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Statistical pattern recognition for macromolecular

crystallographers

A selection of pattern-recognition techniques is presented
with a special focus on those methods that may be of interest
to macromolecular crystallographers not indifferent to auto-
mated protein model building. An overview of the most
common pattern-recognition approaches is given and some
popular model-building packages are briefly reviewed within
this context.

1. Introduction

Pattern recognition is perhaps the most important process in
the acquisition of knowledge and the driving force behind the
development of any scientific discipline. Recognizing beha-
vioural, morphological, genetic etc. similarities within and
between species (sociology and psychology, biometrics,
biology etc.), capturing the patterns observed in experimental
data in the form of rules and equations (chemistry, physics
etc.) and many areas of art and tasks of everyday life may be
seen as applied pattern recognition.

Indeed, the human mind seems to be intrigued by patterns
in nature and the urge to discover these regularities and
especially to classify objects possibly provides the satisfaction
that drives the artistic and scientific mind to creative thinking
and understanding. Pattern recognition is one of the most
highly developed and frequently used cognitive capabilities.
The brain is considered to be the most sophisticated and
powerful pattern-recognition machine available and will
probably remain so.

Although pattern recognition in this broad sense is perhaps
the most intriguing and interesting, the definition given here
will be more restricted and will concentrate mainly on the
computer-science applications of machine learning and auto-
matic machine classification.

This paper deals with the artificial intelligence approach to
pattern recognition, how to teach a computer to distinguish
relevant signals from noise and how to use this information to
make decisions. One important field of artificial intelligence
for which many of these approaches were developed is that of
computer vision and many textbooks tend to focus on image-
analysis applications such as handwriting recognition. The
underlying theory is, however, sufficiently general to be
applied to wide range of important problems.

Especially with the recent explosion of biological data from
various genomics projects, there is an increasing interest in
pattern-recognition (data-mining) techniques. However, the
focus here will be on the application of such techniques to
automated model building in protein crystallography. Many
model-building packages now employ fairly sophisticated
pattern techniques ranging from template-fitting procedures
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to neural networks and likelihood-based image matching. A
brief review of such techniques therefore seems quite timely
and is the purpose of this article. For a much more detailed
and complete presentation of the underlying theory and other
methods, the reader should refer to the many pattern-
recognition textbooks and papers cited throughout the text.
The classics by Duda et al. (2003) and Fukunaga (1990) can be
highly recommended, as can the excellent book on machine
learning and information theory by MacKay (2003).

2. Statistical pattern recognition

One primary goal of pattern recognition is to reduce a wealth
of information to a small set of important characteristics
(features) that are relevant to the questions being asked and
the interpretation of these features: the transformation of
signals to meanings. A general model for pattern recognition is
depicted in Fig. 1. In statistical pattern recognition, a pattern is
represented by a set of d features, fi, f>, ..., fs, called a feature
vector in d-dimensional feature space. For example, in
assigning/recognizing secondary-structure elements from a set
of coordinates, one could include the following features: fi, the
main-chain backbone angle ¢; f5, the main-chain backbone
angle ¥; f3, the number of residues to the hydrogen-bonding
partner of the main-chain O atom; f;, the number of residues
to the hydrogen-bonding partner of the main-chain N
atom. The actual feature values are denoted here as
x = (x1, ..., x,;)". The determination of this set of features is
known as feature extraction and feature selection. Following
data processing and feature selection, a decision-making
process is needed that will take a given feature vector and
assign it to one of the predefined classes wy, w», ..., ®.. cis the
number of such classes, i.e. the cardinality of the classification
set €2. These classes may be defined either from previous
knowledge and the mapping from the feature vector to each
class determined with methods known as supervised learning
or from the use of clustering techniques (unsupervised
learning, exploratory data analysis). Methods for these tasks
will be outlined below. For more detailed information and
implementation details, the reader is referred to the literature
given throughout the text.

2.1. Feature extraction and feature selection

Feature extraction refers to techniques to create new
features from transformations of the originally chosen ones.
Feature selection refers to algorithms that attempt to select
the best subset of features from a given set with the aim of
reducing the feature space size. The terms feature extraction
and feature selection are, however, often used interchangeably
to describe the process of dimensionality reduction. The
performance of a classifier system depends on the training
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Figure 1
Standard model of a pattern-classification system.

