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Abstract 

When crystal structures of proteins or small molecules 
are used to address questions of scientific relevance, 
the accuracy and precision of the atomic coordinates 
are crucial. Accordingly, the atomic model is generally 
improved by refining it to improve agreement with 
the observed diffraction data. The refinement of crys- 
tal structures is conventionally based on least-squares 
methods but such procedures are handicapped since 
conditions necessary for the use of the least-squares 
target are not satisfied. It is proposed here that re- 
finement should be based on maximum likelihood and 
two maximum-likelihood targets have been implemented 
in the program XPLOR. Preliminary tests with protein 
structures give dramatic results. Compared to least- 
squares refinement, maximum-likelihood refinement can 
achieve more than twice the improvement in average 
phase error. The resulting electron-density maps are 
correspondingly clearer and suffer less from model bias. 

I. Introduction 

To obtain the most accurate possible crystal structure, 
one typically refines the atomic model to optimize its 
agreement with the observed diffraction data. However, 
the quality of the resulting model will depend on the 
validity of the target function that is optimized. We 
believe that, since the conventional least-squares target 
is poorly justified in this case, the refinement procedures 
are unduly handicapped. A maximum-likelihood target 
is much better justified and we show that it performs 
significantly better in macromolecular refinement. 

The standard macromolecular refinement programs, 
PROLSQ (Konnert & Hendrickson, 1980), TNT (Tron- 
rud, Ten Eyck & Matthews, 1987), XPLOR (Brtinger, 
Kuriyan & Karplus, 1987) and GROMOS (Fujinaga, 
Gros & van Gunsteren, 1989), minimize a residual that 
is the weighted sum of squared deviations between 
the observed (IFol) and calculated (IFcl) structure-factor 
amplitudes, including a relative scale factor k: 

E w(lFol- klFcl) z. (1) 
hkl 

The refinement programs differ primarily in their mini- 
mization methods. Even though the atomic model is 

improved, problems arise because such a least-squares 
residual is poorly justified, especially early in the refine- 
ment. As Silva & Rossmann (1985) have pointed out, 
what is minimized (ignoring weights) is the r.m.s, devi- 
ation between the model electron density and the density 
computed from Fourier coefficients IFol exp(ic~c). This 
deviation can be minimized either by improving the 
model or by introducing systematic errors that oblit- 
erate differences from the model in the IFol exp(iac) 
map. Since most macromolecular refinements have an 
unfavourable parameter-to-observation ratio, the data are 
typically overfitted, which means that such systematic 
errors must be introduced. 

The least-squares-refinement target could be consid- 
ered to arise from the principle of maximum likelihood, 
if the following assumptions hold: the deviation between 
IFol and klFcl is a Gaussian, the mean deviation is zero 
and the standard deviation of the Gaussian is indepen- 
dent of the parameters of the atomic model. This is not 
true, as shown below, because the errors have a (chang- 
ing) phase component. For this reason, we should return 
to first principles and apply a maximum-likelihood anal- 
ysis to the problem of protein structure refinement, as we 
(Read, 1990) and Bricogne (1991, 1993) have suggested. 
At the recent CCP4 Workshop on Macromolecular Re- 
finement (5-6 January 1996, Chester, England), results 
were also presented from two other implementations of 
maximum-likelihood refinement, by Garib Murshudov 
and by Gerard Bricogne & John Irwin. In another 
crystallographic context, that of multiple isomorphous 
replacement, a maximum-likelihood treatment has also 
been applied with good results (Otwinowski, 1991). 

2. Devising a likelihood function 

The principle of maximum likelihood formalizes the idea 
that the quality of a model is judged by its consistency 
with the observations. To say that a model is consistent 
with an observation means that, if the model were 
correct, there would be a reasonably high probability 
of making an observation with that value. With the 
relevant observations taken as a set, then the probability 
of making the entire set of observations is an excellent 
measure of the quality of the model. If we assume that 
the observations are independent, the joint probability 
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of making the set of observations is the product of the 
probabilities of making each independent observation. 
This joint probability is the likelihood function (L): 

L = I I  P(IFol; IFcl). (2) 
hkl 

Since it is more convenient to work with sums than 
products, one typically works with the logarithm of the 
likelihood function. As well, the maximization problem 
can be turned into a minimization problem by multiply- 
ing by -1 .  Therefore, defining /: = -log(L) gives the 
following: 

£ = - ~,log[P(lFol; IF~)I]. (3) 
hkl 

In the case of crystallographic refinement, it is not 
strictly true that the diffraction observations are in- 
dependent; if they were, direct methods and density 
modification would not work. There is doubtless much 
useful information to be gained by working with higher- 
order collections of structure factors (Bricogne, 1993) 
but, as we will show, useful results are obtained even 
when independence is assumed. 

