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Prediction of protein structure depends on the accuracy and complexity of
the models used. Here, we represent the polypeptide chain by a sequence
of rigid fragments that are concatenated without any degrees of freedom.
Fragments chosen from a library of representative fragments are fit to the
native structure using a greedy build-up method. This gives a one-dimen-
sional representation of native protein three-dimensional structure whose
quality depends on the nature of the library. We use a novel clustering
method to construct libraries that differ in the fragment length (four to
seven residues) and number of representative fragments they contain
(25–300). Each library is characterized by the quality of fit (accuracy) and
the number of allowed states per residue (complexity). We find that the
accuracy depends on the complexity and varies from 2.9 Å for a 2.7-state
model on the basis of fragments of length 7–0.76 Å for a 15-state model
on the basis of fragments of length 5. Our goal is to find representations
that are both accurate and economical (low complexity). The models
defined here are substantially better in this regard: with ten states per
residue we approximate native protein structure to 1 Å compared to over
20 states per residue needed previously.

For the same complexity, we find that longer fragments provide better
fits. Unfortunately, libraries of longer fragments must be much larger (for
ten states per residue, a seven-residue library is 100 times larger than a
five-residue library). As the number of known protein native structures
increases, it will be possible to construct larger libraries to better exploit
this correlation between neighboring residues. Our fragment libraries,
which offer a wide range of optimal fragments suited to different accu-
racies of fit, may prove to be useful for generating better decoy sets for
ab initio protein folding and for generating accurate loop conformations
in homology modeling.
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Introduction

The three-dimensional structure of proteins has
been a subject of intense study for several decades.
A common way to simplify these complex struc-
tures is to consider restrictions on the local main-
chain conformation. Almost 50 years ago, Corey &
Pauling described the two common types of local
secondary structure, the a-helix and the b-sheet.1

Ten years later, Ramachandran ascribed the limited

(f, c) torsion angles of each residue due to the
interactions of the side-chain with its backbone.2

In 1986, Jones & Thirup discovered that almost all
regions of the protein backbone are comprised of
repeating canonical structures.3 These regions, up
to ten residues long, provided an efficient method
for interpreting electron density maps. Unger et al.
followed by classifying peptide backbone units
four to ten residues long, into a collection of
fragments.4 These building block units constitute
an intermediate level of protein structure represen-
tation between single residues and secondary
structure. Since then, many studies have investi-
gated the classification of protein fragments and,
in particular, the classification of loop structures.5 – 8
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Even when using the (f, c) torsion angles as the
degrees of freedom, a protein chain has an infinite
number of different conformations due to continu-
ous changes in the torsion angles. By restricting

the local conformations of individual residues to a
handful of states, one can discretize protein confor-
mation so that any chain has a finite number of
spatial arrangements. The utility of any discrete

Table 1. PDB identifiers of the proteins used

A. Test set10,a

d1iiba_ d1gsoa3 D1burs_ d1csh__ d1dfma_ d1pina_ d1c1ka_ d1bsma1 d2pth__ d1lkka_
d1mtyg_ d1kpta_ d3cla__ d1php__ d1ra9__ d3pte__ d1a4ia2 d1bsma2 d1dcs__ d1mfma_
d1pcfa_ d3btoa1 d1ako__ d1aop_3 d1bfd_2 d1krn__ d2cba__ d2end__ d7rsa__ d2erl__
d2gsta1 d1b2pa_ d1tx4a_ d1mrj__ d3ezma_ d1lam_1 d1poa__ d1qhva_ d1ifc__ d1cxqa_
d1bm8__ d1cjca2d1 d1rzl__ d1qqqa_ d1rie__ d1kpf__ d1mla_1 d2eng__ d1mroa1 d1aho__
d1mjha_ ush_1 d1czfa_ d3grs_3 d1ptf__ d1cipa1 d1tc1a_ d3ebx__ d3chbd_ d1a6m__
d1svy__ d1utea_ d1ctf__ d1b6a_1 d1ah7__ d1b3aa_ d1yge_1 d1qaua_ d1qu9a_ d1ixh__
d1tfe__ d1pdo__ d1vns__ d1b6a_2 d8abp__ d1nox__ d1yge_2 d1qh4a1 d1d4oa_ d1cex__
d1thw__ d1vcc__ d7odca1 d2cpl__ d1b4va1 d1dpsa_ d7atja_ d1qh4a2 d1jhga_ d1byi__
d1db1a_ d1pda_2 d1d3va_ d1kapp1 d1b4va2 d1qsaa1 d1utg__ d1rhs__ d1vfya_ d1b0ya_
d1doza_ d1yvei1 d1qgxa_ d1ppn__ d1qh5a_ d1orc__ d1di6a_ d1bi5a1 d1mun__ d1nls__
d1aoha_ d3stda_ d1phc__ d2ilk__ d1b67a_ d1qgwa_ d1sgpi_ d256ba_ d1a7s__ d7a3ha_
d1vhh__ d2ahja_ d1fmk_3 d3cyr__ d1dcia_ d1hfel1 d1qtsa2 d1qksa2 d1swua_ d2fdn__
d1a44__ d1dhn__ d1ay7b_ d1ubpa_ d1ezm_1 d1hfes_ d1aba__ d1msi__ d1nkd__ d1bxoa_
d1fnd_1 d1qhfa_ d1b8za_ d1ubpc1 d1ezm_2 d1c3wa_ d1bgf__ d1dg6a_ d1bkra_ d3lzt__
d1fnd_2 d1ttba_ d1smd_1 d1qq5a_ d1whi__ d1qgua_ d1qfma1 d1qdda_ d1rgea_ d2pvba_
d1atza_ d1qipa_ d1a1ia1 d1moq__ d1dgfa_ d1bx4a_ d3vub__ d1aac__ d5pti__ d1rb9__
d1dmr_2 d2bbkl_ d1qs1a1 d1d7pm_ d1qrea_ d1dpta_ d3euga_ d1cy5a_ d1qj4a_ d3pyp__
d1gsoa1 d2cpga_ d1ajsa_ d1bfg__ d1cyo__ d1aie__ e1pid.1a d2lisa_ d2igd__ d1cbn__
d1gsoa2 d1kid__ d1t1da_ d1gai__ d1g3p_1 d1byqa_ e1pid.1b d1amm_1 d3sil__ d1gci__