sample size, the number of features and the complexity of the
target classification. Computational efficiency is strongly
dependent on the dimensionality of the problem. It is also
often the case that the required information for a particular
problem is a small fraction of the full information content one
has at hand. For example, the full diffraction experiment
information, containing a huge number of photon counts per
detector pixel for every image and over all images as well as all
boundary conditions, is reduced to a much smaller number of
features, consisting of a unique set of Miller indices together
with integrated intensity values and error estimates that
summarize the information of a particular experiment. It is
generally desirable to describe the system of interest with the
smallest number of (preferably independent) features possible
that is still sufficient to perform the classification without loss
of accuracy. In addition, problems in overfitting often mean
that a dimensionality reduction actually achieves a decrease in
classification error rates. The process of feature selection
essentially reduces data redundancy. This process may be seen
as one of data compression and information theory and indeed
the underlying mathematics are the same (MacKay, 2003).
Information compression can be viewed as a mapping from a
space of dimension d onto a lower dimensional space,
y = M(x), whereby the original features x = (xy, ..., xp)" are
mapped onto a set of new features y = (y;, ..., y4)'. For
visualization purposes of high-dimensional data, a sensible
dimensionality reduction is of great importance. The standard
techniques of feature extraction/selection restrict themselves
to looking for the best linear transformation because of the
computational advantages that linear systems offer. In such
linear cases, the mapping can be represented by y = M’x,
where M is a D x d matrix (often with d << D). Methods such
as neural networks and support-vector machines use so-called
kernel functions to create a nonlinear mapping. With the right
choice of kernel functions, these methods can achieve a high
compression rate and/or a good separation of classes in the
new feature space. These methods will be outlined in §3.

2.2. General mathematical framework for classification

Classification may be described as a decision rule, C, that
says for the (commonly real) values x;, x5, ..., xy of the
features fi, f5, ..., fx the pattern belongs to a certain prede-
fined class, w;,

C:IR" — Q, C(x) = w,.

As with most decent statistical theories, any decision making is
left to Reverend Thomas Bayes. Bayes’ theorem can be
written as

P(w,|x) = P(“’k)P("Wk)/ZP(wi)P(XWi)’

in which, as above, the w; parameters are the possible classes
and x is the feature vector. P(w|x) is the posterior probability,
i.e. the conditional probability that given the data x the class is
. P(wy) is the prior belief in this class before observing the
features and p(x|wy) is the likelihood that the class w; could
produce the observed features. As an example, imagine fitting
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side chains to a main chain obtained, for instance, from
skeletonization (Greer, 1974). Without looking at the density,
the prior belief of a certain C* position having an histidine side
chain attached to it could be assigned the frequency of histi-
dine within the protein sequence. The likelihood function
could be computed from the fit between the observed and the
theoretical electron-density distribution.

The actual decision rule is often formulated as minimizing
the risk, R(wy|x), of a false class assignment,

R(wy|x) = éL(wk, ) P(0;]x).

in which L(wy, ;) is the loss in deciding for w; when the true
class would be w; and P(w;/x) is the posterior probability as
calculated above. A loss function is especially important for
medical applications, in which a false diagnosis may be fatal
and must be excluded at all costs, or for stock-market
predictions that may lead to financial disaster. In the simple
case of a binary loss function, L(wy, ;) = 8;, the minimum-risk
decision rule reduces to the maximum posterior rule
(maximum a posteriori, MAP), which states that x should be
assigned to class wy if

P(w,|x) > P(w;|x) Vi# k.

Basically, all aspects of structure determination including
crystal detection and alignment, diffraction-spot recognition,
intensity-profile determination, crystal space-group recog-
nition, unphased and phased molecular and micromolecular
replacement, heavy-atom detection, model building, refine-
ment and validation can be unified within this framework.
Indeed, statistical pattern recognition may be seen as just
another instance of applied Bayesian statistics, the use of
which has been advocated for years by Jaynes (see references
in Jaynes, 2003) and in crystallography by Bricogne and others
(French & Wilson, 1978; French & Oatley, 1978; Bricogne,
1988, 1997a,b).

2.3. A brief look at other approaches to pattern recognition

A distinction is often made between statistical pattern
recognition and techniques such as template matching, the so-
called syntactic approach (Fu, 1982), neural networks (Bishop,
1995) and support-vector machines (Vapnik, 1998). This
distinction is, however, somewhat artificial (Fu, 1983; Schur-
mann, 1996). Template matching is one of the simplest and
earliest methods of pattern recognition. It requires the avail-
ability of some known template (typically a shape) and a
similarity measure. Often, the template is itself learned from a
training set. In its standard form (non-deformable templates,
unflexible similarity measure), template matching has the
disadvantage of being sensitive to distortions and is compu-
tationally relatively demanding. The syntactic approach
adopts a hierarchical perspective in which a pattern is viewed
as consisting of an arrangement of simpler sub-patterns.
Complex patterns are thus built up out of a small number of
such sub-patterns and grammatical rules which describe how
such sub-patterns may be assembled. A common problem is
the identification of suitable sub-patterns, especially in noisy

data, and the often combinatorial explosion of ways in which
these sub-patterns can be combined. Artificial neural
networks have, despite many controversies regarding their
usefulness and range of applicability, maintained a high
research interest as models for trying to understand the
biology of the brain and as powerful classification tools.
Support-vector machines are a fairly recent development that
in many areas offer stiff competition to neural networks.

