
On the Role of the Crystal Environment in
Determining Protein Side-chain Conformations

Matthew P. Jacobson1*, Richard A. Friesner1, Zhexin Xiang2 and
Barry Honig2

1Department of Chemistry
Columbia University
New York, NY 10027, USA

2Howard Hughes Medical
Institute and Department of
Biochemistry and Molecular
Biophysics, BB221 Columbia
University, Box 36
New York, NY 10032, USA

The role of crystal packing in determining the observed conformations of
amino acid side-chains in protein crystals is investigated by (1) analysis
of a database of proteins that have been crystallized in different unit cells
(space group or unit cell dimensions) and (2) theoretical predictions of
side-chain conformations with the crystal environment explicitly rep-
resented. Both of these approaches indicate that the crystal environment
plays an important role in determining the conformations of polar side-
chains on the surfaces of proteins. Inclusion of the crystal environment
permits a more sensitive measurement of the achievable accuracy of
side-chain prediction programs, when validating against structures
obtained by X-ray crystallography. Our side-chain prediction program
uses an all-atom force field and a Generalized Born model of solvation
and is thus capable of modeling simple packing effects (i.e. van der
Waals interactions), electrostatic effects, and desolvation, which are all
important mechanisms by which the crystal environment impacts
observed side-chain conformations. Our results are also relevant to the
understanding of changes in side-chain conformation that may result
from ligand docking and protein–protein association, insofar as the
results reveal how side-chain conformations change in response to their
local environment.
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Introduction

It is well established that the overall folds of pro-
teins are generally very similar in solution and in
the crystalline environment.1,2 However, details of
the structure may differ, especially the confor-
mations of loops and surface side-chains. The role
of crystal packing in determining observed side-
chain conformations is of interest for several
reasons.

(1) Protein structures solved by X-ray crys-
tallography are used nearly exclusively
to validate methods of predicting side-
chain conformations. That is, the confor-
mations of side-chains in crystals are
used to judge whether a prediction is
correct, although the primary goal of

side-chain prediction algorithms is to
aid in modeling of proteins in solution,
e.g. in the context of comparative protein
modeling. Thus, it is of interest to dis-
tinguish the errors caused by neglect of
crystal packing from errors due to the
potential function and optimization
algorithms employed.

(2) Structural changes associated with
mutation can be difficult to distinguish
from structural changes associated with
crystal packing if, e.g. a mutant crystal-
lizes in a different space group than the
native protein.3 – 5 For example, are the
side-chain rearrangements around a
single point mutation due to the mutation
itself or due to variation in the crystal
packing forces?

(3) Changes in side-chain conformation due
to crystal packing are likely to be related
to changes in side-chain conformation
due to ligand docking or protein–protein
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association. In both contexts, side-chain
conformations are determined by a com-
bination of intramolecular (the local
environment of the side-chain in the pro-
tein) and intermolecular (interactions
with ligands or surrounding proteins in
the crystal) forces.

Here we present two contributions to the under-
standing of crystal packing effects on side-chain
conformations. First, we exploit the fact that a
number of proteins have multiple crystal structures
deposited in the Protein Data Bank (PDB),6 and the
side-chain conformations can be observed to vary
among the structures.5,7 Prior studies of this type
have attempted to quantify side-chain “flexibility”
through statistical analysis of the variability
observed for different residue types; the derived
flexibility was used as a point of comparison with
(1) the results of side-chain prediction programs,8,9

(2) changes in side-chain conformation associated
with ligand docking10 and protein–protein asso-
ciation,11 and (3) changes in side-chain confor-
mation of conserved residues in homologous
pairs.12 The physical mechanism underlying the
conformational changes has received less attention.
In particular, the data sets employed in previous
studies contained two classes of structural pairs
(1) those which differ in the nature of the crystal
unit cell (space group or substantial changes in
unit cell dimensions) and (2) those which do not,
but which might differ in other environmental
variables, such as pH or ionic strength. We demon-
strate here that the variability of surface side-
chains is much larger in pairs of structures which
differ in unit cell than pairs which do not; the dis-
crepancy between the two types of pairs is a
measure of the average effects of crystal packing.

Our second contribution is the development of a
new side-chain prediction program which can, as
an option, explicitly represent the crystal environ-
ment. Although, in itself, the prediction of side-
chain conformations in the crystal environment is
of limited utility to biological or pharmaceutical
chemistry, studies of this type are valuable for
several reasons. First, the effects of crystal packing
on side-chain conformations can be quantified by
performing side-chain prediction with and without
crystal packing forces (i.e. those forces arising from
interactions between asymmetric units in the
crystal). These theoretical results complement the
database studies, because variations in environ-
mental conditions can be completely controlled,
and variations in side-chain and backbone confor-
mation due to crystal packing can be studied
independently. The two types of studies, however,
provide remarkably similar results for the effects
of crystal packing on side-chain conformation.
Second, with the explicit inclusion of the crystal
environment, apparent errors in side-chain predic-
tion, when comparing to X-ray crystal structures,
are greatly reduced and the remaining errors
can be attributed to deficiencies in the potential

function or search algorithm. The potential func-
tion that we employ, which is defined by an
all-atom force field13,14 and a Generalized Born
model of solvation,15 performs quite well, and in
fact is capable of reproducing changes in side-
chain conformation observed for proteins that
crystallize in different space groups. Lastly, the
ability to accurately reproduce side-chain confor-
mations in the crystal environment (and, especially,
changes in conformation due to changes in crystal
environment) leads to increased confidence in the
ability of the methodology to reproduce confor-
mational changes associated with other, more bio-
logically relevant, modifications of the protein
environment, such as those due to ligand docking.

