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Outliers are observations which are very unlikely to be

correct, as judged by independent observations or other prior

information. Such unexpected observations are treated,

effectively, as being more informative about possible models,

so they can seriously impede the course of structure

determination and re®nement. The best way to detect and

eliminate outliers is to collect highly redundant data, but it is

not always possible to make multiple measurements of every

re¯ection. For non-redundant data, the prior expectation

given either by a Wilson distribution of intensities or model-

based structure-factor probability distributions can be used to

detect outliers. This captures mostly the excessively strong

re¯ections, which dominate the features of electron-density

maps or, even more so, Patterson maps. The outlier rejection

tests have been implemented in a program, Outliar.
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1. Introduction

When experimental data such as X-ray diffraction data are

collected, the observations are subject to errors. As long as the

sources of error are understood and properly accounted for,

measurement errors do not cause serious problems; they just

render the data less informative. However, some sources of

error are either sporadic or are not properly accounted for.

These include cosmic rays, `zingers' in data collected with

CCD detectors, and unmodelled shadows and dead areas on

the detector surface. Such sources of error lead to rogue

observations or outliers, which (if not detected) can cause

great trouble.

The problem is that an outlier is an observation that is

highly unlikely to occur, given one's understanding of the

errors. The more unlikely an observation is, the more in¯uence

it has on the model developed to explain the data. This is

particularly clear in the maximum-likelihood formalism,

where the pressure to improve the ®t to an observation

depends precisely on the probability of having made the

observation. So outliers can have a serious impact on the

success of structure determination and re®nement.

The standard, and still the best, way to cope with outliers is

to collect highly redundant data. Outliers show up as single

observations that agree very poorly with the bulk of other

observations. Unfortunately, it is not always possible to collect

highly redundant data, especially from crystals with low

symmetry: synchrotron beam time is limited, crystals decay

and equipment fails. Even in a highly redundant data set, there

may still be some intensities that are only measured once or

twice. When there are only two observations, and they

disagree, some additional criterion is needed to adjudicate

between them. For these reasons, it is desirable to have a

means for detecting outliers without relying on redundancy.
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2. What is an outlier?

Although outliers are typically detected by comparison with

other observations in a redundant data set, an outlier is not

just an observation that deviates from other observations.

Random errors can be large and, as long as the understanding

of the sources of errors is correct, the standard uncertainty

(s.u.) will be large, and comparable to the size of deviations. If

such an observation is merged with other observations, it will

have an appropriate in¯uence on the mean value, depending

on the precision of other observations. Problems only arise

when the error is much larger than one would expect from the

s.u. Therefore, an outlier is an observation that is unlikely to

be correct within error limits.

To test for an outlier, then, one needs to know something

about the distribution of errors. Typically, the criterion for an

outlier-rejection test is the probability of an observation

deviating from its expected value by the amount observed or

more. The application of this criterion can be illustrated easily

for redundant observations with Gaussian measurement

errors.

We divide the set of n observations into two groups: the

observation we are testing and all the rest. The rest of the

observations tell us what we would know about the true value

without making the observation we are testing. If we assume

Gaussian measurement errors, then the probability distribu-

tion for the true value, based on the nÿ 1 subset, is a Gaussian

with a mean and standard uncertainty as found in standard

textbooks on probability theory:
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Before we make the observation we are testing, we expect it to

fall within this probability distribution smeared out addition-

ally by the uncertainty introduced by a new measurement

error.
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To test a particular observation, we look at the probability that

the observation could deviate that much or more from the

expected value. Of course, since we are assuming a Gaussian

error distribution, we can equivalently use a particular number

of standard deviations from the mean as our criterion. In

SCALA (Evans, 1993), a program to scale and merge

diffraction data, the default is six standard deviations, which

corresponds to about one chance in 109 of such a deviation

arising by chance. More precisely, the probability of a positive

deviation of this size or greater is 0.8 � 10ÿ9. (A test like this,

which looks for a deviation in only one direction, is called a

one-tailed test.) The probability of a deviation of the same

magnitude in the negative direction is the same, so the total

probability of a deviation of that magnitude in either direction

(two-tailed test) is 1.6 � 10ÿ9.

