 ÿ z33F3F�3 ÿ z44F4F�4 �
� exp�ÿz12F�1 F2 ÿ �z12F�1 F2�� ÿ z13F�1 F3 ÿ �z13F�1 F3���
� exp�ÿz14F�1 F4 ÿ �z14F�1 F4�� ÿ z�23F�2 F3 ÿ �z23F�2 F3���
� exp�ÿz24F�2 F4 ÿ �z24F�2 F4�� ÿ z34F�3 F4 ÿ �z34F�3 F4���: �5�

In the above expression, the jkth component of the inverse of

the Hermitian covariance matrix, �ÿ1, is denoted zjk = ajk +

ibjk. To obtain the desired distribution of the numerator in (4)

requires integrating, after transforming to polar coordinates,

over the unknown phases �1 and �2. Manipulation of the

above expression gives

P�jF1j; jF2j; jF3j; �3; jF4j; �4�
� jF1jjF2jjF3jjF4j

�4 det��� exp�ÿa11jF1j2 ÿ a22jF2j2 ÿ a33jF3j2 ÿ a44jF4j2�
� expfÿ2jF3jjF4j�a34 cos��3 ÿ �4� ÿ b34 sin��3 ÿ �4��g

� R2�
0

� R2�
0

exp
ÿÿ 2jF1jfjF2j�a12 cos��1 ÿ �2� ÿ b12 sin��1 ÿ �2��g

� jF3j�a13 cos��1 ÿ �3� ÿ b13 sin��1 ÿ �3��

� jF4j�a14 cos��1 ÿ �4� ÿ b14 sin��1 ÿ �4��g
�

d�1

�
� expfÿ2jF2jjF3j�a23 cos��2 ÿ �3� ÿ b23 sin��2 ÿ �3��g
� expfÿ2jF2jjF4j�a24 cos��2 ÿ �4� ÿ b24 sin��2 ÿ �4��g d�2: �6�

Looking only at the inner integral (the integration with

respect to �1), expanding the trigonometic functions and

simplifying gives
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R2�
0

exp�ÿ2jF1jfcos��1�

� �a12jF2j cos��2� � b12jF2j sin��2� � a13jF3j cos��3�
� b13jF3j sin��3� � a14jF4j cos��4� � b14jF4j sin��4��
� sin��1��a12jF2j sin��2� ÿ b12jF2j cos��2� � a13jF3j sin��3�
ÿ b13jF3j cos��3� � a14jF4j sin��4� ÿ b14jF4j cos��4��g d�1:

�7�
The above integral has an analytic solution,R2�

0

exp�a sin�x� � b cos�x�� dx � 2�I0��a2 � b2�1=2�: �8�

Therefore, the required distribution can be expressed in the

form

P�jF1j; jF2j; jF3j; �3; jF4j; �4� �
2jF1jjF2jjF3jjF4j
�3 det���

� expfÿa11jF1j2 ÿ a22jF2j2 ÿ a33jF3j2 ÿ a44jF4j2
ÿ 2jF3jjF4j�a34 cos��3 ÿ �4�� ÿ b34 sin��3 ÿ �4��g

� R2�
0

expfÿ2jF2jjF3j�a23 cos��2 ÿ �3� ÿ b23 sin��2 ÿ �3��g

� expfÿ2jF2jjF4j�a24 cos��2 ÿ �4� ÿ b24 sin��2 ÿ �4��g
� I0���jF1j; jF2j; jF3j; �3; jF4j; �4;�

ÿ1�1=2� d�2; �9�
where the argument of the Bessel function squared is

��jF1j; jF2j; �2; jF3j; �3; jF4j; �4;�
ÿ1� � 4jF1j2

� f�a12jF2j cos��2� � b12jF2j sin��2� � a13jF3j cos��3�
� b13jF3j sin��3� � a14jF4j cos��4� � b14jF4j sin��4��2
� �a12jF2j sin��2� ÿ b12jF2j cos��2� � a13jF3j sin��3�
ÿ b13jF3j cos��3� � a14jF4j sin��4� ÿ b14jF4j cos��4��2g: �10�

Now, the conditional probability can be formed. The distri-

bution of P(|F3|, �3, |F4|, �4) is

P�jF3j;�3; jF4j; �4� � jF3jjF4j�2 det��2� expfÿc33jF3j2 ÿ c44jF4j2
ÿ 2jF3jjF4j�c34 cos��3 ÿ �4� ÿ d34 sin��3 ÿ �4��g �11�

where cij and dij are the real and imaginary components

(respectively) of the inverse of covariance matrix (�ÿ1
2 ) of the

bivariate complex Gaussian distribution P(F3, F4).

The desired distribution, shown in (2) and below, is

obtained by dividing (9) by (11),

PSAD � P�jF1j; jF2j; jF3j; �3; jF4j; �4� �
2jF1jjF2j det��2�

� det���
� expfÿa11jF1j2 ÿ a22jF2j2 ÿ �a33 ÿ c33�jF3j2 ÿ �a44 ÿ c44�jF4j2
ÿ 2jF3jjF4j��a34 ÿ c34� cos��3 ÿ �4� ÿ �b34 ÿ d34� sin��3 ÿ �4��g

� R2�
0

expfÿ2jF2jjF3j�a23 cos��2 ÿ �3� ÿ b23 sin��2 ÿ �3��g

� expfÿ2jF2jjF4j�a24 cos��2 ÿ �4� ÿ b24 sin��2 ÿ �4��g
� I0���jF1j; jF2j; �2; jF3j; �3; jF4j; �4;�

ÿ1�1=2� d�2: �12�
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