3. Overview of some standard techniques
3.1. Parzen windows

To carry out any classification within the Bayesian frame-
work, the prior probabilities and the likelihoods must be
known. The Parzen window method (Fukunaga, 1990) esti-
mates the class-conditional probability density function
p(x|w;) (likelihood) by centring kernel functions at each data
point x" of class w; and summing them. No assumption is made
about the general functional form of the likelihood (the use of
kernel functions is a local spread estimate and is in principle
just a histogram binning method); the method is therefore
termed non-parametric. Parametric methods, on the other
hand, make some strong assumption about the likelihood
function. For instance, the structure-factor distribution in the
complex plane is often assumed to be Gaussian.

In general, kernel functions will have some sort of metric
that measures the distance from each kernel centre (the data
point) and a spread attached to it that reflects the sparseness
of the data points (the spread should decrease with increasing
number of data points).

The most common kernel functions are hypercubic, hyper-
spheric, Gaussian and exponential. Common metrics
are the Euclidean d(x, x") = |x" — x|, quadratic d(x, x")
(x" — x)"M(x" —x) and the Chebycheff metric d(x, x") =
max|x} — xj.

The performance of the Parzen window method for esti-
mating the likelihood function depends strongly on the
distance metric, the window function (shape) and the window
size (Fig. 2).

3.2. Principal component analysis

Principal component analysis (PCA), also known as the
Karhunen-Loéve expansion, is one of the best known un-
supervised linear feature-extraction methods. It is a simple yet
powerful technique and other important methods such as
factor analysis, correspondence analysis, discriminant analysis
or kernel PCA may be viewed as variations on the same
theme. PCA will therefore be presented in greater detail than
the other techniques.

PCA seeks the best summary of the data (see Fig. 3),
followed by the second best and so on. This process is carried
out by looking for new axes that can explain the maximal
amount of variance in the data (the axes that fit the data best
in the least-squares sense). For example, if one could find a
straight line that passes through all the points in a plot, then
this new coordinate axis would be sufficient to describe the
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data exactly and all axes would be redundant, i.e. the total
variance of the data could be accounted for (summarized) by
the first principal component. Fig. 1 shows a two-dimensional
plot of data and a new axis (the first principal component) that
fits through these points best in terms of squared deviation.
Introducing a second axis in Fig. 1, orthogonal to the first
principal component, would allow one to account for the total
variance in the original data and would therefore be infor-
mation conserving. The distribution of information between
the axes has, however, been greatly shifted compared with the
original coordinate system (the features x; and x,) and most of
the information now resides in only one projection (the
principal component axis y;). Without too much information
loss, y; may be sufficient to describe the data for classification
purposes. This approach can often lead to a substantial
dimensionality reduction in real applications. It is common to
introduce PCA as a recursive procedure in which one looks for
the direction of first principal component, e;, such that this
vector passes through the sample mean and minimizes the
squared error from projecting the data points onto this axis.
The first principal component thus gives the direction (vector)
in feature space that contains the most information about the

O = N W H OO N O ©O© O
T
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1

Figure 2

Parzen windows: from data points to a distribution. (a) shows ten
measured data points. The other three plots show estimations of the
distribution obtained by attaching a known function to each data point,
i.e. a kernel function. The plots show the influence of the choice of
window size. Gaussians with o = 0.1, 1.0 and 10.0 are depicted here in (b),
(c) and (d), respectively.

data. Further principal components are sought in a similar
manner of minimizing the squared error of the projections
of data points onto the new axis. This recursive feature-
extraction procedure is terminated once an information-loss
threshold is met. Keeping the original dimensionality of
feature space, d = D, PCA is an information-conserving
transform. If one reduces the feature space of original
dimension D to d, then the reconstruction error is given by

D

e= > A

i=d+1
This can expressed as the loss of information in percentage by
D d
&€= ( oD ki> x 100%.
i=d+1 i=1

PCA, however, need not be performed in the above form. The
recursive procedure can be shown to be equivalent to an
eigenanalysis on the covariance matrix,

Cov(x;,x;) Cov(xy,x,) Cov(xy, x,,)
Cov(x,, x;) Cov(x,, x,) Cov(x,, x,,)
Cov(x,,x;) Cov(x,, x,) Cov(x,, x,,)

with
Cov(x;, xj) = &{(x; — I’Li)(xj - /'Lj)} = E{xixj} - E{xi}g{xj}~

The covariance may be estimated from
1 N
Cov(x;, x;) =~ cov(x;, x;) = N1 > (g = X)(x;, — X)),
T ls=1

where X; denotes the average value over all the data points, x, ,
for the variable x; i.e. the sample mean. ’
The eigenvector with the largest eigenvalue is the direction
with the largest variance of the projected data and is therefore
equal to the first principal component.
A D x D matrix C is said to have an eigenvector e to the
eigenvalue A if Ce = XLe. If one places all these eigenvectors e;

X2

%
Xy
Figure 3
Principal component analysis of a two-dimensional (x;, x,) data set. The
line labelled y shows the direction of the first principal component, which
gives the best mean-square reduction of the data from two to one
dimensions.
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as columns into one matrix, M, and places ::1\11 the eigenvalues,
A;, as the elements of a diagonal matrix, C, then the eigen-
system may be written as CM = MC. Multiplication of this
equation from the left by M leads to

C=M"'CM.