To apply maximum likelihood, one must start from the 
probability of making a measurement, given the model, 
its errors and the measurement errors. We have shown 
previously that various sources of random error in the 
model have equivalent effects on the probability distribu- 
tion for the true structure factor, whether the errors are in 
atomic positions or temperature factors or whether there 
are missing or extra atoms; in each case, the distribution 
of the true structure factor is well approximated by 
a Gaussian distribution centred on DFc (Read, 1990). 
In the case of acentric structure factors, which make 
up the bulk of data for macromolecular structures, the 
distribution [Pa(F; Fc)] is a two-dimensional Gaussian in 
the complex plane, while, for centric structure factors, it 
is a one-dimensional Gaussian [Pc(F; Fc)]: 

ea(F; Fc) " - -  [l/(Treo'2)] exp[ - (F  - DFc) 21~,,~] 

(4) 

Pc(F; Fc) - -  [l/(27rea~) '/2] exp[-(V - DFc)2/2eG2A]. 

(5) 

e is the expected intensity factor, tr 2 = ` u s -  D2`UP, 
,Us = distribution parameter of the Wilson intensity 
distribution for IF I (Wilson, 1949) and St, = distribution 
parameter of the Wilson intensity distribution for IFcl. 

The probability of the true structure-factor amplitude 
(IF I), conditional on the calculated amplitude (IFcl), 
is obtained by integrating over the unknown phase 
difference to give the following: 

P,,(IFI;  IF~I) = (21FI/eo-~,) 
x e x p [ - ( I F I  2 + D21F~12)leo.~] 

x Io(21FIDIFcl/~) (6) 

Pc(IFI; [Eel) = (2/Trea2A) 1/2 
x exp[-(IF/2 + D21f~12)/2~o~] 
x cosh(IFIDIF~l/eo-aA). (7) 

The probability distribution required to apply maxi- 
mum likelihood, however, is the probability of the 
observed diffraction measurement given the calculated 
diffraction measurement as the true value is not known. 
We have used two methods to approximate this dis- 
tribution, differing in the level of approximation and 
in the distribution assumed for the observational error. 
In the first method (MLF1), the measurement error is 
assumed to be Gaussian in structure-factor amplitudes 
and a Gaussian approximation is made for the resultant 
combined distribution, expressed in terms of structure- 
factor amplitudes. In the second method (MLF2), the 
measurement error is assumed to be Gaussian in the 
intensities and a series representation of the resultant 
combined distribution is expressed in terms of structure- 
factor amplitudes squared. 

2.1. MLFI  : an amplitude-based likelihood function 

If the probability of the measurement error [P(IFol -  
IF I)] is assumed to be Gaussian in structure-factor 
amplitudes with standard deviation GF, then the required 
probability distribution P(IFol; IFcl) is obtained by con- 
voluting P(IFI; IFcl) by P(IFol- IFI). 

P(lFol; IFcl) - P(IFI; IFcl) ® P(IFol- If l) .  (8) 

As far as we have been able to determine, there is no 
analytical solution to this convolution for the important 
acentric case. (A series representation could be derived 
similarly to MLF2, as discussed below. We believe that 
it is better to use MLF2 if one goes to the effort of 
computing the series representation.) However, a good 
Gaussian approximation can be obtained using the first 
two central moments of the distribution. The expected 
value for the acentric case is given by the following: 

(IFol) = [(~re~)I/2/2] ¢ ( - 1 / 2 ,  1, - D 2 l F c l 2 / e ~ ) .  

(9) 
For the centric case, the expected value is 

(IFol) = [(2eGE/Tr) I/2] 4i ( -1 /2 ,  1/2,-DEIFcl2/Ee~2).  

(10) 

In these expressions, ~(a,  b,x)  is Kummer's confluent 
hypergeometric function, also denoted by iF! (a, b, x). 
The variance for both the acentric and centric distribu- 
tions is given by the following: 

G2ML -- ecr 2 4- a "2 + D2IFc[ 2 -- (IFo[) 2. (11) 
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As IFcl increases, ~r2L tends towards eo -2 + cr 2 in the 
1 2 centric case and ~ecr A + cr 2 in the acentric case be- 

cause, in the limit, only the component of model error 
parallel to Fc contributes to the error in the amplitude. 
When these moments are used to construct a Gaussian 
approximation, the negative log-likelihood function (E) 
is 

' log(27r) + log(aML) + (1/2cr2L)(lFol- (lEo[)) 2 
hkl 

(12) 

If rrML is assumed to be relatively constant within a cycle 
of refinement, maximum-likelihood refinement can be 
approximated as a modified least-squares refinement, in 
which the following target is minimized: 