Results and Discussion

Database analysis

Proteins which have been crystallized multiple
times often have side-chains in different rotameric
states. This fact has been exploited by a number of
groups to establish baseline side-chain “flexibility”
to compare with side-chain prediction results or
side-chain conformational variation due to docking
or mutation. The largest such study to date, carried
out by Zhao et al.,9 included 123 pairs of structures
from the PDB which contained chemically iden-
tical, uncomplexed proteins. The structures were
screened to ensure that changes in backbone con-
formations among the different crystal structures
were minimal (RMSD , 0.5 Å), but the side-chains,
especially those on the surface, demonstrated sub-
stantial variability. For example, 90% of Ser resi-
dues in the protein core had x1 side-chain dihedral
angle variability of ,16.18 in different crystal struc-
tures, while the corresponding value for surface
Ser residues is 102.78.

The changes in side-chain conformation in
different crystals of the same protein can be attri-
buted to:

(1) errors associated with structure determi-
nation from the diffraction pattern.

(2) changes in the crystallization conditions,
which modify, e.g. the pH or ionic
strength in the crystal.

(3) variation in the crystal packing forces.

The effect of the last of these, which we wish to
isolate, will only be significant if the arrangement
of the proteins in the crystal varies, due to a differ-
ent space group or to substantially different unit
cell dimensions. As mentioned in Introduction,
prior studies have not segregated pairs of struc-
tures with the same and different crystal unit
cells, and we demonstrate here that pairs with
different unit cells have substantially greater
variability in side-chain conformations.

Before turning to a statistical assessment of
crystal packing effects on side-chain conformation,
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we first provide an instructive example. Two
crystal structures of human ubiquitin-conjugating
enzyme Ubc9 were reported by Tong et al.16 The
structure with PDB code 1u9a was determined in
a monoclinic crystal with space group P21 (two
proteins per unit cell), while that of 1u9b was
determined in an orthorhombic crystal with space
group I222 (eight proteins per unit cell)†. The unit
cells for each are represented at the top of Figure
1. The atoms in these space filling models are
colored according to distinct protein chains, the
orientations of which are related to each other by
space group symmetry operations. Note the promi-
nent solvent channels in each crystal, as well as the
extensive inter-chain contacts, including inter-
digitation of surface side-chains. Typically, the sol-
vent accessible surface area of proteins decreases
by 20–40% upon crystallization, with the precise
number depending largely on protein size.17 The
different relative orientations among the protein
chains in the two space groups cause different

regions of the surfaces to be involved in inter-
chain contacts in the two crystal structures.

The backbones of the two structures are very
similar; the RMSD for the 158 Ca atoms is 0.44 Å.16

The differences in the backbone are, as is typical,
concentrated in the termini and surface loop resi-
dues. The most significant conformational changes
between the two crystal structures, however, occur
for certain surface side-chains. The lower panels
of Figure 1 provide a striking example of crystal
packing effects on the conformation of the side-
chain of Lys146. In 1u9a, this side-chain is involved
in an “intermolecular” salt bridge, specifically with
Glu122 on a neighboring protein chain. In 1u9b, on
the other hand, Lys146 is not involved in any inter-
molecular interactions, and sits instead in a solvent
pocket formed among the various protein chains.
Given these qualitatively different environments,
it is unsurprising that the side-chain adopts quali-
tatively different conformations, with the x1 angle,
for example, differing by 1138 in the two structures.

We chose to present this particular example
because the effects of crystal packing on the side-
chain conformation are particularly simple to
understand and visualize. Not all surface side-
chains which show large conformational changes
among different crystal forms are involved in

Figure 1. Top: Crystal unit cells
for 1u9a (right; P21) and 1u9b (left;
I222). The proteins are chemically
identical (human ubiquitin-conju-
gating enzyme Ubc9).16 The atoms
in these space filling models are
colored according to distinct
protein chains, the positions and
orientations of which are related to
each other by space group sym-
metry operations. Note both the
prominent solvent channels in each
crystal, as well as the extensive
inter-chain contacts, including
interdigitation of surface side-
chains. Bottom: Conformations of
Lys146 (red space filling) in the
two structures. In 1u9a, this side-
chain participates in an inter-
molecular salt bridge with Glu122
on a different protein chain; in
1u9b, the side-chain makes no inter-
molecular contacts and sits in a sol-
vent pocket. Only residues within
12 Å of Lys146 are depicted. All
images were generated with VMD,38

and rendered with POV-Ray.

† The dimensions of the unit cell are as follows (edge
lengths in Å and angles in degrees). 1u9a: a ¼ 52:0; b ¼
35:2; c ¼ 58:1; a ¼ 90:0; b ¼ 111:2; g ¼ 90:0: 1u9b: a ¼
35:4; b ¼ 94:0; c ¼ 115:9; a ¼ 90:0; b ¼ 90:0; g ¼ 90:0:
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direct inter-chain salt bridges or hydrogen bonds.
Conformational differences may be caused by
longer-range effects of the electrostatic field associ-
ated with neighboring protein chains in the crystal.
Other surface side-chains show little variability
among different crystal forms. To quantify the
effects of crystal packing on side-chain confor-
mation, we have carried out a statistical analysis
of pairs of chemically identical structures crystal-
lized in different unit cells; the construction of the
data set is described in Methods.