In practice, one must consider the possibility that more than

one of the redundant observations is an outlier, so in SCALA

this procedure is carried out iteratively, testing each obser-

vation against the others and rejecting no more than one from

a set at a time. Special criteria are used to decide which of only

two observations should be accepted; in this situation, the

statistical criteria described below for non-redundant obser-

vations could be used to adjudicate.

3. Structure-factor probabilities

If we have redundant data, each observation can be judged by

how it compares with the other observations. We can think of

the other observations as providing a prior expectation.

However, if there is only a single observation, we have to

obtain this prior expectation from another source. A possible

source is structure-factor probabilities, i.e. what we know

about possible values for the structure factor from prior

information about the unit-cell content. The prior information

can simply be that the cell contains a certain number of atoms

in some more-or-less arbitrary arrangement, in which case we

can use Wilson statistics (Wilson, 1949) to determine the

probability of the observation. Alternatively, if we have an

atomic model, we can use model-based probability distribu-

tions (Read, 1990). In either case, we determine the para-

meters for the probability distributions from the other

re¯ections in the data set.

3.1. Normalization

For both the Wilson and model-based outlier tests, it is

convenient to work with normalized structure factors (E

values), because one parameter (�N) is eliminated. Subse-

quent calculations are simpli®ed if the expected value of E2 is

unity for all classes of re¯ections. This requires accounting for

the statistical effect of symmetry on intensity through the

expected intensity factor, ", which is the number of symmetry-

related molecules that diffract systematically in phase for that

class of re¯ection. If this factor is not taken into account, some

legitimate observations will be rejected systematically from

classes with larger values of ". Data can readily be normalized

by computing the Wilson parameter �N for resolution shells,

as performed in the program SIGMAA (Read, 1986). If the

resolution shells each contain 500±1000 re¯ections, the

statistical error in estimates of �N is low and normalization is

relatively insensitive to the presence of a few outliers,
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4. Detecting outliers with Wilson statistics

The Wilson distribution of intensities can be computed from

other structure factors in the same resolution shell, even if

there are no redundant observations. In the Wilson distribu-

tion, weak intensities are very probable, so it is not useful for

®nding observations that are too small. However, as the

intensity increases, the probability of making a measurement

drops exponentially. So the Wilson distribution is useful for

detecting and rejecting extremely large intensities such as

those caused by cosmic rays and `zingers'. As will be shown

below, such outliers can be damaging to structure determi-

nation and re®nement.

The test that is used is to compute the probability that an

observation could be as large as or larger than the one made,

i.e. p�I � Iobs� �
R1

Iobs
p�I�dI. (This is a `one-tailed' test, as

described above.) If one works with E values, this discrimi-

nator has a relatively simple form. For centric re¯ections,

pc�E� � �2=��1=2 exp�ÿE2=2�;
pc�E � Eobs� � erfc�Eobs=21=2�;

where erfc is the complement of the error function. For

acentric re¯ections,

pa�E� � 2E exp�ÿE2=2�;
pa�E � Eobs� � exp�ÿE2

obs�:
This can be expressed in terms of normalized intensities, by a

simple change of variables.

pa�E2� � exp�ÿE2=2�;
pa�E2 � E2

obs� � exp�ÿE2
obs�:

Fig. 1 illustrates the test for an acentric re¯ection. Since the

test discriminators are only functions of the E values, the test

can be implemented as a limit on maximum E value (with

separate maxima for centric and acentric re¯ections). For

instance, if one wished to reject observations as outliers if

there were only one chance in a million of them arising by

chance in the Wilson distribution, the limits on E would be

about 3.72 for acentric re¯ections and 4.89 for centric re¯ec-

tions. For a probability of 10ÿ9, the limits would be 4.55

(acentric) and 6.40 (centric).

5. Detecting outliers using calculated structure factors

Near the end of a structure determination, additional

restrictions can be placed on the structure factors by using

prior probabilities derived from the calculated structure

factors. Of course, to exploit this it is necessary to repeat the

scaling and merging of the diffraction data near the end of

re®nement. Apart from tightening the restrictions on strong

re¯ections, one can also detect observations that are too weak.