WSSQ = ( I F o l ) )  2. (13) 
hkl 

This target can readily be implemented in any crys- 
tallographic refinement program that uses a least- 
squares target by weighting each term with 1/Cr2L, 
replacing klFcl with (IFol) and replacing OIFcl/OP with 
(O(IFol)/alF~l)(OIFcl/OP), where p is any parameter of 
the model being refined. The required derivative for the 
acentric case is given by 

O(IFol)/OIF I = (Tr/ea2 )'/2(D2lFcl/2) 
x ,~(1/2,2, - D21F~I2/ea2); (14) 

and for the centric case by 

O(IFol)lOlFcl = (217reo 'Za) ' /ZDZlFc l  

x @(1/2, 3/2, - D21Fc1212eo' ). 
(15)  

Note that the [F¢[ term eliminates the singularity in the 
derivatives that can arise in least-squares refinement on 
amplitudes (Schwarzenbach et al., 1989). 

Algorithms implementing (9)-(11), (14) and (15) are 
described in Appendix A. The quality of the Gaussian 
approximation can be judged from a comparison of 
distributions shown in Fig. 1. 

2.2. MLF2: an intensity-based likelihood function 
The second method that we use to derive the required 

probability distribution works in terms of structure-factor 
amplitudes squared (J = IF[Z). Two advantages are 
attained by working in J instead of IF[. First, measure- 
ment errors frequently lead to a negative net intensity, 
which is reduced to negative J; when these legitimate 
observations are transformed to IF 1, one has the choice 
of omitting them, replacing them with zero or replacing 
them with a non-zero Bayesian posterior value (French 
& Wilson, 1978). By working in terms of J, this problem 
is avoided. Furthermore, a Gaussian measurement error 

is better justified in J than in IF I- In principle, maximum 
likelihood is insensitive to variable transformations such 
as from IFI to IFI 2 (Edwards, 1992). If MLF2 did not 
differ from MLF1 in the distribution assumed for the 
measurement error, the two likelihood functions would 
differ only in the precision of the approximation. 

The required probability distribution P(Jo;J,.) is de- 
rived by multiplying P(J; Jc) with the Gaussian proba- 
bility of the measurement error [P(Jo; J)] with standard 
deviation crj and integrating over the true structure-factor 
amplitude squared (J). 

o o  

P(Jo;Jc) = f P(Jo;J) x P(J;Jc) dJ. (16) 
o 

A series representation of P(Jo;Jc) can be computed. 
For acentric reflections, the distribution is 

e,~(Jo;J~) = [1/(27r)'/2ea2A] exp(--j2/2a 2 - D2j¢/ea 2 ) 
(x) 

X ~_, (O2Jcffj/e2o4A)n(1/n]) 
n=O 

× - 

× - ( 1 7 )  

D - , - i  (x) is a parabolic cylinder function. For centric 
reflections, 

Pc(Jo;Jc) = [1/2(Trrrje)l/2rrA] 
x exp(-Jz /Zrr )  - D2Jc/Zea 2) 

X y]~ (DZJcrTj/ZeZ~r4A)n[1/(2n)!! ] 
n=O 

× exp[(o -2 - 2Joeo-2)2/16e2o-4#] 

x D_,,_,/2([rrj 2 - 2Joea2aJ/2err2aj). 
(18) 

",(IrolqFa) 

IFOl 

Fig. 1. Comparison of the Gaussian approximation to Pa([Fol; [Fc]) 
(thin lines) with the exact form determined by numerical integration 
(thick lines). Three pairs of curves are shown, corresponding to 
weak, average and strong reflections with D --- 0.7. This figure, 
Fig. 2 and some of the mathematical derivations were made with 
the assistance of the program Mathematica (Wolfram, 1991). 
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After eliminating terms that are constant within a cycle 
of refinement, the negative log likelihood (£) for the 
acentric case is 

£ = Elog(ea2A) + D2Jc/etr 2 
hkl 

--log{~=o(D2JctTj/e2tr4A)n(1/n' ) 

x exp[(a 2 - YoeCr2a)2/4e2r~4acr2 ] 

x - Jo GI/ Goj)I ; 
) 

(19) 

and for centric reflections it is 

£ = E ½ l°g(ea2A)+ D2Jc/2ecr2 
hkl 

-log{n~__o(D2J¢crj/2e2o'X)n[1/(2n)!! ] 

x exp[(cr 2 - 2Joetr2A)2/16e2a4cr 2] 

x D_n_,/2([rr 2 - 2Joerr2]12err2rrj)~. (2O) 
) 

Equations (17)-(20) are derived in Appendix A. 
Some essential differences between least-squares and 

maximum-likelihood refinement can be seen in a com- 
parison (Fig. 2) of the derivatives of the target functions, 
which lead to the atomic shifts in the refinement process. 