Side-chain variability is quantified by changes in
the dihedral angles xn. Specifically, a dihedral angle
is considered to be the “same” if Dxn , 408 (note
that a similar criterion is commonly used for asses-
sing the accuracy of side-chain prediction algor-
ithms). To identify residues in or near interface
regions, we define d as the smallest distance from
any atom on a particular residue to any atom on a
different asymmetric unit (related by a space
group symmetry operation). For pairs of struc-
tures, crystal packing forces will play an important
role in conformational differences between corre-
sponding residues if the residue in question is
close to an interface region in either of the crystal

structures. Thus, for a pair of corresponding resi-
dues, we define dmin as the minimum value of d.

In Figure 2, the percent same x1 and (for side-
chains with more than one heavy-atom dihedral
angle) x1þ2 are plotted with residues sorted accor-
ding to dmin in 2 Å bins. (The crystal packing effects
discussed below are also quite pronounced for
long side-chains, i.e. x1þ2 þ 3 and x1þ2 þ 3 þ 4, but
fewer data points are available.) Crystal packing
forces are found to be maximal near the interfaces
between asymmetric units in the crystals. The
variability in side-chain conformation is nearly the
same for pairs with same/different unit cells at
large dmin (i.e. residues far from the interface
regions), but the results diverge significantly
below 4.0 Å. Thus, a good working definition of
the interface region is dmin , 4.0 Å†. The dis-
crepancy between the two sets of results provides
a measure of the effects of crystal packing. That is,
the variability in side-chain conformations in pairs
with the same unit cell is due to differences in the
crystal preparation and possibly also to differing
methods for solving the structures. The pairs of
structures with different unit cells also have such
differences, but the differences in crystal packing
represent much larger effects.

Residues with low values of dmin are of course
located near the surface of the protein. Thus, it
can be expected that side-chain variability will be
increased as dmin decreases both due to crystal
packing effects and due to intrinsic increases in
variability for surface side-chains (i.e. caused by
dynamical effects/larger B-factors and/or
increased sensitivity to variation in the solvent
environment such as pH or ionic strength). Figure
3 investigates side-chain variability as a function
of solvent accessibility (defined as the ratio of the
SASA in the protein—without the crystal environ-
ment included—versus the same residue in a
dipeptide). For a pair of corresponding residues,
the lower of the two solvent accessibility values is
chosen. The solvent accessibility serves to identify
how close the residues are to the surface of the
protein. Clearly, the side-chain variability, as
measured by the percent same x1, increases
strongly near the surface of the protein. However,
in the interface region ðdmin , 4 �AÞ; pairs with
different crystal packing (dashed line) show much
greater variability than pairs with the same crystal
packing (solid line) near the protein surface. Very
little difference in variability is observed between
the two data sets for side-chains that are not in the
interface region ðdmin . 4 �AÞ; regardless of solvent
accessibility. Thus, although some portion of the
increase in variability near the surface is clearly
independent of crystal packing, a quantitative
measure of the effects of crystal packing can be
obtained by comparing the results for the two

Figure 2. Fraction of side-chains that have identical,
using the ^408 criterion, x1 dihedral angles (top) and
identical x1 and x2 values (bottom); the latter criterion is
abbreviated as x1þ2. The data are averaged over 2 Å bins
of dmin, which provides a measure of whether either of a
pair of residues is close to an interface region between
asymmetric units in the crystal. The continuous/broken
lines represents pairs with the same/different unit cells,
respectively.

† Note that this definition is essentially identical with
the definition of interface regions in protein–protein
complexes used by Betts & Sternberg11
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data sets (same/different unit cells) in the interface
region ðdmin , 4 �AÞ:

We have also analyzed the results as a function
of amino acid type. The detailed results are
presented in Supplementary Material, and we
highlight only a few results here. Serine demon-
strates the most substantial increase in variability
in pairs with different crystal packing arrange-
ments. In the interface region, 84% of the pairs
with the same unit cell (367 total pairs) conserve
x1, while only 64% of those in different unit cells
(199 total pairs) do; the corresponding percentages
outside the interface regions are 88% and 86%.
Clearly, the small polar side-chain of serine pro-
vides a sensitive measure of the local electrostatic
environment. The long polar and charged side-
chains of Arg, Lys, Gln, and Glu also demonstrate
striking sensitivity to the crystal environment. For
example, 51% of Arg conformations near the inter-
face regions are conserved out to x4 when the crys-
tal unit cell remains the same (342 total pairs), but
only 28% are conserved when the unit cell varies

(202 total pairs). The side-chains which are least
sensitive to the changes in crystal environment are
Tyr, Pro, and Phe, although even these show slight
increases in variability (,2% for x1 and ,3% for
x1þ2) in pairs with different unit cells.

These results help to resolve a discrepancy in the
literature. Dunbrack et al. compared the observed
variability of the side-chains in their data set of
paired structures with their side-chain prediction
results and concluded that “SCWRL (the predic-
tion program) is working up to its theoretical limits
for most residue types, even without consideration
of hydrogen bonding, solvent effects, and electro-
static interactions”.8 In contrast, Olson et al., using
their larger data set, concluded that “SCWRL is
still not able to predict side-chain conformation
within the tolerances defined by the observed flexi-
bility of each residue”.9 Our results suggest that
these differing conclusions are due largely to the
composition of the data sets employed in each
study. Specifically, only 16% of the structural pairs
in the Olson study had different crystal unit cells,
versus 77% of the pairs in the Dunbrack study.

