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The relation between a Gaussian perturbation of the atomic

positional parameters and the average squared structure-

factor amplitude is presented. Using an error-dependent radial

distance distribution of an atomic protein model, it can be

shown that the Debye effects diminish exponentially as a

function of increasing positional errors. These relations can be

used to estimate the quality of an atomic model and the

corresponding phases. The limiting case of equal atoms with

an in®nitely large coordinate error results in the classical

Wilson model.
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1. Introduction

The deviations from a straight line in a Wilson plot (Wilson,

1942, 1949) are known as Debye effects (Giacovazzo, 1998).

These deviations are mainly caused by the stereochemistry of

the molecular structure and can be modelled by the Debye

equation (Debye, 1915),

E�jFhj2�o �
P

j

P
k

fj�h�fk�h�
sin�2�djkh�

2�djkh
: �1�

The subscript o in (1) denotes that the averaging is carried out

over all orientations of Fh for a given reciprocal-lattice spacing

h. See Table 1 for notation. Note that in (1) we do not account

for lattice periodicity or other packing effects and the

expression is thus only strictly valid for a single unit cell or

molecule. The effect of the shape of the molecular envelope

on the Wilson plot is not directly accounted for. This point is

discussed by Morris, Blanc et al. (2004). The need for these

assumptions will however be eliminated, as will be discussed

below. (1) can be rewritten in terms of the radial distance

distribution frad(d). Assuming equal atoms, one arrives at

E�jFhj2�o � Nf 2�h� 1� �N ÿ 1�R1
0

frad�d�
sin�2�dh�

2�dh
dd

� �
: �2�

For the trigonometric part of the structure-factor amplitudes,

(2) can be transformed into

E�jEhj2�o � 1� 
�h�; �3�
with


�h� � �N ÿ 1�R1
0

frad�d�
sin�2�dh�

2�dh
dd: �4�

In the Wilson approximation, the atoms are independent and

uniformly distributed throughout the unit cell, resulting in


(h) = 0 (Giacovazzo, 1998). An excess of lack of speci®c

interatomic distances results in a non-zero interference and

affects the mean-squared structure-factor amplitude. This

is demonstrated in Fig. 1, where the radial distance

distribution of a typical protein is multiplied by a



sinc(2�hd) = sin (2�hd)/(2�hd) term [see expression (4)], for

1/h equal to 1.1, 2.2 and 4.5 AÊ . In the same plots, the curves for

a structure with a uniform independent distribution of atoms

(hereafter denoted as a random structure) are shown. The

interatomic distances arising from chemically bonded atoms

(1Ð2 distances) at about 1.4 AÊ and atoms involved in bond-

angle distances (1Ð3 distances) at about 2.4 AÊ are the two

major contributors to the differences between the radial

distance distribution of a protein structure and a random

structure. An excess of interatomic distances compared with

the random case is also found around 3.8 AÊ , a typical C�(i)Ð

C�(i + 1) distance. At larger distances, differences between the

radial distance distribution of a protein and a random struc-

ture are also found owing to secondary structure.

The qualitative effects of these interatomic distances on the

average squared structure-factor amplitude are summarized in

Table 2 in terms of positive or negative contributions to the

integral in (4). As shown by Morris & Bricogne (2003), the

1Ð2 and 1Ð3 distances are (in part) responsible for a large

peak in the mean |Eh|2 value at around 1/h = 1.1 AÊ . Both the

1Ð2 and 1Ð3 distances have a positive contribution to 
(h)

for 1/h = 1.1 AÊ (Fig. 2). Also, the lack of interatomic distances

between the latter two coordination shells where the sinc

function is negative results in an effectively larger value of


(h) compared with a random structure. Other pronounced

peaks in the average of |Eh|2 as a function of resolution lie

around 1/h = 2.2 and 1/h = 4.5 AÊ . At 1/h = 2.2 AÊ , the 1Ð2

distances have a negative contribution while the 1Ð3

distances have a positive contribution to the average |Eh|2

value. A similar observation can be made for the peak at

1/h = 4.5 AÊ : the 1Ð2 distances and effects of secondary

structure (here loosely de®ned as distance features between

4.5 and 7 AÊ ) have a positive contribution to the average |Eh|2

value, whereas the 1Ð3 and C�ÐC� distances at 3.8 AÊ have a

negative contribution.