0 . 0 2  

o ~ target 

~rcl 

- 0 . 0 2  

- 0 . 0 4  

500  600  

Ir¢l 

Fig. 2. Comparison of the derivatives, with respect to IFcl for one 
reflection, of the refinement targets for least-squares (thin line), 
MLF1 (thin curve) and MLF2 (thick curve) as a function of 
IFcl. The example (the 2,12,17 reflection of  the gTIM test case, 
discussed below) is chosen to illustrate the degree to which the least- 
squares and maximum-likelihood targets can differ. In XPLOR, the 
derivative contributes to a force on each atom to move in a direction 
that will decrease the refinement target. At the start of refinement, 
IFcl is 395.6 (indicated by the dashed vertical line); according to 
the least-squares target, atoms should move to decrease [Fc[ while, 
according to the maximum-likelihood targets, atoms should move 
in the opposite direction to increase IFcl. Note that if lEd were 
zero the derivatives for the maximum-likelihood targets would also 
be zero, reflecting the fact that the true phase would be completely 
uncertain and that a desired direction of shift could not be inferred. 

2.3. Calibration of structure-factor probabilities 
The value of the likelihood function depends on the 

parameters of the atomic model. It also deDends on 
the resolution-dependent parameters D and a~a, which 
characterize the effect of model error on the structure- 
factor probability distributions. [In fact, D and a~ are 
not independent and can each be computed from the 
single parameter erA (Read, 1990).] In principle, it would 
be best to optimize the likelihood function by adjusting 
all parameters simultaneously, including coordinates, B 
factors and aA values. Unfortunately, a problem arises 
if the OrA ValUeS are refined using the same data against 
which the model is refined: the poor parameter-to- 
observation ratio allows overfitting of the amplitudes, 
which results in an overestimation of O" A and hence an 
underestimation of the errors in the calculated structure 
factors (Lunin & Urzhumtsev, 1984; Read, 1986). This 
leads to a positive feedback cycle in which the pressure 
to overfit becomes stronger. In our first attempt to im- 
plement maximum-likelihood refinement, this problem 
was ignored. As the quality of the likelihood function 
depends strongly on the accuracy of O" a estimates, the 
results were unimpressive. 

The solution we have adopted is to use cross- 
validation data (a minority of data omitted from the 
refinement target) in an active way to provide unbiased 
estimates of structure-factor accuracy. These data are 
normally used to compute Rfree, an unbiased measure of 
refinement progress (Briinger, 1992). The use of cross- 
validation data to estimate aA is complicated, however, 
by the fact that stable estimates require 500 to 1000 
reflections in each resolution shell, especially when 
the true value is low (Read, 1986). To overcome the 
problem of instability, we exploit the fact that O" A varies 
smoothly with resolution. A simple correction, in which 
a penalty is applied when a O" A value lies far from the 
line connecting its two neighbours, is sufficient (Read, 
unpublished). 

A better solution would be to refine the o" A values 
as parameters in the refinement but to make allowance 
for the fact that they are biased estimates in using 
them in the likelihood function. Since a theoretical 
basis for the correction for bias is lacking, however, 
this solution cannot yet be applied. We are currently 
studying the effect of refinement bias on the structure- 
factor distributions, to lay the groundwork for such an 
improved treatment. 

3. Test refinements 

The two maximum-likelihood targets have been im- 
plemented in the program XPLOR (Brtinger, Kuriyan 
& Karplus, 1987). Results from runs of the modified 
XPLOR on two test systems will be discussed here. In 
each test, the suggested weighting factor (WA) for the 
diffraction terms in the target, obtained by comparing 
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Table 1. Refinement statistics for the SGT test case 

The starting model (BT superimposed on SGT) was refined against 
calculated SGT data in three runs of XPLOR, identical except for the 
target function. In total, 420 cycles of energy-minimization refinement 
were carried out. 

Start Least squares MLF 1 MLF2 

R factor 0.515 0.403 0.416 0.422 
Rfree 0.542 0.51 I 0.525 0.528 
Mean phase error (o) 62.2 60.0 56.7 56.5 
Mean cos(phase error) 0.365 0.394 0.436 0.437 

measured from a crystal with disordered solvent, data 
from infinity to 8.0/~, resolution were omitted in the 
least-squares refinement while they were used in both 
maximum-likel ihood refinements. 

As shown in Fig. 3, both maximum-l ikel ihood target 
functions achieved a significantly greater improvement  
in the model, measured by both Rfree and phase dif- 
ferences with the final model. One example of the 
increased power of maximum-l ikel ihood refinement is 
illustrated in Fig. 4; the least-squares refinement has 
failed to complete a rigid-body shift of  a helix that 

the gradients from the diffraction and energy terms 
(Briinger, Karplus & Petsko, 1989), was divided by two. 