B. Training setb,c

d1gci__ 0.78 1.33 d3lzt__ 0.92 1.15 d1b0ya_ 0.93 1.07 d1aho__ 0.96 1.04 d3sil__ 1.05 0.99
d1cbn__ 0.83 1.23 d1bxoa_ 0.95 1.10 d1byi__ 0.97 1.07 d1cxqa_ 1.02 1.03 d2igd__ 1.10 0.98
d3pyp__ 0.85 1.20 d2fdn__ 0.94 1.10 d1cex__ 1.00 1.07 d2erl__ 1.00 1.02 d1qj4a_ 1.10 0.94
d1rb9__ 0.92 1.17 d7a3ha_ 0.95 1.09 d1ixh__ 0.98 1.06 d1mfma_ 1.02 1.01 d5pti__ 1.00 0.92
d2pvba_ 0.91 1.15 d1nls__ 0.94 1.07 d1a6m__ 1.00 1.05 d1lkka_ 1.00 1.00 d1rgea_ 1.15 0.92
d1bkra_ 1.10 0.92 e1pid1b 1.30 0.70 d1rie__ 1.50 0.63 d1kapp1 1.64 0.59 d1qhfa_ 1.70 0.56
d1nkd__ 1.07 0.92 e1pid1a 1.30 0.70 d3ezma_ 1.50 0.63 d2cpl__ 1.63 0.59 d1dhn__ 1.65 0.56
d1swua_ 1.14 0.91 d3euga_ 1.43 0.69 d1bfd_2 1.60 0.63 d1b6a_2 1.60 0.59 d2ahja_ 1.70 0.56
d1a7s__ 1.12 0.88 d3vub__ 1.40 0.68 d1ra9__ 1.55 0.62 d1b6a_1 1.60 0.59 d3stda_ 1.65 0.56
d1mun__ 1.20 0.88 d1qfma1 1.40 0.67 d1dfma_ 1.50 0.62 d3grs_3 1.54 0.59 d1yvei1 1.65 0.56
d1vfya_ 1.15 0.85 d1bgf__ 1.45 0.67 d1a4ia2 1.50 0.62 d1qqqa_ 1.50 0.59 d1pda_2 1.76 0.56
d1jhga_ 1.30 0.83 d1aba__ 1.45 0.67 d1c1ka_ 1.45 0.62 d1mrj__ 1.60 0.59 d1vcc__ 1.60 0.56
d1d4oa_ 1.21 0.82 d1qtsa2 1.40 0.67 d1byqa_ 1.50 0.62 d1aop_3 1.60 0.59 d1pdo__ 1.70 0.56
d1qu9a_ 1.20 0.82 d1sgpi_ 1.40 0.67 d1aie__ 1.50 0.62 d1php__ 1.65 0.59 d1utea_ 1.55 0.55
d3chbd_ 1.25 0.82 d1di6a_ 1.45 0.67 d1dpta_ 1.54 0.62 d1csh__ 1.60 0.58 d1ush_1 1.73 0.55
d1mroa1 1.16 0.81 d1utg__ 1.34 0.67 d1bx4a_ 1.50 0.62 d1t1da_ 1.51 0.58 d1cjca2 1.70 0.55
d1ifc__ 1.19 0.81 d7atja_ 1.47 0.66 d1qgua_ 1.60 0.62 d1ajsa_ 1.60 0.58 d1b2pa_ 1.70 0.55
d7rsa__ 1.26 0.80 d1yge_2 1.40 0.66 d1c3wa_ 1.55 0.62 d1qs1a1 1.50 0.58 d3btoa1 1.66 0.55
d1dcs__ 1.30 0.79 d1yge_1 1.40 0.66 d1hfes_ 1.60 0.61 d1a1ia1 1.60 0.58 d1kpta_ 1.75 0.55
d2pth__ 1.20 0.79 d1tc1a_ 1.41 0.66 d1hfel1 1.60 0.61 d1smd_1 1.60 0.58 d1gsoa3 1.60 0.55
d1amm_1 1.20 0.78 d1mla_1 1.50 0.66 d1qgwa_ 1.63 0.61 d1b8za_ 1.60 0.58 d1gsoa2 1.60 0.55
d2lisa_ 1.35 0.78 d1poa__ 1.50 0.66 d1orc__ 1.54 0.61 d1ay7b_ 1.70 0.58 d1gsoa1 1.60 0.55
d1cy5a_ 1.30 0.77 d2cba__ 1.54 0.65 d1qsaa1 1.65 0.61 d1fmk_3 1.50 0.58 d1dmr_2 1.82 0.55
d1aac__ 1.31 0.77 d3pte__ 1.60 0.65 d1dpsa_ 1.60 0.61 d1phc__ 1.60 0.58 d1atza_ 1.80 0.54
d1qdda_ 1.30 0.76 d1pina_ 1.35 0.65 d1nox__ 1.59 0.61 d1qgxa_ 1.60 0.57 d1fnd_2 1.70 0.54
d1dg6a_ 1.30 0.76 d1g3p_1 1.46 0.65 d1b3aa_ 1.60 0.61 d1d3va_ 1.70 0.57 d1fnd_1 1.70 0.54
d1msi__ 1.25 0.75 d1cyo__ 1.50 0.64 d1cipa1 1.50 0.61 d7odca1 1.60 0.57 d1a44__ 1.84 0.54
d1qksa2 1.28 0.75 d1qrea_ 1.46 0.64 d1kpf__ 1.50 0.60 d1vns__ 1.66 0.57 d1vhh__ 1.70 0.54
d256ba_ 1.40 0.73 d1dgfa_ 1.50 0.64 d1lam_1 1.60 0.60 d1ctf__ 1.70 0.57 d1aoha_ 1.70 0.54
d1bi5a1 1.56 0.72 d1whi__ 1.50 0.64 d1krn__ 1.67 0.60 d1czfa_ 1.68 0.57 d1doza_ 1.80 0.54
d1rhs__ 1.36 0.72 d1ezm_2 1.50 0.64 d1gai__ 1.70 0.60 d1rzl__ 1.60 0.57 d1db1a_ 1.80 0.54
d1qh4a2 1.41 0.72 d1ezm_1 1.50 0.64 d1bfg__ 1.60 0.60 d1tx4a_ 1.65 0.57 d1thw__ 1.75 0.54
d1qh4a1 1.41 0.72 d1dcia_ 1.50 0.64 d1d7pm_ 1.50 0.60 d1ako__ 1.70 0.57 d1tfe__ 1.70 0.54
d1qaua_ 1.25 0.72 d1b67a_ 1.48 0.64 d1moq__ 1.57 0.60 d3cla__ 1.75 0.57 d1svy__ 1.75 0.54
d3ebx__ 1.40 0.71 d1qh5a_ 1.45 0.63 d1qq5a_ 1.52 0.60 d1burs_ 1.80 0.56 d1mjha_ 1.70 0.54
d2eng__ 1.50 0.71 d1b4va2 1.50 0.63 d1ubpc1 1.65 0.60 d1kid__ 1.70 0.56 d1bm8__ 1.71 0.54
d1qhva_ 1.51 0.70 d1b4va1 1.50 0.63 d1ubpa_ 1.65 0.60 d2cpga_ 1.60 0.56 d2gsta1 1.80 0.53
d2end__ 1.45 0.70 d8abp__ 1.49 0.63 d3cyr__ 1.60 0.59 d2bbkl_ 1.75 0.56 d1pcfa_ 1.74 0.53
d1bsma2 1.35 0.70 d1ah7__ 1.50 0.63 d2ilk__ 1.60 0.59 d1qipa_ 1.72 0.56 d1mtyg_ 1.70 0.53
d1bsma1 1.35 0.70 d1ptf__ 1.60 0.63 d1ppn__ 1.60 0.59 d1ttba_ 1.70 0.56 d1iiba_ 1.80 0.53