Side-chain prediction incorporating
crystal packing

Given the strong effect of the crystal environ-
ment on surface side-chain conformation, a strin-
gent test of a side-chain prediction program
would be to include crystal packing interactions,
i.e. by explicitly reconstructing the environment
around a protein using the known space group
and unit cell dimensions†. That is, side-chain
variation in different unit cells should cease to be
a source of prediction “error” if the crystal packing
is explicitly included. Moreover, such calculations
can provide a direct measure of the effects of crys-
tal packing, although the results of course will
also reflect the accuracy of the potential function
and the efficiency of the optimization algorithm
used.

Although the vast majority of side-chain predic-
tion studies have ignored the effects of crystal
packing, there are precedents, as early as two
decades ago, for its explicit inclusion in theoretical
studies of side-chain conformation and dynamics.
Gelin & Karplus sampled the potential energy of
side-chains along the x1 and x2 dimensions using
an early force field and demonstrated that the
crystal environment can play an important role in
stabilizing observed conformations.18 Molecular
dynamics simulations of a trypsin inhibitor in solu-
tion and in the crystalline state were carried out by
van Gunsteren and co-workers; these calculations
highlighted substantial changes in both confor-
mation and dynamics of polar surface side-chains

Figure 3. Side-chain variability (as measured by %
“same” x1, i.e. Dx1 , 408) as a function of solvent accessi-
bility (ratio of solvent accessible surface area in the pro-
tein to that in a dipeptide). The continuous/broken lines
represents pairs with the same/different unit cells,
respectively. Top: all residues with dmin , 4; i.e. those
residues that reside in “interface regions” in the crystal.
Bottom: all residues with dmin . 4: The final point for
the broken line in the bottom panel is not represented
due to inadequate statistics. Specifically, there are only
two residues with dmin . 4 and solvent accessibility of
greater than 0.8. Side-chain variability increases strongly
near the surface of the protein, but the effects of crystal
packing can be isolated by comparing the results with
same/different unit cells for residues in the interface
regions.

† The unit cell dimensions could in principle be treated
as variables, but in practice this may not be possible. We
know of no practical way of “sampling” the many
possible space groups.

Protein Side-chain Conformations 601



upon crystallization.2 Somewhat more recently,
Wilson et al. performed side-chain prediction on a
single protein, a-lytic protease, with symmetry
related atoms included.19

As described in Methods, we have developed a
new side-chain prediction program which can, as
an option, include the crystal environment (more
precisely, the simulation system consists of one
asymmetric unit and all atoms from other, sur-
rounding asymmetric units within 20 Å). Here we
emphasize the effects of including/excluding the
crystal environment on prediction accuracy. Our
goal is to reproduce side-chain conformations
with the highest possible accuracy in a wide
variety of environments (crystal, solvated, com-
plexed) and for this reason we have chosen to
evaluate side-chain conformations with an energy
function that is substantially more complex (and
computationally expensive) than those which have
been used in other prediction programs. Specifi-
cally, we use the all-atom OPLS force field13,14 for
the protein intramolecular energetics and the Sur-
face Generalized Born (SGB) implicit model of
solvation.15 The SGB model can be understood as
a relatively inexpensive, semi-analytical approxi-
mation to the Poisson–Boltzmann description of
continuum electrostatics, and the parameters have
been calibrated against both Poisson–Boltzmann
calculations and experimental solvation free
energies for a wide range of small organic

molecules. This is, to our knowledge, the first time
that a Generalized Born model has been used for
side-chain prediction. Most prior studies have
been performed in the gas phase, and many have
used only simple packing potentials. Prior treat-
ments of solvation have been limited largely to the
low accuracy but computationally convenient
distance-dependent dielectric models,20 – 26 and
atomic solvation parameters or other simple
surface-area dependent terms.19,27 Our choice of
energy function is capable of modeling all of the
important effects of the crystal environment,
including simple short-range packing effects
(i.e. van der Waals interactions), longer-range
electrostatic effects, and desolvation.

As a first test, we predicted the conformations of
“single” side-chains while holding the rest of the
protein fixed at the native configuration (similar
tests in other contexts have been performed by
Gelin & Karplus,18 Wilson et al.,19 Petrella et al.,28

Xiang & Honig,29 and Liang & Grishin27). This test
has the advantage that sampling error is not a
serious problem, since the combinatorial optimi-
zation problem is entirely avoided. As will be
shown below, the effects of crystal packing are
revealed quite clearly by this test.

The single side-chain prediction results are
depicted in Figure 4. The continuous/broken lines
represent the results with/without crystal packing
forces included. The thin dotted lines are the
results of the database analysis, included for ease
of comparison (the top/bottom dotted lines are
the results with the same/different unit cells). The
agreement between the two analyses of crystal
packing effects is remarkable. The calculated
results with the crystal environment included
achieve just slightly less accuracy than would be
obtained by guessing the side-chain conformations
of a protein in one crystal from the conformations
observed in another crystal with the same unit
cell. Neglect of the crystal environment leads to
prediction accuracy that is roughly comparable
to guessing the side-chain conformations of a pro-
tein in one crystal from the conformations
observed in another crystal with a different unit
cell. The single side-chain results are analyzed as
a function of residue type in the Supplementary
Material. These results are generally consistent
with those from the paired protein database
study; that is, polar and charged side-chains
demonstrate the largest improvement in predic-
tion accuracy when the crystal environment is
represented.