3.1. Streptomyces griseus trypsin 

The crystal structure of Streptomyces griseus trypsin 
(Read & James, 1988) (SGT) was solved originally 
by molecular replacement using the structure of bovine 
trypsin (Chambers & Stroud, 1979) (BT) as a search 
model. In order to compare the power of the maximum- 
likelihood and least-squares targets in a case where the 
phase errors are known exactly, we used data calculated 
from SGT as error-free amplitudes IFol and a super- 
imposed model of BT as a starting structure. Since 
these two proteins share about 33% sequence identity, 
BT provides a relatively poor model that will only be 
capable of refining into a local minimum. 

Data from infinity to 2.8 A resolution (5732 reflec- 
tions, of  which 578 were flagged as cross-validation 
data) were used for both refinements. (One often omits 
the low-resolution data for least-squares refinement be- 
cause of the complications caused by disordered solvent 
but in this case there is no disordered solvent.) Table 1 
shows the results obtained in the different refinements. 
While none of the refinements could achieve an accurate 
model, owing to the inadequacies of the starting model, 
the maximum-likel ihood targets gave more than twice as 
large an improvement in the average phase error. Note 
that, owing probably to the small number of reflections 
used in this case, R f ~  provides a weak indication of 
phase accuracy. 

3.2. Trypanosoma brucei glycosomal triosephos- 
phate isomerase 

At an intermediate stage in the refinement of the 
glycosomal triosephosphate isomerase (gTIM) from Try- 
panosoma brucei (Wierenga, Noble, Vriend, Nauche & 
Hol, 1991), data to a resolution of 1.83 ~ became avail- 
able to replace the data to 2.4/~ resolution that had been 
used to that point (Wierenga, Kalk & Hol, 1987). We 
tested the three refinement targets on this intermediate 
model, using the observed diffraction data (model and 
data kindly supplied by Dr R. K. Wierenga). Of  38 812 
observed amplitudes, 1014 were flagged randomly as 
cross-validation data. Because this is a real data set 
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Fig. 3. (a) R factors through the test refinements of gTIM. The runs 
were identical except for the target function and the treatment 
of low-resolution data; for the least-squares refinement, data from 
infinity to 8,~ were omitted, while they were included for both 
maximum-likelihood refinements. In each case, 250 cycles of energy 
minimization (EM) refinement were run, followed by 30 cycles of 
B-factor refinement. The solid lines indicate R factors for the least- 
squares target, the dotted lines indicate R factors for the MLFI 
target and the dashed lines indicate R factors for the MLF2 target. 
gfree values for the three different target functions are represented 
by circles and R values for the three different target functions 
are represented by triangles. The initial increase in Rfree probably 
reflects the fact that all data from 6.0 to 2.4 ,~, resolution had been 
used in the previous refinement. (b) Phase accuracy after gTIM test 
refinements. The phase accuracy is computed as the mean cosine of 
the phase error, which is comparable to the mean figure of merit. 
Triangles correspond to the starting model, squares to the least- 
squares model, diamonds to the MLFI model and circles to the 
MLF2 model. 
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is within the convergence radius for the maximum- 
likelihood refinement. The increased phase accuracy, 
coupled perhaps with less of a tendency to overfit data, 
results in an electron-density map that is clearer in 
regions where the model is still in error (Fig. 5). 

As one might expect from the increased precision of 
the approximation, the MLF2 target gives significantly 
better results than MLF1 (Fig. 3). This improvement is 
achieved for a modest computational cost. Compared to 
an equivalent refinement with the least-squares target, 
the MLF1 target requires about 1% more computer 
time, while the MLF2 target requires about 10% more 
computer time. 

4. Conclusions 

While the current implementations of maximum- 
likelihood refinement already provide significant bene- 
fits, a number of improvements can be envisioned. First, 
the algorithm for the estimation of O A does not take into 
account measurement errors. Either of the likelihood 
functions derived here, MLF1 or MLF2, can be used to 
compute O" A values that take into account measurement 
errors, and these modified likelihood functions will be 
implemented in the SIGMAA algorithm. As is clear 
from the variance term in the Gaussian approximation 
MLF1 [equation (11)], observational error has little 

Fig. 4. Rigid-body shift in gTIM test 
refinements. In this helical region of 
gTIM, a rigid-body shift can be seen 
between the starting model (blue) and 
the final model (green). The least- 
squares refinement (yellow model) has 
failed to make the full shift, while 
the maximum-likelihood target, MLFI 
(pink model), has converged to a result 
close to the final model. This figure and 
Fig. 5 were drawn using the program 
O (Jones, Zou, Cowan & Kjeldgaard, 
1991). 