a Test set described by PDB name.
b Training set described by PDB name, structure resolution, SPACI score.
c Training set has 200 polypeptides with the highest SPACI scores.
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model depends on the accuracy with which it
models real protein conformations as well as on its
complexity, the number of allowed states per residue.
Rooman et al.9 and Park & Levitt10 showed that dis-
crete models that take into account the uneven
(f, c) distribution of single residue conformations in
proteins are more accurate (for a fixed complexity).

Here, we combine these two previous
approaches by finding a finite set of protein frag-
ments that can be used to construct accurate
discrete conformations for any protein. We begin
by following Unger et al.4 and Micheletti et al.,5

who used the unsupervised learning technique
of clustering to identify representative fragments
of protein backbone. We use a novel clustering
scheme to find better libraries of fragments. These
fragment libraries are used to construct discrete
approximation to real protein structure. Indeed, as
observed by Simon et al.,11 considering only protein
models constructed from valid protein fragments
yields smaller structural spaces.

We carry out an extensive study with many
different-sized libraries of fragments of length 4,
5, 6 and 7. The accuracy with which these discrete
representations capture native structure depends
on the complexity and varies from 1.9 Å for a
four-state model on the basis of fragments of
length 7 to 0.76 Å for a 15-state model on the basis
of fragments of length 5. With discrete represen-
tations, a protein conformation is reduced to a
string of symbols that define the local states (alpha-
bets of four and 15 letters, respectively, in the
above examples). These strings specify the confor-
mation completely: all possible conformations are
generated by all possible strings. Thus, discretiza-
tion converts a three-dimensional structure into a
one-dimensional string akin to the amino acid
sequence. We find that longer fragments are more
accurate, as they include more correlation than
shorter fragments. However, the complexity that
can be explored with the longer fragment lengths
is limited severely by the relatively small number
of known protein structures.

Our clustering method, known as simulated-
annealing k-means, is likely to be useful for many
clustering tasks that involve biological data with
an unknown and uneven distribution of objects.
The method is relatively efficient when used on
very large datasets. Our fragment libraries may
prove to be useful for generating better decoy sets
for ab initio protein folding (as done by Park &
Levitt for four-state models10), for generating accu-
rate loop conformations in homology modeling,
and for analyzing strings of conformational states
that define protein structure strings in the same
way that is done for strings of amino acid residues
that define protein sequences.

Results

Fragments from proteins in the training sets are
clustered using the simulated annealing k-means

technique. The libraries, which are the fragments
at the centroid of each cluster, are evaluated by
their ability to reconstruct the protein structures
in the test set proteins. We consider two criteria:
(1) local-fit, which measures the coordinate root
mean square (cRMS) deviation of all fragments
of the target protein from the library at hand.
(2) Global-fit, which measures the cRMS of the
reconstructed three-dimensional structure from
the entire native structure of the target. We con-
sider fragments of length, f, varying from four to
seven residues and library sizes, s (i.e. the number
of clusters) varying from 10 to 300; this results in
library complexities (calculated as s 1/( f23)) that
range from 3.16 to 15 states per residue. The
libraries found are available on our server† and as
Supplementary Material.

The Park & Levitt10 set of proteins is used as
the protein test set in this study. It includes 145
proteins of different structural motifs, varying in
length from 36 to 753 residues. The use of the
same test set as that used by Park & Levitt allows
easier comparison with the results of their study,
and offers an extension to their results regarding
the complexity and accuracy of discrete approxi-
mations of protein structures. For completeness,
Table 1 lists the PDB identifiers of the 145
proteins in the test set. As with the training set,
we approximate the chain paths of the test set
folds by the atomic coordinates of their Ca atoms.