Appropriate probability distributions have been derived

(Luzzati, 1952; Sim, 1959) and further generalized (Srinivasan,

1966; Read, 1990). When expressed in terms of normalized

structure factors, they have a particularly simple form,

depending only on a single parameter �A. This parameter can

be thought of intuitively as the fraction of the calculated E

value that is correct. The probability distribution is shown for

the acentric case:

pa�E2; E2
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1ÿ �2
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exp
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Surprisingly, models must be fairly well re®ned to tighten the

restrictions of the Wilson distribution signi®cantly. Fig. 2

illustrates sample probability curves for models with different

values of �A. At a medium stage of resolution, �A values would

typically be around 0.7, the curve for which looks very much

like a Wilson distribution. Well re®ned models have values of

�A that are not much above 0.95 in the medium-resolution

data that agree best. As Fig. 2 illustrates, a calculated structure

factor will rarely provide as much information about the true

structure factor as even a single weak experimental observa-

tion. On the other hand, when calculated E values are parti-

cularly large or small, the model-based distributions become

more powerful in detecting outliers that are, respectively, too

small or large.

6. Implementations of outlier detection and rejection

The algorithms described in this paper have been imple-

mented in the program Outliar, which works with a merged

data set in the form of a CCP4 MTZ ®le (Collaborative

Computational Project, Number 4, 1994). This program reads

in observed (and, optionally, calculated) structure factors. If
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Figure 1
Wilson distribution for acentric E2. The inset illustrates the integral
de®ning the probability of an E2 of 13.82 (E = 3.72) or greater, which is
about 10ÿ6.
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calculated structure factors are provided, �A values needed for

the structure-factor probabilities can be computed from the

full data set or (preferably) cross-validation data, using an

algorithm that has been brie¯y discussed in previous publi-

cations (Pannu & Read, 1996; Read, 1997). Both the Wilson

distribution test and the model-based test, if applicable, are

performed. The model-based test uses the MLF likelihood

function (Pannu & Read, 1996), which is a Gaussian approx-

imation that includes the effect of both model and measure-

ment errors. If requested, an MTZ ®le omitting outliers can be

written.

Figure 2
Comparison of model-based probabilities with probability distributions from measurement error. (a) Model-based probability distributions for E2

c = 1
and �A values of 0, 0.7, 0.95 and 0.99. The distribution for a �A of zero is equivalent to a Wilson distribution, and as �A increases, the distributions become
sharper. (b) Gaussian probability distributions for E2 = 1 and measurement s.u.s of 0.5, 0.2 and 0.1. In other terms, these correspond to 2�, 5� and 10�
measurements. (c) Model-based probability distributions for �A = 0.95 and E2

c of 0.1, 2 and 4. Calculated structure factors at one extreme are more useful
for detecting outliers at the other extreme.

In principle, the presence of outliers could in¯uence the

estimates of �N and �A, which would imply that the outlier

tests should be applied iteratively, with �N and �A being re-

estimated between cycles. In practice, there are suf®cient

re¯ections in each resolution shell to minimize the impact of

such effects.

Of course, it is more appropriate to remove outliers from

the raw unmerged data. The test based on the Wilson distri-

bution has been implemented by Phil Evans in the program

SCALA (Evans, 1993), which scales and merges diffraction

data. But for reasons discussed below, if this option is used on

data from a crystal expected to display NCS, it would be best

to use generous cutoff values to avoid rejecting legitimate

re¯ections.

7. Impact of outliers on re®nement

Outliers are observations that are extremely improbable or

are unlikely to occur according to our understanding of the

experiment and its sources of error. Because it is assumed in

deriving likelihood targets for re®nement that the error model

is correct (Pannu & Read, 1996), outliers can have a serious

impact on the quality of re®nement. The log likelihood target

is composed simply of the logs of the probabilities for each

observation. An improbable observation will contribute a

large negative number. In maximizing the likelihood, then,

there will be great pressure to improve the agreement with

outliers.

In maximum-likelihood structure re®nement, as the model

improves the expected size of model errors decreases and the



probability distributions become sharper. Because of this, an

outlier will have increasing impact on the progress of re®ne-

ment as the re®nement proceeds.