Fig. 5. Electron-density maps 
from gTIM test refinements. 
In this region of gTIM, a 
major conformational change 
is required to get to the final 
model (green), but is not 
within the power of gradient- 
driven refinement with either 
the maximum-likelihood target, 
MLF1 (pink model), or the 
least-squares target (yellow 
model). Nonetheless, the general 
phase improvement through 
maximum-likelihood refinement 
makes the change required in the 
model considerably clearer (left, 
blue density) than for the least- 
squares refinement (right, tan 
density). Each map is contoured 
at the r.m.s, value of the electron 
density. 
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influence on the likelihood function unless the model is 
quite accurate. Nonetheless, it will become significant 
at the end of refinement and a proper treatment will be 
important to obtain an optimal final model. 

Arbitrary relative weights between diffraction and 
geometry terms should not be required, in principle, if 
each is introduced to maximum likelihood through the 
appropriate probability distributions. However, we have 
found that some overweighting of the diffraction terms, 
relative to the theoretical value, is needed to achieve 
convergence. This may be necessary in part because the 
inevitable overfitting of the diffraction amplitudes alters 
the distribution P(F; F,.). In various tests, the comparison 
of gradients has led to weights that are increased by 
factors of between 4 and 50, with higher weights being 
required for less-refined models at lower resolution. 
Further tests will be required to decide whether these 
relative weights are optimal. 

Finally, the maximum-likelihood approach allows one 
to include, in a sensible way, any combination of infor- 
mation (Bricogne, 1993). We believe that considerable 
scope for improvement exists in the simultaneous refine- 
ment of structures, for instance, native with liganded, or 
native with heavy-atom derivatives. In such a refinement, 
all observations would be fit simultaneously, using mod- 
els that are restrained to resemble one another to a degree 
required by the relationships among the measured sets 
of structure factors. 

This work might not have been carried out if not for 
the opportunity provided by Dr Rik K. Wierenga, who 
was the host for RJR as a summer visitor to EMBL, 
Heidelberg, Germany, in May 1993, when the first steps 
to implementation were taken. Discussions with Bart 
Hazes and Steven Ness helped greatly in implementing 
MLF2 into XPLOR. Financial support was provided by 
the Alberta Heritage Foundation for Medical Research, 
the Medical Research Concil of Canada, the Natural 
Sciences and Engineering Research Council of Canada 
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A 2. Implementation of MLF2 

The distribution P(Jo;Jc) is attained by multiplying 
P(J;J,~) with a Gaussian probability of measurement 
errors [P(Jo;J)] with standard deviation aj and inte- 
grating over the true structure-factor amplitude squared, 
J. The distribution P(J; Jc) is obtained via a variable 
transformation of (6) for acentric and (7) for centric 
structure factors. 

P~,(J; J,.) = [1/(ea2 )] exp[- (J  + D2jc)/ea 2] 
x lo(2D[JJc]l/2/ea 2) (21) 

Pc(J; J,.) = [1/(2rrea2 j)] '/2 exp [ - ( J  + D2jc)/2ecr 2] 

x cosh[D(JJc)'/2/ea2]. (22) 

The joint probability, P(J, Jo; J,.), is the product of the 
probability of the observation error and the probability 
of the true intensity given the calculated intensity. The 
desired distribution, P(Jo; J,.), is the integral over J of 
the joint probability. 

O'(3 CXD 

P(J,,;J,) = f P(J, Jo ; J , )dJ=  f P(Jo;J) × P(J;Jc) dJ. 
0 0 

(23) 
For acentric reflections, 

o c  

P~,(J,,;J,.) = f[1/(27r)'/2ajea~] 
0 

2 " x e x p [ - ( J -  J,,)2/Zcr2 - (J + D J,.)/e(r~] 

X lo(2D[JJ,.]l/2/ccr~)dJ (24) 

= [ 1 / ( 2 7 r ) ' / 2 c r F c r ~ ]  

x exp(-S,~/2o'j - D 2 S , . / e a ~ )  

oo 

× j exp{-J:/2   
0 

× lo(2D[SS,.]I/2/ecr~)dJ. (25) 

APPENDIX A 
Derivations and implementation 

A 1. Implementation of MLF1 

The implementation of the MLF1 target requires the 
computation of a number of confluent hypergeometric 
functions of the form ~/'(a, %x), with different argu- 
ments a and 3'. When the argument of x is small, 
a Chebyshev polynomial approximation (Luke, 1977) 
can be used. For arguments of x larger than ten, it is 
preferable to use an asymptotic expansion (Slater, 1965). 
Note that, as lEd increases, (IF,,I) tends to OlFcl and 
(IF,,I) 2 tends to O~lFcl 2 (centric case) or D2lFcl 2 + ½eOeA 
(acentric case). 