Local-fit approximations

Table 2 summarizes the accuracy of the best
local-fit approximations for all libraries considered
in this study, while Figure 1 plots these data as a
function of the complexity. We also calculated the
average cRMS deviation of the best local-fit
approximations of the test set proteins using the
five and six-residue fragment libraries published
by Micheletti et al.5 Figure 1 shows that the
fragments of the proteins in the test set can be
described very well by any of the libraries
considered: the average cRMS deviation is below
1 Å in all cases. For libraries of a fixed fragment
length, the accuracy of the local-fit approximations
is improved when the complexity (or the library
size) is increased. This makes intuitive sense:
libraries with a greater variety fit the fragments of
the test set proteins better. For a library of the
same complexity, the accuracy of the local-fit
approximations is improved with shorter frag-
ments. This also makes sense: shorter fragments
give a better local-fit as there are fewer Ca atoms
involved in each fragment-to-fragment compari-
son. Stated differently, there are six additional
degrees of freedom for the rigid-body rotation
and translation of each fragment. With shorter
fragments, there are, therefore, more degrees of

† http://csb.stanford.edu/rachel/fragments

Small Libraries of Protein Fragments 299

http://csb.stanford.edu/rachel/fragments


freedom to fit a protein structure of given length in
the local approximation.

Global-fit approximations

Table 2 summarizes the accuracy of global-fit
approximations constructed from the libraries
considered in this study, while Figure 2 plots these
data as a function of the library complexity. The
average cRMS deviation of the global-fit approxi-
mations over the test set varies from 2.58 Å for the
lowest complexity library to 0.76 Å for the highest
complexity library. The inset in Figure 2 plots
these data on a log scale along with linear
regression lines. We compare our results to those
of: (1) Park & Levitt,10 where the test set and the
complexity measure are the same, so their results

are merely quoted here; and (2) Micheletti et al.5

In the latter case, we use the libraries of five and
six residues published on the World Wide Web,†
construct global-fit approximations for the test set
and calculate the average cRMS deviation between
the test set and its approximations.

Figure 2 offers insight to the relationship
between libraries of fixed fragment length and
varying complexity, as well as the relationship
between libraries of fixed complexity and varying
fragment length. For a fixed fragment length,
more complex libraries offer better global-fit
approximations. This observation makes intuitive
sense: the complexity of libraries of fixed length
depends on the number of fragments in the library
and libraries with greater variety will result in
more accurate approximations. More surprisingly,
for a fixed complexity, libraries of greater length
fragments give better global-fit approximations.
All the Global-RMS data from our libraries of
different complexity, c, and fragment length, f, can
be well fit by a single function:

Global-RMS ¼ eð0:094fþ1:373ÞðComplexityÞ20:1039f20:280

or, more simply:

ðGlobal-RMSÞ / ðComplexityÞð20:1039f20:280Þ

and:

ðComplexityÞ / ðGlobal-RMSÞð0:1039fþ0:280Þ

Park & Levitt10 found that for a model that used
non-optimized (f,c) torsion angle states:

ðGlobal-RMSÞ / ðComplexityÞ20:5

For a fragment length of 4, which is most like the
(f,c) states, the corresponding dependence is:

ðGlobal-RMSÞ / ðComplexityÞ20:7

For longer fragments, the power becomes more
negative, so that for a length of 7, the dependence
is:

ðGlobal-RMSÞ / ðComplexityÞ21:0

This more rapid fall-off of Global-RMS with
Complexity for longer fragments means that
the models on the basis of longer fragments can
model proteins better for a given complexity.

The computer implementation of the global-fit
approximation construction procedure uses a heap
storing the best approximations found so far; the
heap size should be selected to balance between
the desire to explore a greater (polynomial) portion
of approximation space and the reality of run time
and memory constraints. The number of possible
global-fit approximations to a target protein is expo-
nential and therefore it is impossible to explore
them all, instead only Nkeep approximations are

Table 2. Average accuracy of global and local cRMS
deviations

Averagea,b

Fragment
length

Library
size

Complexity
(states/residue)c

Local
cRMS

(Å)

Global
cRMS

(Å)

4 4 4.00 0.39 2.23
4 6 6.00 0.35 1.64
4 7 7.00 0.33 1.48
4 8 8.00 0.32 1.39
4 10 10.00 0.30 1.12
4 12 12.00 0.28 1.01
4 14 14.00 0.26 0.92
5 10 3.16 0.57 2.57
5 20 4.47 0.47 1.85
5 30 5.48 0.43 1.59
5 40 6.32 0.40 1.41
5 50 7.07 0.39 1.28
5 60 7.75 0.37 1.20
5 80 8.94 0.35 1.06
5 100 10.00 0.34 0.99
5 150 12.25 0.31 0.86
5 225 15.00 0.29 0.76
6 40 3.42 0.65 2.30
6 60 3.91 0.59 2.02
6 70 4.12 0.58 1.92
6 80 4.31 0.56 1.87
6 100 4.64 0.54 1.72
6 200 5.85 0.48 1.41
6 300 6.69 0.45 1.26
7 50 2.66 0.85 2.89
7 100 3.16 0.76 2.41
7 150 3.50 0.72 2.16
7 200 3.76 0.68 2.04
7 250 3.98 0.66 1.91

Micheletti et al. fragment librariesd

5 40 6.32 0.48 1.64
6 100 4.64 0.57 1.88

The libraries found are available on our server (http://csb.
stanford.edu/rachel/fragments

a The average is taken over the approximations of the test set
proteins.

b The data are plotted in Figures 1 and 2.
c The complexity, or the average number of states per residue,

of a fragments library is lLl1=ðf23Þ
where lLl is the library size and

f is the length of the fragments in the library.
d We calculate the Local cRMSD and Global cRMSD of the

libraries published by Micheletti et al.5 on the test set of proteins.