This interpretation of the well known features in the Wilson

plot of a protein structure leads to the statement that changes

in the radial distance distribution caused by model errors have

an effect on the averaged calculated |Eh|2 and |Fh|2 values. The
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Table 1
Notation.

E[t(x)]x The expectation value of t(x) by integration over x
djk The vector between an atom j and k
djk The length of djk

h Reciprocal-lattice spacing
Fh A calculated structure factor
Eh The trigonometric part of the structure factor
hIobsim Average observed intensity in a resolution shell m
I0,m Expected average observed intensity in a

resolution shell m
fj(h) The form factor of atom j; includes the Debye±Waller

factor
�2

m The variance of the Gaussian error of the positional
parameters

frad(d|�2) The radial distance distribution of a model with an error
with variance equal to �2/2 along each direction

qj A Gaussian error on atom j
N The number of atoms
NCM(d|dtar, �

2) The non-central Maxwell distribution

(h) A resolution-dependent term that describes the

Debye effects for a given protein

(h|�2) A resolution- and error-dependent term that describes the

Debye effects for a given protein

�h�PDB An empirical 
�h� curve obtained from a large number of

structures

�h�obs An estimate of 
�h� obtained from experimental data
ks Babinet bulk-solvent scale factor
Bs Babinet bulk-solvent B value
kp Scale factor
BWil Wilson plot B value
FOM Figure of merit de®ned as E[cos (�')]; �' is the phase

difference

Table 2
Qualitative contribution of speci®c interatomic distances to 
(h) at
pronounced extrema in a Wilson plot.

max and min denote whether 
(h) is at a local maximum or minimum at the
given value of h. + denotes a positive contribution to 
(h). ÿ denotes a
negative contribution. +/ÿ denotes both a positive and negative contribution
to 
(h). See main text and Fig. 2 for further details.

1/h =
1.1,
max

1/h =
1.65,
min

1/h =
2.2,
max

1/h =
2.65,
min

1/h =
4.5,
max

1/h =
6.5 ,
min

1Ð2 distances + ÿ ÿ ÿ + +
1Ð3 distances + ÿ + ÿ ÿ +
C�ÐC� + + ÿ ÿ ÿ ÿ
Secondary structure +/ÿ +/ÿ +/ÿ + + ÿ

Figure 1
Sinc functions multiplied by the radial distance distribution of a random
structure (thin line) and lysozyme (thick line, PDB code 102l) for (a)
h = 1/1.1, (b) h = 1/2.2 and (c) h = 1/4.5 AÊ . See Table 2, Fig. 2 and the main
text for further details.
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in¯uence of a coordinate error on the Debye effects can

therefore be used to assess the quality of an atomic model and

the corresponding phases. The function 
(h) is expected to be

essentially the same for a wide range of protein structures as

judged from the well known features of the Wilson plot

(Popov & Bourenkov, 2003; Cowtan, 1998; Blessing et al.,

1996), although a dependence on the secondary structure is

present (Morris, Blanc et al., 2004). An empirical 
(h) curve

obtained from a PDB analysis (Bernstein et al., 1977; Berman

et al., 2000) can be used to estimate 
�h�obs from the observed

structure-factor amplitudes of the protein under considera-

tion, which can be subsequently used to assess the model and

phase quality.

2. Methods

2.1. The influence of the coordinate error on the Debye
effects

The error-dependence of the mean-squared structure-factor

amplitude was examined by introducing an error-dependent

radial distance distribution frad(d|�2) into (2),

E�jFhj2�o;q � Nf 2�h� 1� �N ÿ 1�R1
0

fdrad
obs
�dj�2� sin�2�hd�

2�hd
dd

� �
� Nf 2�h� 1� 
�hj�2�� �

; �5�
where 
(h|�2) is the error-dependent variant of (4). The

expectation value of the trigonometric part of the structure-

factor amplitude becomes

E�jEhj2�o;q � 1� 
�hj�2�: �6�
The subscript q in (5) and (6) denotes that the expectation