We wish to note in passing that single side-chain
prediction results motivated the choice of solvent
model employed for this work. In similar tests,
with crystal packing included, we have compared
the SGB solvent model used here with a simple
distance-dependent dielectric solvent model ð1 ¼
rÞ and total neglect of solvent (vacuum). For side-
chains with .50% solvent exposure, the results
are striking. The x1 prediction accuracy is 79.3%
correct with the SGB solvation model, 73.7%

Figure 4. Prediction accuracy for single side-chains
(keeping the remainder of the protein fixed at the native),
with (continuous line) and without (broken line)
inclusion of the crystal environment. The axes are
defined as in Figure 2. The dotted lines are taken from
Figure 2, for ease of comparison.

602 Protein Side-chain Conformations



correct with distance-dependent dielectric, and
70.3% correct with vacuum. Thus, in contrast to
other reports, and as will be discussed more exten-
sively in a future publication, in our experience the
choice of solvation model can make a critical con-
tribution to the accuracy of side-chain prediction.

The single side-chain prediction results provide
strict upper limits on the accuracy that a given
model can achieve for full side-chain prediction.
On the basis of these results, we conclude that the
neglect of the crystal environment places severe
limitations on the apparent achievable accuracy of
surface side-chain prediction when comparing
with X-ray crystal structures. We have also per-
formed “full” side-chain prediction in the crystal
environment, by, in essence, optimizing the side--
chains on all symmetry-related copies of the
asymmetric unit simultaneously. See Methods for
further details.

The full side-chain prediction results are shown
in Figure 5. The decrease in accuracy relative to
the single side-chain results is likely due to both
incomplete sampling (i.e. not locating the global
minimum) and inadequacy of the potential func-
tion, which is tested more rigorously when all
side-chains are free to move. Nevertheless, the
effects of crystal packing can still be observed
very clearly. A comparison of these results with
other side-chain prediction programs is presented
in the Conclusion below; the overall results are

88% correct x1, 77% correct x1þ2 with the crystal
environment included, and 85% correct x1, 73%
correct x1þ2 with the crystal environment excluded.
(Note that the effect of including/excluding crystal
packing on the overall statistics is relatively minor,
due to the relatively small number of residues
involved in intermolecular crystal contacts. More
generally, such overall statistics can mask sub-
stantial errors in surface side-chain prediction.
However, as Figures 3 and 5 emphasize, the effect
of crystal packing on surface side-chain confor-
mations, and particularly those in the interface
regions, is substantial.)

Conclusion

Given the results presented here, what is the ulti-
mate limit on the accuracy that could potentially be
achieved by side-chain prediction programs (on
experimentally determined protein backbones, as
is usually done for purposes of validation), and
how close does the current generation of programs
actually come to this limit? A definitive answer to
this question is complicated by variation in the
protein data sets chosen in different studies and
inconsistencies in the criteria chosen to evaluate
accuracy. Nonetheless, several conclusions can be
drawn.

First, care must be taken, when attempting to
establish “instrinsic” side-chain variability, to dis-
tinguish between pairs of protein structures with
the same and with different crystal unit cells. We
do not believe that side-chain conformational
variability observed in different crystal environ-
ments should be considered “intrinsic” and used
as a point of comparison with side-chain predic-
tion programs, as has been done implicitly in
other work (i.e. no distinctions made between
same and different unit cells). In order for a side-
chain prediction program to be of maximal utility,
it must be capable of predicting side-chain confor-
mations in a variety of environments, including
unimolecular solvated proteins (e.g. for homology
modeling, protein engineering); proteins in com-
plexes with ligands, with other proteins, and with
DNA or RNA; and proteins in membrane
environments†. The variability observed in pairs
of structures with the same crystal unit cell
provides a more meaningful and stringent point
of comparison with side-chain prediction pro-
grams and with side-chain conformational varia-
tion due to docking or mutation. Ultimately,
however, even the side-chain conformational varia-
bility observed in structural pairs with the same
crystal unit cell should not be considered intrinsic,
as it is likely to be related to pH and to the identity
and concentration of ions (both those that can

Figure 5. Prediction accuracy for full side-chain
addition (keeping the backbone fixed at the native),
with (continuous line) and without (broken line)
inclusion of the crystal environment. The axes are
defined as in Figure 2. The dotted lines are taken from
Figure 2, for ease of comparison.

† Side-chain conformational optimization in the crystal
environment itself of course has some relevance to
solving (especially by molecular replacement using
homology models) and refining X-ray crystal structures.

Protein Side-chain Conformations 603



be imaged by the X-ray diffraction experiment30

and labile ions in the solvent channels); infor-
mation concerning crystallization conditions could
potentially be used for further studies of side-
chain variability.

Neglecting the variability in crystallization con-
ditions, the results here provide definite targets
for achievable side-chain prediction accuracy
when comparing to protein structures solved by
X-ray crystallography (see Figure 3): .95% correct
x1 for core residues, .80% correct for surface side-
chains that are involved in crystal contacts, and
60–80% correct for surface side-chains not
involved in crystal contacts (the precise value
depends on the precise level of solvent accessi-
bility). Of course, these results can only be
achieved if validation studies for side-chain predic-
tion programs are performed with crystal packing
included, as we have done here, in order to
adequately represent the physical environment of
the proteins in the test set. (Alternatively, one
could propose to use protein structures solved
by solution phase NMR for validation, but
side-chain conformations, particularly beyond x1,
are frequently poorly restrained by the
experimental data.)