† http://www.sissa.it/~michelet/prot/repset/index.
html
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Figure 1. The average local cRMS deviation of test set proteins constructed using various libraries is plotted against
the complexity of the library. The libraries vary by size and are of fragments of lengths 4 (squares), 5 (circles), 6 (tri-
angles) and 7 (diamonds), respectively. The complexity is determined by the library size and the fragment length as
s1=ðf23Þ: For fixed fragment length, f, more complex libraries with more members, s, give more accurate approximations.
The inset shows the same data on a log scale: the linear fit of the data is y ¼ 20:313x 2 0:450; y ¼ 20:427x 2 0:103; y ¼
20:518x þ 0:186 and y ¼ 20:633x þ 0:459 for fragment lengths of 4, 5, 6, and 7, respectively. More generally, Local-RMS
depends on library complexity and fragment length, f, as:

logðlocal RMSÞ ¼ A logðComplexityÞ þ B

where A ¼ 20:1051ðf 2 1Þ and B ¼ 0:3016f 2 1:6358:

Figure 2. The average Global cRMS deviation of the test set proteins is plotted as a function of the complexity of the
library used for constructing the approximations. The libraries vary in size and are of fragments of lengths 4 (squares),
5 (circles), 6 (triangles) and 7 (diamonds), respectively. The libraries compiled in this study are shown in opaque
shapes, while the libraries reported by Park & Levitt10 (libraries with four-residue fragments) and Micheletti et al.5

(libraries with five and six-residue fragments) are shown in hollow shapes. The inset shows the same data in log
scale: the linear fit of the data is y ¼ 20:712x þ 1:78; y ¼ 20:78x þ 1:80; y ¼ 20:895x þ 1:93 and y ¼ 21:016x þ 2:05
for fragment lengths of 4, 5, 6, and 7, respectively. More generally, the Global-RMS depends on library complexity
and fragment length, f, as:

logðGlobal-RMSÞ ¼ A logðComplexityÞ þ B

where A ¼ 20:1039f 2 0:280 and B ¼ 0:094f þ 1:373:
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considered, where Nkeep is the heap size. The run-
ning time of the procedure is linear in this size
2OðNkeepnlLlÞ; and maintaining the heap requires
OðNkeepÞ memory.

Figure 3 shows a plot of the average accuracy of
the best global-fit approximations found for the
proteins in the test set, versus the heap size used
in the construction procedure, for one representa-
tive library, L5

20 (library of 20 fragments, five resi-
dues each). As expected, better approximations
are found when using a larger heap. However, the
accuracy improves dramatically with increasing
heap size for small heaps and remains relatively
constant for larger values. Therefore, in this study
we used a heap size of 4000 when searching for
global-fit approximations, which is an appropriate
balance between the quest for accuracy and the
limitations on running time. Similar behavior was
observed in all the libraries we considered.

Figure 4 shows a plot of the average cRMS
deviation of the local-fit approximations from the
proteins in the test set, versus the same measure
of global-fit approximations, for all libraries con-
sidered in this study. For any particular library,
the local-fit cRMS is always smaller than the corre-
sponding global fit cRMS. This is to be expected,
as the local-fit ignores the connection between
adjacent fragments along the chain completely.
These results show that local-fit approximations
can be used to predict the accuracy of the global-
fit approximations: libraries that provide accurate
local-fit approximations will also provide accurate
global-fit approximations. It is clear that for the same
level of global fit cRMS deviation, the local cRMS
deviation decreases sharply with fragment length.

Dependency on the polypeptide length

The dependency of the accuracy of the approxi-
mations on the length of the approximated protein

was studied. Specifically, we considered the cRMS
deviations of the best local-fit approximation and
the cRMS deviation of the best global-fit approxi-
mation that we found versus the polypeptide
length, for all proteins in the test set (data not
shown). The accuracy of the local-fit approximations
is independent of the chain length, while that of
the global-fit approximations is only very slightly
dependent on the chain length. As an example of
the quality of fit we can obtain, Figure 5 shows
three approximations of 1tim of various accuracies.

Discussion

Independence of test set

The training set used to compile the libraries and
the test set used to evaluate them are independent.
The training set for our procedures is a collection
of fragments extracted from proteins with accurate
structural data (on the basis of their SPACI12

scores), while the test set is an accepted set for
testing questions of this type. Although lack of
overlap was not a criterion used to select the
training set, there is only one protein (256b) that is
in both sets. This independence of these two sets
assures that the results presented do not follow
from learning a specific set of proteins, but rather
from several properties of protein structure.

Choice of clustering technique

The simulated annealing k-means clustering
technique is the best we have found for clustering
the fragments data set: it performs significantly
better than other clustering techniques, including
hierarchical (bottom up) clustering, top down clus-
tering and standard k-means. Simulated annealing
k-means surpasses the other clustering technique

Figure 3. cRMS deviation of best
approximation, averaged over the
Park & Levitt10 data set as a func-
tion of Nkeep size. The library used
to compile these data is of 20 frag-
ments, each five amino acid resi-
dues long. The inset shows the
logðGlobal cRMSÞ as a function of
logðheap sizeÞ: This same functional
behavior is observed in other
libraries, making Nkeep ¼ 4000 a
reasonable choice for reconstruction
from all libraries. From the log–log
plot in the inset, we find:

logðGlobal-RMSÞ

¼ 20:013 logðNkeepÞ þ 0:742

or:

Global-RMS ¼ 2:1N20:013
keep :
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in two measures: (1) the total variance of the
results; and (2) the average cRMS deviation of the
local-fit approximations of the proteins in the test
set built with the library compiled from the result.
The first measure is a general-purpose statistical
measure of any clustering result, while the second
is specific for this setting. A detailed comparison
of the different clustering methods is beyond
the scope of this paper will be given elsewhere
(our unpublished results). Simulated annealing
k-means is more robust than the other random
clustering techniques: it is less sensitive to the
initial randomly picked cluster centers. The hier-
archical (bottom up) clustering was the second
best method for clustering these data, but it
required an order of magnitude more computer
time.