value is obtained by integrating over the errors of the posi-

tional parameters. The errors of the positional parameters are

assumed to be distributed independently for each atom,

according to a spherically symmetric Gaussian with variance

terms equal to �2
m along the x, y and z directions. The change in

the radial distance distribution can then be written in accor-

dance with Zwart & Lamzin (2003),

fdobs
rad
�dj�2� � R1

0

frad�dtar�NCM�djdtar; �2� ddtar; �7�

where

NCM�djdtar; �2� � 1

�2���2��1=2
exp ÿ �dÿ dtar�2

2�2

� �
� d

dtar
1ÿ exp ÿ 2dtard

�2

� �� �
�8�

and �2 is the sum of the variances of the error terms of the

positional parameters of a pair of atoms,

�2 � �2
j � �2

k: �9�
For errors with a variance equal to �2

m for all atoms, �2

becomes equal to 2�2
m. When atom j is not perturbed and an

atom k has a positional error with variance �2
m, �2 becomes

equal to �2
m.

It can be shown (Appendix A) that


�hj�2� � exp�ÿ2�2h2�2�
�h�: �10�
The exponential multiplier has the same form as the D term in

the work of Luzzati (1952) and Read (1990). In the limiting

case of an in®nitely large error and h 6� 0, 
(h|�2) in (10)

becomes zero, effectively resulting in the Wilson approxima-

tion of independent uniformly distributed atoms and thus

E(|Eh|2) = 1. The dependence of E(|Fh|2) as a function of the

coordinate error and the resolution can be used to estimate �2
m

and corresponding ®gures of merit. Let us model the expected

average calculated intensity as a function of resolution and

model error as follows:

E�jFhj2�o;q � kp exp�ÿBWilh
2=2�

� PN
j

f 2
j �h��1� exp�ÿ4�2�2

mh2�
�h��: �11�

When 
(h) is known or a good estimate of it is available

denoted as 
(h)obs, a least-squares minimization of the

difference between the average calculated squared structure

factor amplitude as a function of resolution (h|Fh|2i obtained

from a model) and its expected value [E(|Fh|2)] can be carried

out. The latter expectation value is calculated using (11), thus

allowing estimation of the scale factor kp, the Wilson plot B

value BWil and the variance of the error model �2
m. This

variance can in turn be used to estimate phase probabilities

(Sim, 1958, 1959) and corresponding ®gures of merit, which

are de®ned as the expected value of the cosine of the phase

difference between the available and error-free phases. 
(h)obs

[an estimate of 
(h) of the protein under consideration] can be

obtained from the observed X-ray data and from an empiri-

cally obtained standard 
(h) curve, denoted as 
(h)PDB, using

a procedure outlined in Appendix B.

The standard 
�h�PDB curve was obtained from the analysis

of 100 protein structures from the PDB. The structure-factor

Figure 2
Integrals of root-delimited line sections of the curves depicted in Fig. 1 for
1/h = 1.1 AÊ . The values on the horizontal axis correspond to the midpoints
of the root-delimited line sections. The height of the bars are proportional
to the numerical value of the integral. The difference between the
integrals from the protein and random structure de®nes the qualitative
contributions listed in Table 2.



amplitudes were calculated and have subsequently been

normalized in resolution bins,

hjEhj2io �
P

h jFhj2
Nh

P
j f 2

j �h�
: �12�

The subscript h in (12) denotes the summation over the Nh

re¯ections that fall within the resolution bin h. Although this is

more computationally intensive than obtaining the 
(h)

pro®les via the radial distance distribution and the Debye

equation (2), it has the advantage that lattice periodicity and

non-equal atom effects are incorporated. The resulting mean


(h) pro®le is shown in Fig. 3 together with a 
(h) pro®le

obtained using (4) and a 
(h) pro®le obtained using (12) for

equal-atom structures for comparison.

As shown in Appendix B, the use of the empirically

obtained 
�h�PDB curve for the estimation of 
�h�obs avoids the

need for the single equal-atom molecule approximation.