The transformation matrix that diagonalizes the original
covariance matrix contains the new basis vectors (the eigen-
vectors of the original matrix) as its columns. Thus, an
eigenanalysis on C is equivalent to diagonalization and
corresponds to finding new direction vectors such that the new
features are uncorrelated. Ordering these vectors by their
eigenvalues (equal to the variances) gives the directions of the
principal components as outlined in the above recursive
procedure. For Gaussian data, the lack of correlation between
the new features also guarantees their independence,
providing a computationally advantageous way for calculating
the joint probabilities, P(y1, ... y4) = P(y1)---P(yq), that
would otherwise be an often bad approximation.

The main steps of PCA can be summarized as follows.

(i) Choose any number of features, (f, ..., fp)’, for the
classification problem.

(ii) Construct the covariance matrix, C, of these features
from a test set.

(iii) Perform an eigenanalysis on C.

(iv) Order eigenvalues, A;, and eigenvectors, e; Choose the d
first vectors (typically << D) to define the new feature space.
These new vectors may be obtained from the original vectors
via the transformation y = M’x.

If features that are used vary wildly in magnitude it is
common practice to replace the covariance matrix by the
correlation matrix in all the above arguments.

3.3. Independent component analysis

Although PCA offers a powerful method by which to
summarize data, for clearly non-Gaussian distributions this
approach is not well suited (see Fig. 4). PCA is a second-order

Xa

.

X

Figure 4

An illustration of the problems with principal components analysis and
other variance-based methods. The data could be cleanly separated into
two clusters by the direction labelled y’, as obtained from linear
discriminant analysis (LDA). However, projections along the principal
component direction (y) would not produce any such clustering.

method, which means that only information contained in the
covariance matrix of the data is used. If the data are normally
distributed then they are completely determined by this
second-order information and including higher moments is
therefore pointless.

As the name implies, independent component analysis
(ICA) attempts to find a transformation that produces
components that are as statistically independent as possible.
Any ICA method thus may roughly be expressed as the
definition of an independence measure (objective function)
and an algorithm for maximizing it (optimization procedure).
A natural quantity to measure the dependence of two vari-
ables, X; and X,, is the mutual information (divergence). For
discrete variables the divergence is

(X, X,) = > ) Plx;,x;)log P(xy, x,)/[P(x;)P(x,)]

X €X| XX,
and for continuous variables

I1(X,, Xz) = f fp(xl»xz) logp(xl,xz)/[p(xl)p(xz)].

X1 X

The divergence is, however, not a proper distance measure
(metric) as the triangle inequality property is not obeyed.
Other measures of independence exist, many related to or
approximations of the above divergence or the negentropy.
ICA is a very general concept with a broad range of applica-
tions in many different areas and the method is still very much
under development. Linear ICA is perhaps the most devel-
oped and several freely available software packages exist that
should be given preference over PCA for (highly) non-
Gaussian data.

3.4. Discriminant analysis

The Bayesian approach to classification requires knowledge
of the class-conditional (likelihood) functions p(x|w;). Instead
of making assumptions about the form of p(x|w;), one can
make assumptions directly about the form of the class
boundaries. The decision boundaries can be described by so-
called discriminant functions, g(x). For example, in the two-
class case a discriminant function may assign x to class w; if
g(x) < k and to class w;, if g(x) > k. On the boundary g(x) = k
the choice is arbitrary. A connection to Bayes’ decision theory
can be made by setting

8(x) = p(x|w)/p(x|w,)

and k to P(w,)/P(w;). This is indeed an optimal discriminant
function, as would be expected from anything Bayesian, but
this optimal function is not unique as any monotonic function,
f, will lead to exactly the same decision boundaries for f[g(x)]
and f(k). In general, one can achieve optimal discriminant
functions (equivalent to Bayes’ decision rule) by setting
gi(x) = p(x|w;) P(w;); it is, however, common to assume a much
simpler type of decision function, such as a linear combination
of the components of the feature vector x. Linear discriminant
functions have the general form

800 = W'x + w,

Acta Cryst. (2004). D60, 2133-2143
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where w is called the weight vector and w is the threshold
weight (or bias). This equation describes a hyperplane normal
to the direction of the weight vector and at a distance w/|w|
from the origin. Expressing x as x,, + dw/|w|, where x,, is the
normal projection of x onto the hyperplane defined by g
and d is the distance from the plane (negative if on the
negative side of the plane, otherwise positive). As g(x,) = 0,
g(x) = w'x + wy = d|w|. The discriminant function for x thus
measures the distance from the hyperplane.