Local-fit approximations

Local-fit approximations are interesting, even
though the resulting structures consist of disjointed
fragments that can be found only by fitting a
known protein backbone. In building these local
approximations we seek, as studies before us,4,5 a
short list of fragments that is representative of all
fragments of known proteins. Local-fit approxi-
mations capture this notion of similarity, and offer
an efficient, linear time method of evaluating
libraries of fragments. Comparison between the
accuracy of local-fit approximations using libraries
found in this study and those constructed by
Micheletti et al.5 indicates that the elaborate
clustering scheme used here leads to better results.
In addition, local-fit approximations serve as

Figure 5. Three global-fit approximations to the alpha–beta barrel protein with PDB identifier 1tim. The protein is
drawn20 in black and the approximations in gray. The libraries used when modeling the protein in: (a) has 100 frag-
ments of five residues each and achieves an overall cRMS distance of 0.9146 Å (ten states per residue); (b) has 20 frag-
ments of five residues each and achieves an overall cRMS distance of 1.8454 Å (4.47 states per residue), and (c) has 50
fragments of seven residues each and achieves an overall cRMS distance of 2.7805 Å (2.66 states per residue). The clear
improvement in global fit with increasing library complexity is apparent.

Figure 4. Global-fit accuracy as
a function of local-fit accuracy.
The average cRMS deviation of the
global-fit approximations is plotted
as a function of the average cRMS
deviation for local-fit approxi-
mations for all proteins in the data
set. Libraries of fragments of length
4, 5, 6, and 7 of various sizes are
plotted here. The data in this Figure
are the data of Figures 1 and 2, re-
plotted for illustration. When fitting
a line to the data, we have: y ¼
10:277x 2 1:874; y ¼ 6:5x 2 1:2; y ¼
5:45x 2 1:21 and y ¼ 5:066x 2 1:443
for fragment lengths of 4, 5, 6, and
7, respectively.
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predictors to the accuracy of the computationally
more expensive global-fit approximations.

Building better approximation models

Park & Levitt10 and Rooman et al.9 showed that
discrete approximation models for protein struc-
ture that take the uneven distribution of residue
conformations in real proteins into account are
more accurate than models of comparable com-
plexity that do not. The discrete models they con-
structed treat all residues along the chain equally,
in the sense that each residue can have any one of
c conformations (where c is the complexity of the
model). These conformations are described by the
pair of angles (f, c) that defines the positioning of
the residue with respect to the previous residue
along the chain.

The discrete approximations we construct with
libraries of four residue fragments are equivalent
to the optimized models considered in earlier
studies.9,10 Indeed, the complexity of the library L4

s

of size s is s1=ð423Þ ¼ s ¼ lLsl4; which is just the
number of its elements. In effect, the library frag-
ments encode the (f, c) angles of their last residue
with respect to the previous parts of the approxi-
mation, while the first three residues position the
fragment. The results we achieve with libraries of
fragments of four residues are similar to those
obtained previously by others. Park & Levitt’s10

best four-state model has an accuracy of 2.22 Å
when approximating the test set of proteins, while
the best four-state model we found achieves an
accuracy of 2.23 Å. Rooman et al.9 found a six-state
model with an average accuracy of 1.74 Å over
the proteins test set, compared with an average
accuracy of 1.64 Å in our six-state model.

The conformations of consecutive residues along
the backbone of proteins are correlated to one
another. Under the reasonable assumption that the
libraries we find for a specific size and fragment
length are optimal, our results show this corre-
lation between conformations of neighboring resi-
dues. For illustration, consider the correlation of
conformations of pairs of neighboring residues,
which is reflected in the relative accuracy of
models from libraries of four and five-residue frag-
ments, respectively. Imagine that the conformation
of two consecutive residues is independent
and without any correlation. If L4

s is an optimal
s-element library of four-residue fragments, it can
be used to construct equivalent library L5

s0 of five-
residue fragments (concatenate all pairs of four
residues with a three-residue overlap to give a
new library containing s0 ¼ s2 five-residue frag-
ments). Clearly, L4

s and L5
s0 span exactly the same

space of approximating structures and have the
same complexity, s. If the conformation of two
consecutive residues along the chain was indepen-
dent, and L4

s is optimal, then L5
s0 is optimal too.

This would mean that global-fit models would
have the same accuracy for libraries of four and
five-residue fragments. Here, we find that for the

same complexity, models with five-residue frag-
ments are significantly more accurate than those
with four-residue fragments (in Table 2 for a
complexity of 10, the five-residue fragments fit
to 0.99 Å, whereas four-residue fragments fit to
1.12 Å) indicating very significant correlations.

Our use of fragment libraries in construction of
proteins approximation space allows exploitation
of the correlations of conformations along the back-
bone to achieve better low-complexity models.
This effect is particularly important if one wants
to reproduce native structures to better than 1 Å.
Here, we can achieve such accuracy with a com-
plexity of 12 for a four-residue fragment or 10 for
a five-residue fragment. By comparison, the Park
& Levitt10 model would require a complexity of
over 50 states-per residue to achieve an accuracy
of 1 Å. As the number of possible conformation
for a chain of length n residues, depends on
(Complexity)n, these differences have a huge
impact on the size of the particular protein’s con-
formation space. We expect to be able to get even
better results with libraries of six or seven-residue
fragments. Unfortunately, very large datasets of
refined protein coordinates are needed to make
reliable libraries for the longer fragments. Here,
we have a 250-fragment library of length 7 that
has a complexity of 4 and attains a Global-RMS
of 1.91 Å. To obtain a Global-RMS value of 1 Å
would require a complexity of about 8 and a
library of 84 ¼ 4096 fragments. With the rapid
pace of protein structure determination, we believe
that such a library may soon be possible.