3. Results

3.1. Coordinate error-dependent c(h) profiles

A Monte Carlo simulation has been carried out to compute

the average value of hsin(2�hd)/2�hdi with d distributed

according to the non-central Maxwell distribution in order to

test the validity of (10). This has been carried out for a number

of errors and various values of h. The numerical results have

been subsequently compared with the results from (10). A plot

of the average values of hsin(2�hd)/2�hdi against the

expected values is shown in Fig. 4. To visualize the effect of the

reduction of the Debye effects with increasing positional

error, the atomic model of lysozyme (PDB code 102l) has been

used to compute a number of error-dependent radial distance

distributions and corresponding 
(h|�2) pro®les via (5) and

(7). The resulting pro®les are shown in Fig. 5. The contribution

of H atoms has been omitted.

3.2. Model and phase quality estimates

Estimates of �2
m and corresponding ®gures of merit have

been obtained using the described least-squares procedure,

with a number of different errors on the model.

The ®rst model used was the ARP/wARP (Perrakis et al.,

1999) distributed example (with the X-ray data) of leish-

Acta Cryst. (2004). D60, 220±226 Zwart & Lamzin � Influence of positional errors on the Debye effects 223

research papers

Figure 5
The effect of a coordinate error on the Debye effects calculated for
lysozyme (102l) using (6) and (7).

Figure 3
Empirical 
(h) curves determined from a selection of good-quality
atomic protein models using (12) for deposited protein models (Crystal
structure), the same protein models but with all atoms as O and B values
set to 20 AÊ 2 (Crystal structure, equal atoms) and using the radial distance
distribution (5) (Single molecule, equal atoms). The differences between
the curves are ascribed to packing effects and the assumption of equal
atoms in (5).

Figure 4
The expected value of 
(h|�2) given by (10) is plotted against the average
value of hsin (2�hd)/2�hdi for a distance distributed according to the non-
central Maxwell distribution with a target distance equal to 2.5 AÊ at
various values of �2 and h (black diamonds). The least-squares line ®tted
through the points has a slope of 1 and a correlation coef®cient of 1.
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manolysin (PSP; courtesy of P. Metcalf). The ®nal model has

been randomized by adding a Gaussian error to the positional

parameters with an r.m.s.d. of 1.5 AÊ . Structure-factor ampli-

tudes have been calculated from this model using REFMAC5

(Murshudov et al., 1997) and have been used to estimate �2
m.

The overall scale factor, Wilson plot B value, bulk-solvent

parameters and 
�h�obs have been estimated from the

measured experimental data (a zero coordinate error was

assumed) as outlined in Appendix B. 
(h)obs was subsequently

used to estimate the scale factor, the Wilson plot B value and

the variance of the Gaussian error model, �2
m, given the

structure-factor amplitudes calculated from the randomized

model. In Fig. 6, a bulk-solvent-corrected Wilson plot from the

experimental data is shown (Observed I) as well as a ®tted

curve on the basis of 
(h)obs (Theoretical I; 0 AÊ r.m.s.d.). The

least-squares residual estimated the coordinate error to be

1.7 AÊ . The corresponding Wilson plots using the calculated

structure-factor amplitudes of the randomized model are also

shown in Fig. 6.

The same ®nal model of PSP was scrambled by introduction

of a Gaussian error to the atomic parameters and underwent

®ve unrestrained re®nement cycles with REFMAC5 using the

full resolution range of the observed structure-factor ampli-

tudes, with the use of cross-validation. The resulting coordi-

nates have been used to calculate model structure-factor

amplitudes and ®gures of merit were estimated. This has been

carried out for a number of different errors as well as for a

phase set calculated from a model with an r.m.s.d. of 3 AÊ ,

which was used for free-atom modelling with ARP/wARP

without the use of cross-validation. A similar set of tests has

been carried out on the 1hf8 model and X-ray data set from

the PDB. For 1hf8 the data was truncated at the low-resolution

side because of poor data quality for 1/h > 7 AÊ . The results of

these test are summarized in Figs. 7 and 8. Another test has

been carried out on a number of intermediate free-atom

modelling structures. Solvent-¯attened experimental phases of

PSP were used to carry out a free-atom modelling experiment

without the use of cross-validation. The estimated ®gures of

merit and r.m.s.d. values are shown in Fig. 9.