A weight vector that correctly separates classes is often
termed a solution vector. Basically, one would like the
hyperplane boundaries to be roughly halfway between two
classes. One common possibility for determining this vector is
to maximize the minimum distance of the sample points to the
plane. Another approach is to maximize the margin between
the hyperplane and the nearest data points. Other methods
include so-called error-correcting procedures that only change
one of the current hyperplanes if it caused a misclassification.
Examples are the perceptron and relaxation procedures.
Error-correcting methods suffer from convergence problems if
the samples are not linearly separable; distance and minimum-
square error procedures converge, but the resulting weight
vector is not necessarily a solution vector.

A pattern-classification method that employs linear discri-
minant functions is termed a linear machine. The minimum-
distance classifier (nearest neighbour rule) is a linear machine.
Problems that can successfully be divided up by hyperplanes
into different classes are called linearly separable.

By using functions of x, ¢;(x), one can use the above idea
but with a discriminant function that is nonlinear in the
original measurements x (but linear in the new space defined
by the functions ¢;). This approach is known as generalized
linear discriminant analysis.

3.5. Artificial neural networks

Artificial neural networks are computational models based
on simplified models of the biological neuron. From this point
of view, a neural network is a mathematical model for the
brain. From a computational viewpoint, a neural network is a
general machine that represents functions by a network of
simple computing elements and a general learning framework.

The nerve cell, or neuron, is a fundamental functional unit
of the brain. Basically, each neuron consists of inputs
(dendrites), outputs (axons) and a processing unit (soma). The
connection between an axon and a dendrite from different
cells is called the synapse. A signal is transmitted by releasing
chemical substances from the synapses, which interact with
receptors on the dendrite, causing a change in the electrical
potential of the cell; if a potential threshold (activation) is
reached, a pulse spreads down the axon that eventually may
pass into other cell bodies, again via synapses and dendrites. In
the human brain each neuron has been estimated to be
connected to up about 10 000 other neurons.

An artificial neural network consists of a number of nodes
that are connected by links. Each link has a weight associated
with it and it is these weights that provide the learning ability

and memory effect. The output links are only allowed to
transmit signals if an activation level is reached from
combining all incoming signals. Common activation functions
include the sign function, linear functions and, perhaps the
most frequently used, the sigmoid function. The type of acti-
vation function is often indicated within the nodes (Fig. 5).

There are different network architectures, each with
different computational properties. A network structure
typically has several layers (multilayer network); single-layer
networks are called perceptrons. In a feed-forward network
the links are always only unidirectional (forward) and only
between different layers, i.e. no cycles, whereas in a recurrent
network there are no such restrictions.

One popular method of training a multilayer network is
back-propagation. Examples are presented to the network and
the network attempts to classify each one. If the classification
is correct then nothing is done, but if the output is erroneous
then the weights are adjusted back to share the blame. This
can be shown to be a gradient-descent method in weight space
(see Jain et al., 2000, and references therein).

For pattern recognition, neural networks often perform
very well, but because of their black-box nature it is difficult to
extract much more information than the output signal for a
given input. Given enough parameters, neural networks have
no problem overfitting data (basically memorizing all
presented patterns and not making the necessary general-
izations). It is, therefore, highly important to use some kind of
cross-validation technique. A similar method that can better
handle prior knowledge and offer advantages in modelling
probabilistic functions is the Bayesian belief networks tech-
nique (Russell & Norvig, 1996; MacKay, 2003).

3.6. Kernel methods (support-vector machines)

The search for decision boundaries between different
classes is often complicated and hindered by the fact that the
data are not well separated and appear jumbled together.
However, it is possible to (nonlinearly) map this data onto a
higher dimensional space in which they are cleanly separated,
at least in principle. The discovery of such a mapping is not a
trivial task and often the new dimension can be so high that
overfitting can hardly be avoided. However, the power and
appeal of methods for the determination of (linear) decision
boundaries is great enough to first attempt to find such a

(@) (%) ()
Figure 5
Some typical artificial neural network activation functions. (a) Linear, (b)
sign, (c) sigmoid.
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mapping and then to use these well established techniques to
separate the different classes.

The idea of support-vector machines (SVM) is to maximize
the margin, b, between different classes. The classes are
separated by hyperplanes. Each hyperplane may be described
by its normal vector; the nearest transformed sample points
are called support vectors (see Fig. 7). Note that this process is
basically equivalent to generalized linear-discriminant
analysis, the difference being that an additional mapping to a
higher dimensional space takes place before the decision
boundaries are determined by standard linear-discriminant
analysis. Support-vector machines are still very much under
development, but already a number of implementations are
emerging, especially for two-class systems, that are capable of
outperforming other methods.

4. Automated model building in protein crystallography

Electron-density map interpretation consists of examining the
electron-density map and building a molecular model that is
based on the features of that map and knowledge of the
chemical nature of the molecule. Before the emergence of
automated software approaches, this was a labour-intensive
task that could typically take many months and required a
sound knowledge of protein structure and chemical bonding,
experience, imagination and much expertise (Kleywegt &
Jones, 1996).