Conclusions

The fragment libraries that we have derived can
approximate native structures with Global-fit
cRMS deviations that vary from 2.9 Å to 0.76 Å for
libraries whose complexities vary from 2.66 to 15
states per residue, respectively. When employed
together with the buildup method of protein struc-
ture approximation, this gives a wide range of
different-resolution models that are expected to
be useful for a wide range of applications, inclu-
ding: protein structure prediction, loop fitting,
exhaustive enumeration of peptide conformations,
and low-resolution structure determination by
NMR or X-ray crystallography.

Methods

Datasets of protein fragments

A set of proteins from the Protein Data Bank13 (PDB)
with the most reliable structural data served as our
initial data set for the clustering analysis. Specifically,
we use the 200 unique protein domains as defined by
SCOP version 1.5714 with the highest-ranking SPACI
scores12 (see Table 1). The 200 domains, all with a SPACI
score greater than 0.534, have a total of 36,397 residues.
In our study, we approximate the chain path describing
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the fold of each of these proteins by the atomic coordi-
nates of its Ca atoms.

Four training sets of protein backbone fragments were
extracted from the above set of proteins. These training
sets differ in fragment length, and include sets of four,
five, six and seven-residue fragments. Each of these
sets is comprised of all consecutive non-overlapping
fragments of the appropriate length, starting at a random
initial position. It is not advantageous to include over-
lapping fragments in these sets, as any two neighboring
fragments are very close to each other solely because
they have a large overlapping part. This structural over-
lap introduces noise into the training set and makes the
clustering task significantly harder. The numbers of
fragments in the data sets we compiled are 8949, 7123,
5910 and 5029 for the four, five, six and seven-residue
data sets, respectively.

A distance measure in structure space

We use the coordinate root-mean-square (denoted
cRMS) deviation of the Ca atom to measure the structural
similarity of any two fragments. This measure satisfies
the triangle inequality:

cRMSðACÞ # cRMSðABÞ þ cRMSðBCÞ

for three fragments A, B, C of the same size, making it
acceptable for use in clustering.15 The cRMS deviation is
measured between pairs of atoms in the two fragments
after optimal least-squares superposition.16 We con-
sidered using other measures such as: (1) the RMS value
of the f residue (f, c) torsion angles, where f is the frag-
ment length; (2) the RMS deviation of the f 2 3 chain a
angles (the torsion angle defined by four consecutive Ca

atoms17); (3) the RMS value of f ðf 2 1Þ=2 inter-Ca dis-
tances in each fragment. None of these alternatives was
satisfactory, as the (f, c) torsion angles were too noisy
and reflective of local change, the a angles were too
coarse a description of the fragment shape, and the
inter-Ca distances did not discriminate a right-handed
from a left-handed structure.

Pruning and clustering the fragments datasets

Two special characteristics of our fragment data-sets
that need to be considered before clustering are the
outlier fragments and the very high concentration of
a-helical fragments. Outliers are fragments with a rela-
tively large cRMS deviation from all other fragments,
and therefore cannot be considered representative of
common structural protein motifs. We facilitate the
clustering task by weeding out these outliers according
to a threshold. In all cases, approximately 10% of the
fragments are discarded using the threshold values
0.074 Å, 0.307 Å, 0.487 Å and 0.755 Å for the data sets of
fragments of length four, five, six and seven residues,
respectively; we do this by eliminating any fragment
whose cRMS deviation from the closest other fragment
in the dataset is greater than the threshold value. An
additional unique characteristic of our training set is a
highly populated region of fragments from a-helices,
which complicate the clustering procedure.

We cluster each of the different length fragment data-
sets using k-means simulated annealing, a novel cluster-
ing technique that varies k-means clustering by using
simulated annealing to improve the cluster centroids.
The k-means simulated annealing repeatedly runs
k-means clustering and then merges two clusters and

splits another, in a Monte Carlo fashion. The clusters to
be merged are selected at random, with nearby clusters
more likely to be chosen; the cluster to be split is selected
at random, with disperse clusters more likely to be
selected. We tried a number of different scoring func-
tions and the one that performed best was total variance
of the clustering (the sum over all clusters of the square
of the distance of any fragment to its cluster centroid).
The desired number of clusters is given to the clustering
procedure as input and the improvement step described
maintains the number of clusters. This scheme surpasses
normal k-means by its improved handling of the wide
range of fragment concentrations (there are many more
a-helical fragments), and by its insensitivity to the initial
choice of cluster centers. It even works a little better than
the much more time-consuming hierarchical clustering
method that merges clusters on the basis of the maxi-
mum distance between any members of the different
clusters. A more detailed description of the simulated
annealing k-means clustering technique as well as a
comparison to other clustering methods will be given
elsewhere (our unpublished results).

Libraries of common protein structural motifs

The clustering result is used to compile a library, a
small representative set of protein fragments. The
libraries are succinct representations of specific cluster-
ing runs and they consist of the cluster centroids – the
fragment that has the minimum sum of cRMS deviations
from all the other cluster fragments. Our study explores
many clustering runs (that vary by the number of
clusters, the length of the fragments in the dataset or the
specific cluster labels they assign to each fragment),
each one giving rise to a different library of motifs. In
each case, we use k-means simulated annealing cluster-
ing starting with 50 different random seeds and choose
the best library as that with the minimal total variance
score. The representative fragments in each library are,
therefore, determined by the clustering procedure used
to generate it. The size of the library is the required
number of clusters; the length of the fragments in the
library is that of the fragments in the dataset clustered.

Evaluating the quality of a library

Next, we turn to evaluating the quality of a library: a
library is considered “good” if it approximates real
protein structure accurately. The clustered fragments are
used to construct a library that is representative of all
fragments in the training set data. We aspire to a set
of fragments that also represents well all protein motifs
(of this length) found in real proteins. The quality of a
library is evaluated using a test set of protein structures
that is independent of the training set. For comparison
with earlier work, we use the set of 145 proteins used
by Park & Levitt.10 We use two criteria to evaluate a
library: (1) local-fit; and (2) global-fit.