Expanding the 
series [lo(x) -- 
integration and 

modified Bessel function into a power 
~_,,~=o(x/Z)Z"/(n!) 2] and interchanging 

summation gives the following: 

/ 9  9 1 P,,( J,,; J,. ) = [1/(27r)' -crjeo~j 

x exp(-.1',,/20)2 2 _ D2j,,/eo.2_.x ) 

o o  

x E 
n : O  

c)o 

x j 'exp{-S2/2crf  " 
0 

- J[(~rf - Joecr~)/e~r~#]}J" dJ. (26) 
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There exists an antiderivative for this expression 
(Gradshteyn & Ryzhik, 1980). 

ea(Jo;Jc) [1/(27r) 1/2cor21 2 2 = exp(-Jo/Za ) - D2Jc/ea 2) 
o o  

x E (DZJcaJ/e2°'4)n(1/n!) 
n = O  

x e x p [ ( #  -- Joecr2)2/4e2cr~#] 
× - ( 2 7 )  

D_,,_l(x) is a parabolic cylinder function. Now, for 
centric reflections, 

ec(Jo;Jc)-  (1/27re'/ZaAcrj) 
o o  

× f(1/J' /Z) exp[-(J + DZJc)/Ze~r2 a 
0 

_ ( j _  j , , ) 2 / 2 a f ]  

x cosh[D(JJc)'12/ecr 2] dJ (28) 

= (l/27rel/2aACrj) 
x exp(-J~,/2crj2 2 _ D2j,./2ecr~) 

o o  

x f(1/j~/2)exp{-j2/2cr~ 
0 

- J [ ( o  -2 - 2 J o e o - 2 ) / 2 e o - 2 c r 2 1  } 

x cosh[D(JJc)'/2/ecr2]dj. (29) 

Expanding the cosine hyperbolic function into a power 
series [cosh(x) = Y~'~.~0x2"/(2n)!] and interchanging 
summation and integration gives 

P,.(Jo;Jc) = (l/27re'/2aAaj) 
× exp( 2 2 --Z,/Zcrj -- D2j,./2eo .2) 

(3O 

X ~_, (D2j,./e2o4A)n[l/(Zn)! ] 
n = O  

o o  

x f j~- , /2  exp{_jZ/z~j2 
0 

- J r ( o )  2 - 2J,,ea2..a)/Zecr2cr~]} dJ. (30) 

The analytic solution for this expression is 

Pc(Jo;Jc) = [l/2(Trcrje)l/2~J] 
X exp( - j2 /2c r  f - O2j,./2ea~) 

x ~, (DZJcaj/2e2cr4~)"[1/(2n)!!] 
n = 0  

x exp[(af - 2Joea2)z/16e2cr4ja 2] 
× O _ , , _ , / 2 ( [ o  2 - 2J,,eo-2]/Zea2crj). 

(31) 

The negative logarithm of P(J,,; J,.) for the acentric case 
gives the following: 

2 2 D2jc/eCr~ 12 log(27r) + log(eo'2A) + Jo/2a) + 

{ ~o( D2 JcaJ - l o g  /e2"~)"( 1/,,!) 
= 

x e x p [ ( c r  # - Joecr2a)214e2a4ao'#] 

× D _ , , _ ,  - 
) 

(32) 

For centric reflections, the negative logarithm of 
P(Jo; Jc) is 

2 2 D2jc/2ecr2 log[2Qro'je)'12o'3] + Jo/2aj + 

-log{~=o(DZJccrj/2e2e4)n[l/(2n)!! ] 

x exp[(cr 2 - 2J,,ea~)2/16e2cr4cr 21 

× D _ ° _ l / 2 ( [ o  2 - 
) 

(33) 

The elimination of constant terms from (32) and (33) 
leads to the functions implemented in XPLOR. 

/2 = E 1og(e0"2A) + DZJc/ecr2,a 
h k l  

--lOg{n~=o(D2Jco'j/e2cr4)n (1In' ) 

× expt(o  - 

x O _ , , _ ,  ( [ 0 2  - Y,,ea2l/ecr2aj)~ 
) 

(34) 

for acentric reflections and 

I log(ea2)  + D2j¢/2e~ 2 
h k l  

-log{~=o(O2jccrj/2e2cr4)n[1/(2n)!! ] 

x exp[(af - 2JoetrzA)2/16eetr4trj 2] 

x D_._l /2([o "2 - 2JoeaZA]/2eaztTj) 
) 

(35) 

for centric reflections. The numerical algorithm em- 
ployed to evaluate the parabolic cylinder functions in 
(34) and (35) can be divided into two different possi- 
bilities: one case is when the argument of the parabolic 
cylinder function is non-positive and the other is when it 
is positive. In both cases, the algorithm developed relies 
on evaluating the function D_,,(x) for two particular 
values of u and using recursion relations to calculate 
the special function for the other values of u necessary 
for the series to converge. 