Encouragingly, there have been several reports
of side-chain prediction accuracy approaching or
even slightly exceeding the 95% correct x1 level for
core residues.26,27,29 The prediction methods that
achieve this level of accuracy for the core residues
are all relatively recent and utilize somewhat more
complicated energy/scoring functions than in
many prior studies, including at least some electro-
static effects. The side-chain prediction program
introduced here utilizes arguably the most sophis-
ticated energy function yet employed for side-
chain prediction: the all-atom OPLS force field
with a Generalized Born implicit solvent model.
The results for core residues (,20% solvent
exposure) are excellent, 95.6% correct x1. However,
even methods that use only steric clash and/or
statistical preferences to place side-chains perform
reasonably well in the core, with x1 prediction
accuracies ,90% in some cases, including results
reported for the SCWRL program.8 Although grati-
fying, these excellent results for core residues are
unsurprising given the densely packed core
environment. (Prediction results for dihedral
angles beyond x1, and particularly beyond x2, are
less commonly reported, but the available evidence
suggests that prediction accuracy degrades rapidly
further from the backbone, and more rapidly than
does the reproducibility of the side-chain dihedral
angles, as studied here.)

Most active sites in proteins involve significant
solvent exposure, and thus the prediction accuracy
for surface and partially buried side-chains is of
greater biological importance than the prediction
accuracy for buried side-chains. As we have
demonstrated here, assessing the performance of
side-chain prediction programs for the surface
side-chains is complicated by the effects of crystal

packing, because few validation studies have
explicitly incorporated the crystal environment
(the only studies to do so, to our knowledge, are
the very early work of Gelin & Karplus,18 Wilson
et al.,19 and this study). The explicit inclusion of
the crystal environment, or at least the segregation
of surface side-chains into those that participate in
intermolecular crystal contacts and those that do
not, permits more sensitive assessment of the
adequacy of currently employed energy functions
for surface side-chain prediction. The results pre-
sented here (Figure 5) indicate that significant
improvement in accuracy should still be possible.
Much of the remaining error appears to be due
largely to inadequacies of the potential function
rather than inadequacies of the sampling algo-
rithm, because the predicted protein structures
nearly always have substantially lower energies
than those of the native (or minimized native;
results not shown). Efforts are currently underway
to refine the force field (specifically the torsional
parameters; M.P.J., G. A. Kaminsky, R.A.F. & C. S.
Rapp, unpublished results) and solvent model
using side-chain prediction as a measure of
accuracy.

Methods

Database analysis

Of the 123 pairs of structures in the Zhao et al. study,9

only 20 corresponded to different crystal unit cells†. To
provide better statistics, we augmented this data set
with certain pairs of structures used in a study by
Bower et al., in which the authors were concerned with
evaluating the SCWRL side-chain prediction program.8

In particular, that study relied largely on the large num-
ber of crystal structures of lysozyme (both hen egg
white lysozyme, with ten uncomplexed structures in
four space groups, and bacteriophage T4 lysozyme,
with three structures in two space groups)‡. We augmen-
ted the Zhao et al. data set by 20 representative pairs of
hen egg white lysozyme structures (ten pairs with the
same space group§ and ten with different space
groupsk). We did not, however, use any of the T4
lysozyme structures, due to their relatively low

† These pairs are 193l/1aki, 194l/1aki, 1bxa/1aaj,
2rac/1aaj, 1yme/1cpx, 1arl/1cpx, 1tld/1tgn, 1mpb/
1mpc, 1pgb/1pga, 1svn/1jea, 1mku/1mks, 1cub/1cuc,
1une/1mkt, 1une/2bpp, 5pti/6pti, 4pti/6pti, 1fib/1fid,
3fib/1fid.

‡ The Bower et al. study also used structures of bovine
pancreatic trypsin inhibitor, but representative pairs are
included in the Zhao et al. data set.

§ Specifically, all pairs of five structures in the P43212
space group: 6lyt, 1hel, 1lza, 1lse, and 2lym.
kAll possible pairs of structures among 1lza (P43212),

2lzt (P1), 1lma (P21), 5lym (P21, chain A), and 5lym (P21,
chain B). Note that although 1lma and 5lym have the
same space group, the unit cells are different.
Specifically, the 5lym asymmetric unit contains two
nonidentical copies of the lysozyme chain; each of these
is used independently, because they have different
environments.
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resolution (2.7 Å) and high backbone RMSD among the
pairs (up to 3.4 Å), which is associated with large-
amplitude hinge bending.5

When we analyzed the combined data set for the first
time, we noticed that several of the pairs of structures
with the same unit cell had extremely similar side-chain
conformations, raising suspicions that the pairs did not
represent truly independent structural determinations.
(By definition, no such issue arises for the pairs with
different unit cells.) A small study by Flores et al.
included only pairs of structures that were solved by
different research groups, in an effort to ensure that all
structure determinations were independent;12 no such
precaution was taken in the much larger Zhao et al.
study.9 Indeed, some of the highly similar pairs were
solved by the same research groups and differed only
trivially in crystallization conditions, such as 193l and
194l, which were crystallized and analyzed identically,
except that one of the structures was grown under zero-
gravity conditions.31 Other extremely similar pairs were
solved by molecular replacement using the same starting
models. However, it should be emphasized that not all
pairs solved by molecular replacement showed this

behavior, including pairs in which one structure was the
starting model for the other structure, presumably
reflecting extensive refinement of the initial models.