The local-fit is a measure of how well the library fits
the local conformation of all the proteins in the test set.
Each protein structure is broken into the set of all its
overlapping fragments of the specified length, f. The
best local-fit approximate structure for a protein is con-
structed, in linear time, by finding for each of the protein
fragments the most similar fragment in the library (in
terms of cRMS). Averaging this cRMS value over all the
fragments in all the proteins in the test set gives the
local-fit score for the particular library.
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The global-fit is a measure of how well the library fits
the global three-dimensional conformation of all the pro-
teins in the test set. One possible way to construct con-
tiguous three-dimensional structures from the library
fragments is by concatenating the best local-fit library
fragments found above. If the first Ca atom of each frag-
ment is superimposed on the last Ca atom of the pre-
ceding fragment, one would need to specify the relative
orientation of the two fragments. This could be done
using two polar coordinates but is, in any case, unsatis-
factory, as the reconstruction would not be discrete, in
that one would need to specify the list of fragments as
well as the values of the continuous polar angles. More
succinctly, there would not be the desired one-to-one
correspondence between the string of library fragment
codes and the global three-dimensional structure.

We therefore use a different scheme, denoted as
global-fit approximation, for constructing chains from
protein fragments: the position of each added fragment
is determined by best superimposing its first three Ca

atoms onto the last three Ca atoms of the preceding
fragment already constructed. Even if the two Ca triplets
do not match perfectly, this will define the relative orien-
tation of the fragments uniquely, provided that the atoms
of each Ca triplet do not lie along a line. In polypeptide
chains, the distance between consecutive Ca atoms is
fixed at 3.8 Å and the angle formed by three consecutive
Ca atoms is between 908 and 1308.17

Figure 6 demonstrates a two-dimensional analog of
this scheme for constructing two structures from frag-
ments of a four-element library. Notice that in two
dimensions, any two (rather than three) consecutive
amino acid residues can be superimposed on any two
consecutive amino acid residues in another fragment.
We emphasize that the library fragments are used as
mere templates; any fragment can be used repeatedly
along the constructed chain. In this global-fit scheme, a
structure is described completely by the list of library
fragments that construct it. There is a one-to-one corre-
spondence between the space of all approximations and

the space of all strings of library serial numbers. There-
fore, the space of all approximations constructed using a
library is discrete, and when the length of the target
structure is fixed it is also finite.

Computer implementation of global-
fit approximations

While the best local-fit approximation is found easily
by finding the library fragment that best fits each local
fragment, the sequence of library fragments needed for
the global-fit is much harder to find. The optimal
sequence of library fragments must define the three-
dimensional structure with the minimal cRMS deviation
from the real structure of the target protein. The number
of possible sequences of fragments is, unfortunately,
exponential in the protein’s length, so that it is impos-
sible to consider all sequences in search for the best
global-fit approximation. We, therefore, follow Park &
Levitt10 and use a greedy algorithm for finding a good
rather than the best global-fit approximation. Let f
denote the length of the fragments in the library. Starting
at the N terminus, we construct approximations for
increasingly larger segments of the protein. Given a
partial approximation, we extend it using the best library
fragment, i.e. the one whose concatenation yields a struc-
ture of minimal cRMS deviation from the corresponding
segment in the protein. This concatenation is achieved
by superimposing the first three residues of the added
fragment on the last three residues of the already con-
structed segment so that f 2 3 residues are added each
time. We repeat this process until the C terminus of the
target protein is reached. This process is deterministic
and takes linear time.

An important property of this model-building
method is that each step is local, while our criterion for
evaluating the goodness of it is global. A fragment used
in the construction of the approximating structure
influences the overall accuracy of the approximation via
the accuracy of the local protein segment it describes,
and through the positioning it determines for its follow-
ing fragments. Consequently, it may be beneficial to
make a less greedy choice: a less-well fitting library
fragment may allow better positioning of subsequent
fragments, improving the overall quality of the
approximation.

Our algorithm is therefore improved by keeping a set
of candidate structures for extension, rather than a single
one as described above. Specifically, we allow the algor-
ithm to be slightly less greedy and keep a set (or heap)
of the best Nkeep greedily constructed approximations
for the segment of the protein approximated thus far. At
each step, we extend each of the Nkeep approximations
with all possible library fragments, and then greedily
keep the best Nkeep approximations. This algorithm is
still greedy, and therefore does not guarantee the
globally optimal solution, yet it explores a slightly bigger
part of the approximations space. Greedy algorithms like
this were first used in computational biology by Vasquez
& Scheraga to build-up low energy conformations of
polypeptide chains.18,19

Complexity of the approximation models

Here, the complexity of the space of global-fit approxi-
mations is the average number of states per residue or
equivalently the nth root of the size of the total number
of states for a chain of length n, following the convention

Figure 6. A simple two-dimensional example showing
the construction of a chain formed by superimposed
fragments. The four-state library contains four frag-
ments, each four residues long and is enclosed in the
box. The fragments have library serial numbers of A–D.
The first two residues of any fragments can be super-
imposed on the last two residues of the preceding frag-
ment, thus determining the position of the fragment.
The four stages of the construction process of the chain
ADCCB are shown.
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set by Park & Levitt.10 Equivalently, the complexity of a
library measures the size of the space of structures
defined by it, normalized so that it is independent of
the lengths of the approximated proteins. Let Lf

s be a
library of s fragments, each f residues long. Adding
one library fragment to a growing chain extends the
chain by f 2 3 residues. The number of fragments, m,
needed for n residues is the first integer larger than
or equal to n=ðf 2 3Þ: Thus, a string of m fragment
serial numbers from the library L defines an approxi-
mating structure of n residues. The size of the approxi-
mation space is equal to the number N of such strings
where:

N ¼ sm ¼ sn=ðf23Þ ¼ ðs1=ðf23ÞÞn

Thus, the complexity is s1=ðf23Þ states per residue: it is a
property of the fragment library varying with both the
library size and the fragment length. Although the local-
fit approximations do not have a complexity, as they
cannot be used to construct a chain, we sometimes refer
to the global-fit complexity measures of the fragment
libraries used.
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