4. Discussion and conclusions

As seen in Fig. 4, the exponential multiplier describes the

changes in the Debye effects as a function of coordinate error

Figure 8
Estimated ®gures of merit for the 1hf8 data set (7±2.0 AÊ resolution;
BWil = 32 AÊ 2) for various unrestrained (u.r.) re®ned scrambled models.
The true ®gure of merit is taken to be equal to cosine of the phase
difference of the ®nal and current model. hEstimated FOMi denotes the
average ®gure of merit estimated via the described method. For
comparison, the REFMAC5 estimate is also given.

Figure 6
Wilson plots for experimental bulk-solvent-corrected PSP structure-
factor amplitudes (Observed I) and the ®t using the estimated 
(h)obs

(Theoretical I; 0 AÊ r.m.s.d.). Similar curves are shown for the structure-
factor amplitudes calculated from the model with an r.m.s.d. of 1.5 AÊ on
the positional parameters (Calculated I). A ®t of the Wilson plot of the
calculated structure-factor amplitudes using 
(h)obs and assuming a
coordinate error of 1.7 AÊ is also shown (Calculated I; 1.7 AÊ r.m.s.d.). In
the upper right corner, the exponentiated negative least-squares criteria
is shown versus the r.m.s.d.

Figure 7
Estimated ®gures of merit for the PSP data set (20±2.0 AÊ resolution;
BWil = 18 AÊ 2) for various scrambled models re®ned without restraints
(u.r.), as well as from a free-atom model (f.a.m.) obtained from phases
generated from the ®nal model randomized by 3 AÊ r.m.s.d. In the latter
case, no cross-validation has been used. hEstimated FOMi denotes the
average ®gure of merit estimated via the described method. For
comparison, the REFMAC5 estimate is also given. hTrue FOMi is
de®ned as the average value of the cosine of the phase differences
between the ®nal and scrambled model.



rather well and offers an easy way of modelling these effects.

The differences in the 
�h�PDB pro®les computed using

expression (4) and via binning of structure-factor amplitudes

are ascribed to the underlying assumptions. The effect of

packing only affects the low-resolution part of the 
(h) curve,

whereas the effect of an equal-atom assumption introduces

substantial differences over the whole resolution range.

However, the curves can be scaled together using an expo-

nential model similar to the Babinet terms used to model the

effects of the bulk solvent. The estimates of the ®gures of

merit shown in Figs. 7, 8 and 9 are close to the REFMAC5

estimates, indicating that the effects studied contain enough

information to predict, within certain limits, the accuracy of

the model and corresponding phases. In the case of phases

originating from a model with an r.m.s.d. of 3 AÊ and extreme

model bias owing to the subsequent free-atom modelling

without cross-validation (see Fig. 7; r.m.s.d. = 3 AÊ + f.a.m.) the

average estimated ®gure of merit is still larger than the true

average cosine of the phase error but is a better estimate than

that obtained by REFMAC5.

A key point is that the presented error-estimation method is

rather sensitive to the quality of the low-resolution part of the

data set used. This is ascribed to the fact that the Debye effects

at high resolution diminish faster than those at lower resolu-

tion. Most information on the value of �2 when the error is

(moderately) large is thus obtained from the low-resolution

part of the data. More appropriate weighting schemes in the

least-squares procedure or a maximum-likelihood approach

can possibly account for this sensitivity and might be useful in

reducing the observed bias in the estimates. Linked to this is

the need for a model describing the behaviour of the bulk

solvent and its effect on the average structure-factor ampli-

tude. The exponential model (Tronrud, 1997) used here is

known for its limitations (Fokine & Urzhumtsev, 2002), but

has been widely used because of its simplicity. The presented

method is sensitive to non-randomly incomplete data, such as

missing strong low-angle re¯ections. These effects can in

principle be modelled by using the characteristics of the

truncated Wilson distribution (Parthasarathy & Sekar, 1993a),

rather than ignoring a subset of valuable structure-factor

amplitudes as performed for the 1hf8 data set. Furthermore,

the method is based on an assumption of independent Gaus-

sian errors on each atom. Violation of this assumption

undermines the basic principles of the method, which is largely

designed for usage during free-atom modelling experiments.