For our purposes, the data set of pairs with the same
unit cell would ideally encompass the same diversity of
crystallization conditions and methods for solving the
structures as the set of pairs with different unit cells.
This is a difficult criterion to quantify, and in practice
we used a simple but effective criterion to remove those
pairs of structures with the same unit cell which
evidenced much higher similarity than other pairs, to
the extent that they can be considered outliers. In the
left column of Figure 6, we present histograms which
illustrate the range of structural similarity observed for
the pairs with the same crystal unit cells. The criterion
we use for comparing side-chain conformations, here
and below, is one that is commonly used for assessing
side-chain prediction algorithms: two side-chain
dihedral angles are the same if they are with ^408 of
each other. In each of the histograms there is a clear
“spike” very near 100% similarity, which represents the
structures with extremely high similarity.

Our criterion for pruning the set of structures with the
same unit cell is to reject all structures which have over
90% of all relevant side-chains with the same values of
x1, x2, and x3. We abbreviate this criterion as x1þ2þ3.
This criterion is used for a cutoff rather than x1þ2 or x1

because its use makes it easier to distinguish the outliers.
The precise cutoff is of course somewhat arbitrary, but
the histograms for the pruned data set (right column of
Figure 6) no longer have obvious outliers. The final sets
of pairs used in this study are listed in Tables 1 and 2.

Figure 6. Histograms representing the distribution of
side-chain variability in the data set of paired structures
with the same crystal unit cells, before (left column) and
after (right column) pruning. The pruning criterion was
chosen to be x1þ2þ3 . 90%.

Table 1. Pairs of protein structures with same unit cell
(77)

1bxa/2rac 1ak2/2ak2 1ald/2ald 1axn/1aii
3rn3/1rat 3rn3/1rhb 1rat/1rhb 1brf/1bq8
1brf/1caa 1bq8/1caa 1lhm/2bqa 2lzm/3lzm
2lzm/4lzm 3lzm/4lzm 1lz1/1rex 1npk/1nsp
1rro/1omd 1paz/3paz 1paz/1pza 3paz/1pza
4pnp/1pbn 1pnc/1pnd 1pnc/2pcy 1pnd/2pcy
2pkc/2prk 1sbh/1yja 1sbh/1yjb 1yja/1yjb
2st1/1st2 1tcy/1wqr 2tgi/1tfg 1amf/1wod
1a58/1a33 1bkr/1aa2 1zia/1zib 1osa/1clm
1scs/2ctv 1enr/2ctv 1crm/2cab 1ede/2had
1ede/2dhd 1ert/1eru 1ert/1auc 1eru/1auc
1amm/1gcs 1i1b/4i1b 2ilk/1ilk 1jcv/2jcw
1jcv/1yso 2jcw/1yso 1top/1ncx 1top/1ncz
1xac/1xad 1mkt/2bpp 2che/2chf 1gvp/1vqb
2lhm/3lhm 5icb/6icb 3rnt/8rnt 5pti/4pti
4rxn/5rxn 1djc/1djb 3lip/2lip 1loz/1oua
1a3z/1rcy 1ame/1gzi 4paz/5paz 6paz/7paz
6lyt/1hel 6lyt/2lym 6lyt/1lza 6lyt/1lse
1hel/2lym 1hel/1lza 1hel/1lse 2lym/1lza
2lym/1lse 1lse/2lym

Table 2. Pairs of protein structures with different unit
cells (30)

193l/1aki 194l/1aki 1bxa/1aaj 2rac/1aaj
1yme/1cpx 1arl/1cpx 1tld/1tgn 2ptn/1tgn
1mpb/1mpc 1pgb/1pga 1svn/1jea 1mku/1mks
1cub/1cuc 1une/1mkt 1une/2bpp 5pti/6pti
4pti/6pti 1fib/1fid 3fib/1fid 1u9b/1u9a
1lza/2lzt 1lza/1lma 1lza/5lym 1lza/6lym
2lzt/1lma 2lzt/5lym_A 2lzt/5lym_B 1lma/5lym_A
1lma/5lym_B 5lym_A/5lym_B
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Note that the average resolutions of the structures in the
two data sets are extremely similar (and quite low),
1.75 Å in both cases. We would like to emphasize that,
although the pruning of the data set changes the precise
statistics that we obtain, by ,10% percent in most cases,
the overall conclusions listed below remain unchanged.
We have also repeated our analyses using the Zhao et al.
and Bower et al. data sets independently, again with no
significant changes to the overall results. Thus, although
the precise data set chosen is, inevitably, somewhat
arbitrary, the differences that we observe between pairs
of structures with and without the same unit cell are
robust.

One final issue concerning the construction of the data
sets is the extent of backbone variation among the pairs.
The average backbone RMSD is low in both data sets,
but the pairs with different unit cells (0.58 Å average
RMSD), expectedly, demonstrate greater backbone
variation than the pairs with the same unit cells (0.29 Å
average RMSD). Although the backbone variation is
fairly small and arises largely from short disordered
terminal regions, some of the observed crystal packing
effects on side-chain conformation can potentially arise
indirectly from modifications to the backbone structure.
No rigorous decomposition between the direct and
indirect mechanisms can be made in the database
analysis, and for many applications the distinction is
not critical. However, as described below, we also per-
form calculations in which the backbone is held fixed at
the native configuration, and crystal packing forces are
turned on and off. These calculations demonstrate that
crystal packing forces have a strong direct effect on
side-chain conformations, roughly equal to that observed
in the database analysis.