In the first case, when the argument of the parabolic 
cylinder function is non-positive, the special function 
becomes large as x ~ - c ~ .  Thus, to ensure convergence 
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of the series, exp(-x2/4)D_~,(x) is evaluated and then 
x2/2 is added to the likelihood function. The algorithm 
utilizes the relationship with the complement of the error 
function [erfc(x)] in the acentric case: 

D_n_,(x) = (Tr/2)l/2[(-l)n/n!] exp(-x2/4) 
x dn[exp(x2/2)erfc(x/21/2)]/dx n, (36) 

where the complementary error function is defined as 

erfc(x) = (2/7r 1/2) f exp(-r/2) dr/ (37) 
X 

= I - eft(x). (38) 

Thus, for n = 0, 1, (36) implies 

exp(--x2/4) D_l(X) = (re/2) 1/2 eftc(x/21/2) (39) 

exp(-x2/4) D_2(x) 
= exp(-x2/2)  - x(Tr/2)'/2 eftc(x/2'/2). (40) 

The code for the numerical evaluation of eftc(x) in 
MLF2 was written by Cody (1969). The following recur- 
sion relation is used to calculate higher-order parabolic 
cylinder functions. 

D_,,_l(x) = (lln)[D_,,+,(x) - xD_,,(x)]. (41) 

Note that both sides of the equation can be multiplied 
by exp(-x2/4)  to give a recursion relation involving 
exp ( -x  2/4) D_,,_ l(X). 

In the centric case, when the argument of the parabolic 
cylinder function is non-positive, the first two terms 
(n = 0, 1) are evaluated via the relationship with the 
confluent hypergeometric function ~(a, b, x): 

noted by U(a, b, x). Since ~(a, b, x) remains bounded as 
x becomes large, exp(x2/4) D_,,(x) is evaluated. 

exp(x2/4) D_,,(x) = (1/2~'/2)qs(u/2, 1/2,x2/2). (43) 

If the first two terms (n -- 0, 1) are evaluated using 
(43) and higher-order terms are evaluated using (41), 
catastrophic cancellation occurs during the determination 
of higher-order terms. Therefore, first D_v(x) is evalu- 
ated using (43) for - u  = A + 1, A, where A is large 
enough to ensure convergence. Then the terms - u  = 
A - 1, A - 2 . . . . .  0 are evaluated using a rearrangement 
of (41): 

D_,(x)  = uD_,_l(X) + xD_~,_2(x). (44) 

The numerical evaluation of ¢J(a, b,x) in MLF2 was 
adopted from Temme (1983). 

Note that as D2Jccrj/e2crna increases the infinite sum- 
mations in (34) and (35) need more terms to converge 
and it is possible that the numerical values exceed 
machine precision before convergence occurs. We have 
recently derived an asymptotic equation valid for large 
values of D2Jccrjle2cr 4 for acentric reflections. Such 
asymptotic expressions will compute the likelihood func- 
tion more efficiently for large parameters and avoid 
potential overflow. In the two test cases discussed, 
however, overflow was not a problem. Nonetheless, in 
order to compute the likelihood function more efficiently 
for large parameters and avoid potential overflow, the 
equation derived will be implemented. In the centric 
case, if overflow occurs, either the MLF1 target for 
centric reflections can be used or an exact probability 
density for the observed structure-factor amplitude given 
the calculated amplitude (assuming a Gaussian observa- 
tional error in structure-factor amplitudes) that we have 
derived can be implemented and used. 

exp(-x2/4)  D_,_l/z(X) 

= (Tr'/Z12"/z+'/4){[1/F(n/2 + 3/4)] 

x g'(1/4 - n/2, 1/2, - x2/2) 

- [ 2 ' / 2 x / F ( n / 2  + 1/4)] 

x ~ ( 3 / 4 - n / 2 , 3 / 2 ,  - x 2 / 2 ) } .  (42) 

The algorithm for the numerical evaluation of 
• ( a , b , - x )  was adopted from Slater (1965), Luke 
(1977) and Baker (1992). A recursion relation similar 
to (41) can be used to attain higher-order terms in 
the centric case. 

In the case where the argument of the parabolic 
cylinder function is positive, both acentric and centric 
likelihood functions can be calculated using the re- 
lationship of the parabolic cylinder function with the 
confluent hypergeometric function g'(a, b,x), also de- 
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