Figure 6

An artificial example of an artificial neural network. Input signals are
presented to the system (lower series of arrows); these are combined
within the intermediate layer(s) and are again combined in the final layer
to create the output (the upper arrows). The output signals can directly
map onto the various classes or can be used to create new features that
enjoy a better (linear) separability than the original ones.

It is beyond the scope of this article to review all existing
model-building ideas and programs and to do many of the
excellent approaches justice; therefore, a small number of
selected methods will be examined in sufficient detail to get an
impression of the pattern-recognition aspect. The current
programs have much in common but also subtle differences,
either in their philosophy or in their implementation details.
Many of the methods below are derivatives of algorithms
originally employed in molecular-graphics packages such as O
(Jones et al, 1991; Jones & Kjeldgaard, 1996), QUANTA
(Accerlrys Inc.) or XtalView (McRee, 1992) to aid the manual
model-building process. The selection is naturally biased
towards the author’s own experience and knowledge of the
individual programs and is perhaps not a representative
selection of original and historically important ideas. The
ordering is meant to reflect neither historical developments
nor any quality assessment. For a detailed comparison of some
of the most popular automated model-building packages see
Badger (2003). Further details should be sought in the original
articles and in the Proceedings of the CCP4 Study Weekend
(2004).

4.1. Greer’s skeleton and Jones’ bones

Greer (1974) proposed a very simple and elegant method to
reduce the complexity of a three-dimensional electron-density
distribution to a much clearer set of lines that capture the
connectivity (main chain) of the map. The method is an
iterative procedure that removes points from a grid repre-
sentation of the electron density. In short, points are only
removed if they do not break the connectivity. One is left with
a small set of points that can be joined to produce a skeleton of
the original density. Although there have been many devel-
opments that are more sophisticated, skeletonization remains
a powerful and commonly used method and it is perhaps still
the most widely employed technique for macromolecular
model building in experimental electron density thanks to
implementations such as that of the popular graphics package
O (Jones et al, 1991; Jones & Kjeldgaard, 1996). Similar
approaches that in addition make use of the electron-density
topology (maxima, minima, saddlepoints) are the core-tracing
algorithm of Swanson (1994) and the molecular-scene analysis
of Fortier et al. (1997).

4.2. The ESSENS of Kleywegt, Cowtan’s FFFEAR and Diller’s
DADI

The ESSENS routine (Kleywegt & Jones, 1997) aims to
interpret a given electron-density map by attempting to
recognize given templates at each point in the map. An
exhaustive search in six-dimensional space was proposed,
equivalent to phased molecular replacement. This was
possibly the first successful approach to automate the idea of
building new proteins from old fragments (Jones & Thirup,
1986). At each point in space, one tries to find the best match
(classify) to one of a given number of search fragments
(classes). The mapping function is based on the worst agree-

Acta Cryst. (2004). D60, 2133-2143

2139

Morris < Pattern recognition



research papers

ment of the electron density at the atomic centres between the
search model and the map density.

One disadvantage of the ESSENS implementation is the
time required to carry out the six-dimensional search in real
space. Cowtan has attacked this issue by re-formulating the
translation search in reciprocal space and implemented the
approach with FFT methods within the program FFFEAR
(Cowtan, 1998). In the pattern-recognition context this is an
improved classification function.

The idea of DADI (Diller, Redinbo et al., 1999) is similar.
These authors created a database of frequently observed
CATH (Orengo et al., 1997) domains and employed a more
top-down approach of first recognizing and placing the
domains (Diller, Pohl et al., 1999). A novel Monte Carlo chop-
and-clip procedure then prunes the built molecule down
through the secondary-structure level to individual residues,
always only keeping the pieces that fit well. The domain-
recognition score is calculated from each atom and is based on
the observed electron density, the molecule’s internal energy,
the electrostatic potential, the van der Waals energy and any
protein-ligand interaction energy. The approach is basically
equivalent to the idea of ESSENS but with a different classi-
fication function and automatic methods to choose the search
fragments (classes) that are later subdivided to increase the
placement accuracy.