Ideally, the dependence of the average squared structure-

factor amplitude as a function of resolution and model error

should be used in conjunction with other error-estimation

methods, such as �A (Read, 1986), in the hope of enhancing

the overall quality of the error estimates. Further incorpora-

tion of prior knowledge in the error-estimation method

outlined in this paper might enhance the results. If secondary-

structural information is available or if the classi®cation

procedure outlined by Morris, Blanc et al. (2004) proves to be

reliable and robust, then protein-speci®c 
�h�PDB curves can

be utilized to obtain more accurate 
�h�obs estimates.

Using the expected averaged squared structure-factor

amplitude as a function of resolution and model error as a

source of information during re®nement seems to be an

interesting option. This is in effect a reciprocal-space variant

of the addition of restraints to atoms on the basis of known

radial distance distributions in proteins (Sheldrick, 1998;

Scheres & Gros, 2001). A more radical and possibly better

approach would be to improve the description of structure-

factor probability distributions by taking into account

stereochemistry a priori, as suggested by Bricogne (1997a,b).

APPENDIX A
The expectation value of c(h|r2)

Consider the expression for the squared trigonometric part of

the structure-factor amplitude of an atomic model with an

error

jEhj2 � 1�P
j;k

P
j6�k

exp�ÿ2�ih�djk � qjk��; �13�

with djk as an interatomic vector and qjk a vector drawn from a

three-dimensional Gaussian centred on the origin with a

variances in all directions equal to �2. The latter expression is

equal to

jEhj2 � 1�P
j;k

P
j6�k

exp�ÿ2�ihdjk� exp�ÿ2�ihqjk�: �14�

Averaging over the vectors qjk results in (Luzzati, 1952)

E�jEhj2�q � 1� exp�ÿ2�2h2�2�P
j;k

P
j6�k

exp�ÿ2�ihdjk�: �15�

Subsequent averaging over all orientations results in

E�jEhj2�o;q � 1� exp�ÿ2�2h2�2�P
j;k

P
j 6�k

sin�2�hdjk�
2�hdjk

�16�

and thus
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Figure 9
Figures of merit and corresponding r.m.s.d. estimates of the PSP data set
during free-atom modelling. hTrue FOMi is de®ned as the average cosine
of the phase difference between the ®nal and current model. hEstimated
FOMi denotes the average ®gure of merit estimated via the described
method. For comparison, the REFMAC5 estimate is also given.
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�hj�2� � exp�ÿ2�2h2�2�
�h�: �17�
First averaging over the orientations and subsequently over

the distances is more complicated, but results in the same

expression. In this study, the transition from (15) to (17) was

carried out numerically rather than using the Debye formula.

This eliminated the need for the approximations discussed

in x1.

APPENDIX B
Determination of c(h)obs

The 
(h) pro®le corresponding to the protein under investi-

gation can be obtained using the 
(h)PDB pro®le obtained

from the PDB analysis by minimizing the least-squares target

Q �P
m

wm�hIobsim ÿ I0;m�2; �18�

where Iobs is the average observed squared structure-factor

amplitude in resolution bin m. I0,m is the expected average

observed squared structure-factor amplitude on the basis of

the following model:

I0;m � kp exp�ÿBWilh
2=2��1ÿ ks exp�ÿBsh

2=4��2
� P

k

f 2
k �hm��1� 
�hm�PDB�: �19�

kp is a scale factor and BWil the Wilson plot B value. ks and Bs

are Babinet bulk-solvent correction factors (Tronrud, 1997).

The weights wm are the sum of estimated variances of the

mean intensities per resolution shell hm. Minimizing Q as a

function of kp, BWil, ks and Bs results in a set of parameters that

can the be used to obtain a 
(h) pro®le from the observed

data. This procedure is similar to the Wilson scaling routine in

ARP/wARP (Morris, Zwart et al., 2004), with the main

difference that the reference pro®le [1 + 
�h�PDB] used here is

replaced with an experimentally obtained Wilson plot (Popov

& Bourenkov, 2003). Since the average experimental Wilson

plot already contains bulk-solvent contributions, there is no

need to include Babinet terms. The presented scaling proce-

dure is similar to that described by Parthasarathy & Sekar

(1993b).
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