A test re®nement was performed on the trypanosomal

glycosomal triosephosphate isomerase (gTIM) to demonstrate

the potential impact. In one region of reciprocal space, the

1.83 AÊ gTIM data set (Wierenga et al., 1991) has a number of

outliers, which were detected using the program Outliar

described below. (The author assisted in collecting this data

set, which was kindly provided by Dr Rik Wierenga.) The

largest E value in the set of 38819 data is 8.7; the probability of

seeing a value at least that large is about 10ÿ33, according to

Wilson statistics. Using a cutoff of 10ÿ6, 51 outliers were

eliminated from the data set. Two parallel re®nements were

carried out in CNS (Brunger et al., 1998), differing only in

whether these 51 re¯ections were rejected. The MLF target

(Pannu & Read, 1996) was used for coordinate re®nement,

which was followed by restrained B-factor re®nement and

another round of coordinate re®nement. The starting model

was an intermediate model (Wierenga et al., 1987) re®ned

against data to 2.4 AÊ before the high-resolution data were

collected. The success of test re®nements was judged by

comparison with the ®nal 1.83 AÊ model (Wierenga et al.,

1991).

Fig. 3 shows that the small number of outliers, only 0.13% of

the entire data set, has a signi®cant impact on the course of

re®nement. In addition, an inspection of the calculated

structure factors from the two re®ned models shows that the

re®nement has indeed been skewed in the presence of the

outliers; the average value of the calculated structure factors

for these 51 re¯ections is 2.95 times as large when the

re®nement is carried out including the outliers. As argued

above, one would expect these outliers to have an increasing

impact towards the end of re®nement, as they become even

more improbable.

8. Future developments

As it is currently implemented, the outlier-rejection algo-

rithm runs the risk of rejecting legitimate observations that

are subject to effects that have not yet been modelled. One

major problem is that the normalization scheme for the

determination of E values used in the rejection test based on

the Wilson distribution assumes that the falloff of the

diffraction pattern is isotropic and can be modelled by a

resolution-dependent curve. Unfortunately, many crystals

diffract anisotropically and re¯ections from the directions that

diffract strongly could end up being discarded. The work-

around that can be applied is to scale the data anisotropically

to remove the anisotropic component of falloff before

applying the rejection test, but it would be better to model

anisotropic diffraction explicitly.

The second major problem is that the statistical effect

of non-crystallographic symmetry (NCS), particularly

translational NCS, has not yet been accounted for. As

discussed above, it is essential to account for the effect of

crystallographic symmetry through the expected intensity

factor " to avoid rejecting re¯ections from certain classes

systematically. Similarly, NCS can modulate the expected

intensities. Most seriously, translational NCS can lead to

certain re¯ections being increased in their expected

intensity by a factor equal to the number of similarly

oriented molecules. Until these effects are accounted for,

it will be important to use very relaxed criteria for the

rejection of outliers in data sets from crystals with trans-

lational NCS.

Outlier rejection in SCALA (or, from a reduced data set,

in Outliar) can eliminate at least the worst rogue observa-

tions. However, as discussed above, the information in the

calculated structure factor comes to place a restraint on

possible values of the observed structure factor, especially

towards the end of re®nement. If re¯ections that come to be

seen as improbable are used in re®nement, they will have an

inordinate effect on the course of re®nement. It should be

possible to also implement outlier-detection algorithms in

re®nement programs, where they could be used to auto-

matically downweight suspect observations in a robust/

resistant re®nement procedure.

Finally, the same relationship that exists between the

true structure and a model exists between a native protein

and an isomorphous derivative (or ligand-bound species).

Therefore, the model-based outlier-detection algorithm

could also be used to detect improbable pairs of structure

factors in heavy-atom/native or ligand-bound/native pairs of

observations. For heavy-atom derivatives, in particular, this

statistical test could be quite important, as the deviations

are squared when computing difference Patterson maps.

Bart Hazes, Navraj Pannu and Phil Evans took part in

discussions that helped to clarify the ideas presented in this

paper. Rik Wierenga generously supplied the data used in test

calculations. This research was supported by the Wellcome

Trust (award 050211).
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Figure 3
Effect of outliers on re®nement of gTIM. Model quality is judged by the
mean cosine of the phase difference from the ®nal re®ned model
(Wierenga et al., 1991). Results are shown for the starting model (thin
line), the model after re®nement including outliers (dashed line) and the
model after re®nement excluding outliers (thick line).
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