4.3. RESOLVE

The underlying idea of RESOLVE (Terwilliger, 2001,
2003a,b,c,d) is basically the same as the template-matching
method proposed by Kleywegt & Jones (1997); however, a
number of further developments and refinements have greatly
improved its performance and popularity. RESOLVE is

Figure 7

Principal of support-vector machines. Sample points that are not easily
separable in the original feature space, x, are transformed to a higher-
dimensional space, y; and y,, and then hyperplanes are constructed to
maximize the margin between different classes. Depicted is a two-class
problem (blue and red). The full points are the support vectors.

perhaps one of the most advanced programs in terms of
implementing a proper statistical pattern-recognition system.
Not all routines are fully Bayesian yet, but the employed
maximum-likelihood method is certainly a good approxima-
tion (and even exact for non-informative priors or the case in
which only one model is considered). Terwilliger uses the same
pattern-recognition techniques to build the macromolecular
model and to carry out density modification. This approach
often significantly improves the phase estimates and therefore
the electron-density map (Terwilliger, 1999, 2000, 2003d).
FFT-based methods are employed to compute derivatives of a
log-likelihood map. Structure-factor statistics are combined
with prior knowledge of density distributions to provide log-
likelihood scores that allow likely templates to be assigned to
grid points and their surrounding region. This method is
similar to the ARP/wARP approach of overlapping fragments
to build the main chain (Morris et al, 2002) but without the
intermediate step of atom location and peptide-unit identifi-
cation. Performed in an iterative procedure (Perrakis et al.,
1999; Terwilliger, 2003a), RESOLVE is probably the most
robust method below 2.5 A. The side-chain placement algo-
rithm is perhaps the first routine to employ a truly Bayesian
approach to this problem (Terwilliger, 2003b). Another very
interesting further development of RESOLVE involves the
use of template matching of a number of commonly observed
density distributions to perform density modification in a map
such that the suggested density value is independent of the
point in question (Terwilliger, 20034d).

4.4. ARP/WARP

ARP/wARP (Perrakis et al., 1999; Lamzin et al., 2001;
Morris, Perrakis et al., 2004; Morris, Zwart et al., 2004) uses the
syntactic approach of pattern recognition to look for a sub-
pattern first. The basic elements that ARP (Lamzin & Wilson,
1993) attempts to identify are atoms. These basic elements are
used in the template-matching routine (Lamzin & Wilson,
1997) to identify possible peptide planes. A statistical pattern-
recognition module then attempts to determine the best path
through three-dimensional space by connecting these peptide
units such that the resulting main chain matches current
geometrical expectations of protein structures (Morris, 2000;
Morris et al., 2002). This method is not dissimilar from that
proposed by Koch (1974) for the automatic building of simple
organic and inorganic molecules, although for proteins extra
layers of sophistication are required. The geometrical protein
descriptors employed by ARP/wARP were determined from a
principal component analysis of a large set of possible
distances and angles (Oldfield & Hubbard, 1994; Kleywegt,
1997) to give a smaller number of better features (Morris,
2000). The distributions were then built using the Parzen
window method. The identification of helical substructures is
established using linear-discriminant analysis of C%-angle
features. The next step in ARP/WARP is to dock the sequence
and fit the side chains. The sequence docking is a pattern-
recognition routine based on graph matching that classifies
each C” position as belonging to a certain side-chain type
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(Morris, 2000; Cohen et al., 2004; Terwilliger, 2003b) and may
be seen as an adaptation of the method of Zou & Jones (1996).
The prior distribution is derived from the given sequence and
the likelihood score (class-conditional probability) is an
empirical score based on how well the found atoms can
reproduce the known connectivity graph for each side chain.

4.5. TEXTAL and CAPRA

TEXTAL (Holton et al., 2000) operates in a 19-dimensional
feature space consisting of electron-density-derived rotation-
ally invariant features. These include the average density and
higher moments, the variance over grid points, the moments of
inertia and the spokes of density values (the three bonding
tubes of density that are to be expected around a C* atom).
TEXTAL computes these features around a C* position in an
unknown structure and attempts to recognize the closest
density pattern from a large database of precomputed patterns
using diffraction data from 10 to 2.8 A'in P1 on an orthogonal
grid of 1 A spacing. Once the density pattern has been
matched the coordinates from the database template are used
to place atoms in the unknown density. The method relies on
the knowledge of the C* positions, a rather severe limitation
when starting only from density, but a C* pattern-recognition
algorithm (CAPRA) has recently been published. CAPRA
(Ioerger & Sacchettini, 2002) attempts to predict the positions
of C* atoms in a given density map. The method employs a
variant of the skeletonization algorithm to localize the search
space down to the vicinity of the main chain. The skeletoni-
zation is performed on a 0.5 A grid and these points are the
candidate positions around which density features are
extracted and fed into a neural network. The features that
CAPRA uses are the same rotationally invariant ones that
TEXTAL uses. They are computed for 3 and 4 A spheres
around each candidate position, thus providing the standard
feed-forward neural network with one hidden layer of sigmoid
thresholds with a total of 38 features. The network was trained
with the back-propagation method using density values
computed to 2.8 A.

4.6. Levitt’s MAID and Oldfield’s QUANTA

The program MAID (Levitt, 2001) implements perhaps
what comes the closest to human expertise in model building
and the approach is clearly based on the steps followed by an
experienced macromolecular crystallographer. MAID also
relies on skeletonizing a given electron-density map to
determine the path of the main chain. The skeleton grid points
then serve as features in which secondary-element patterns
(o, ¥) are sought, very much like the computer graphics
model-building steps with a program such as O (Jones et al.,
1991). Routines then build in a stereochemically accurate
atomic model in these secondary-structure regions, whilst
taking care not to over-interpret. Built secondary-structure
main-chain fragments of sufficient length (15-20 residues) are
slid along the sequence and the best match to the side-chain
density is used to assign the residue type. Loops are built by

extending the built main-chain fragments by sampling
Ramachandran space.

The algorithms developed by Oldfield (2002a, 2003) for
model building also rely on the reduction of electron density
to form so-called bones. Additional methods for ligand fitting
and atomic resolution model building exist that employ
pattern recognition, graph theory and torsion-angle refine-
ment (Oldfield, 1996, 2001a,b, 2002b). The method for
recognition of possible C* positions is very similar to Greer’s
original description of the algorithm (Greer, 1974) as branches
along the skeleton. However, additional artificial branch
points are placed to ensure that a sufficient number of points
are sampled and an elaborate set of decision rules are
employed to enhance the accuracy of the C* position deter-
mination (Oldfield, 2003). The bone points are handled as a
tree and efficient graph algorithms are employed for the
analysis. A depth-first routine searches the tree and for every
unit a principal component analysis is performed on the
inertia tensor calculated from all the points in that unit. The
eigenvalues are then used to classify the part of the structure
as strand or helix. These elements are then used as a starting
point for tracing methods based on a depth-first search and a
number of heuristics. The above algorithms are an integral
part of QUANTA (Accelrys Inc.). The efficient implementa-
tion allows fast execution and this combined with the inter-
active graphics capabilities makes QUANTA perhaps overall
one of the most advanced model-building tools currently
available.

4.7. Bricogne’s micromolecular-replacement method

All the above approaches may be considered implementa-
tions and heuristic approximations of the micromolecular-
replacement method (Bricogne, 1994, 1995, 1997a,b). This
approach provides a general framework for the recognition of
any chosen unit from heavy-atom detection to full molecular
replacement and includes all available knowledge at each
stage. If phases are available, this approach can be run in the
‘Fourier regime’ to provide a general framework for model
building with a set of small protein fragments. For this purpose
a database of frequently occurring fragments of various
lengths has been constructed. These fragments were deter-
mined with a novel structure-alignment algorithm (Morris,
unpublished work) based on the dynamic programming idea
of sequence alignment. This micromolecular-replacement
method is still under development but has already shown some
initial success in placing small fragments (Blanc, unpublished
work). Pavelcik et al. (2002) have independently implemented
a similar approach for placing fragments and have used it
successfully with convincing results in a number of test cases.

5. Summary and outlook

A very brief survey of some important pattern-recognition
techniques has been presented. Although the level is too basic
to be useful for developers, it is hoped that some commonly
occurring techniques have been slightly demystified for those
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new to the field and that a pattern-recognition awareness has
been created. For all methods presented here, well tested and
sometimes even well documented freely available software
packages exist (such as ‘R’; Thaka & Gentleman, 1996) that
can be used to experiment with and quickly test ideas. With a
few exceptions, the implementation of these methods is not
challenging for anyone with programming experience and
once the method of choice has been determined it is often of
advantage in terms of speed and overall performance to write
code that is more specific to the problem at hand.

Some of the currently popular software packages and
theoretical approaches to automated protein model building
into X-ray diffraction electron-density maps have been
mentioned and their underlying pattern-recognition tech-
niques have been highlighted. Although many good ideas and
fairly sophisticated pattern-recognition techniques are now
being applied to the problem of automated model building,
the methods often seem far from optimal and contain many
heuristics. The implementation of advanced techniques
combined within a Bayesian framework for decision making
will undoubtedly lead to a higher degree of automation and to
model-building systems that are more robust and reliable. In
particular, the feature-extraction and selection stage for
identifying atoms, mainly C* atoms, peptide units and larger
commonly occurring fragments would benefit from more
powerful methods that work at different resolutions and
electron-density maps of various quality. Although the itera-
tive combination of model building and refinement can often
overcome poor initial phase estimates with sufficiently high-
resolution good-quality data, in general low or even missing
local density naturally presents a problem. Predictive model
building based on previously observed patterns combined with
hypothesis testing, again via refinement, may help to push the
limits in terms of data quality, resolution and phase quality
a little further. Of potentially great importance will be the
integration of structural database information and especially
of validation tools directly into the model-building process. All
relevant information should be readily accessible at all stages
of structure solution and further analysis.

The proper utilization of the overwhelming and constantly
growing amount of information in the biological sciences will
itself depend heavily on the development of better pattern-
recognition techniques. These may be employed for
hypothesis-driven data analysis or more challengingly to scan
automatically all available literature and all databases to form
new hypotheses and to drive the imagination of future
researchers. It is anticipated that such techniques will also
slowly creep into various stages of structure determination
and especially the data mining of (not only) structural infor-
mation.
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