Side-chain prediction

A diverse set of high resolution protein structures
solved by X-ray crystallography were chosen for use in
this study. Specifically, 36 proteins were selected from a
“Culled PDB” list compiled by Dunbrack†,32 which con-
sists of 909 protein structures solved to 2.0 Å resolution
or better (R-value ,0.2) with maximum pairwise
sequence identity of 30% or less. Proteins with non-
peptide ligands or nonstandard (chemically modified)
residues were excluded from study, as were proteins
with large disordered regions. The largest protein con-
tained 285 residues; the total number of residues
represented is 4808. The PDB codes for the proteins
included are 1ew4, 1u9a, 5icb, 2pth, 1bk7, 1dvo, 3vub,
1et1, 1aie, 1ej8, 2fcb, 1nps, 1whi, 1aho, 1bv1, 1c44, 1edm,
2igd, 1d4t, 1dhn, 1qto, 1ay7, 5hpg, 1f94, 3ezm, 1pbv,
1qtw, 1bue, 2btc, 1sur, 1b2p, 1a8l, 1byi, 1ako, 1tvd, 2plc,
1qts. This data set encompasses considerably greater
diversity of structure than the paired protein database.

Monoatomic ions reported in the PDB files were
included in the calculations to avoid gross errors in the
electrostatic environment. The protonation states of
titratable side-chains were assigned using pH infor-
mation in the PDB files and the assumption that the pKa

values of the side-chains in the protein environment are
unmodified from those in the isolated amino acid resi-
dues. That is, the side-chain was considered to be proto-
nated if pH , pKa. The positions of hydrogen atoms

and all other atoms not reported in the PDB files were
determined as follows. First, all unreported atoms were
placed in “standard” geometries, as defined by the
OPLS force field. Next, the positions of polar
hydrogen atoms were optimized using the energetic
function described below, OPLS with SGB/NP solvation,
by scanning the hydrogen dihedral angles at 108
intervals. Finally, the positions of all unreported atoms
were energy minimized using the algorithm described
below.

For most proteins, the crystal unit cell contains too
many atoms for explicit lattice summation techniques
(e.g. Ewald summation) to be computationally feasible.
Instead, the simulation system that we employ consists
of one asymmetric unit (which may contain more than
one protein chain) and all atoms from other, surrounding
asymmetric units that are within 20 Å. Every copy of the
asymmetric unit is identical at every stage of the
calculation (e.g. if the conformation of a side-chain is
modified, it is changed on all copies of the asymmetric
unit simultaneously).

The all-atom OPLS force field13,14 was used to describe
the protein intramolecular energetics. All nonbonded
interactions between pairs of atoms within 20 Å of each
other were calculated. The solvation free energy was esti-
mated using an implicit solvent model consisting of the
SGB model of polar solvation,15 and a nonpolar estimator
developed by Levy and co-workers.33 Specifically, the
SGB solvation free energy (in kcal/mol) is calculated
according to:
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where Dij ¼ r2
ij=4aiaj; q represents partial atomic charges,

rij is the distance between two atoms, and 1 is the solvent
dielectric constant. The Born a parameters are given by
an integral over the surface of the protein:
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where ~n is the surface normal, ~R is the vector of
integration over the whole surface, and ~rk is an atomic
position. As described,15 correction terms have also
been developed to improve the agreement between
SGB and Poisson–Boltzmann solvation free energy
calculations.

In this work, a new version of the SGB/NP solvation
free energy code was written to account for the crystallo-
graphic symmetry. That is, the Born a values are calcu-
lated with the full crystal packing. Two surfaces
(extending over the entire simulation region, including
the symmetry copies) were calculated to perform the
SGB surface integrals: one high resolution (330 points
per sphere) and one low resolution (only ten points per
sphere). The distributions of points on the spheres used
to construct these surfaces were determined using the
spiral points algorithm.34 Because the magnitude of the
integrand of the surface integral decreases rapidly with
distance, the integration was performed with the high
resolution surface for all points within 7.5 Å of the
charge in question, and the lower resolution surface at
longer distances, up to an absolute cutoff of 20 Å.

The sampling of single side-chain conformations was
accomplished primarily by using a highly detailed (108
resolution) rotamer library constructed by Xiang &
Honig29 from a database of 297 proteins. This library
contains, for example, 2086 rotamers for lysine. The

† Dunbrack, R. L. Jr. Culling the PDB by resolution and
sequence identity: http://www.fccc.edu/research/labs/
dunbrack/culledpdb.html
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additional computational expense of such a detailed
library was tolerated in order to ensure adequate
sampling. In addition, the expense was mitigated by
pre-screening the rotamers using only hard sphere
overlap as a criterion, allowing many rotamers to be
excluded before performing any energy evaluations.
This step can be made very rapid with the use of a cell
list (1 Å grid size) to identify nearby atoms. In addition,
for side-chains with multiple dihedral angles, the dis-
covery of a single steric clash can eliminate many
rotamers. For example, if a steric clash is found for the
Cg atom of Lys with x1 ¼ 1208; then all rotamer states
with that value of the first dihedral angle can be
eliminated.

After choosing the lowest energy rotamer, the side-
chain is completely energy-minimized (,0.001 kcal/
mol/Å final root-mean-square gradient) in Cartesian
space (i.e. all side-chain atoms are free to move) using a
novel multi-scale minimization algorithm (M.P.J. &
R.A.F., unpublished results). This algorithm is a variant
of the truncated Newton (TN) method, specifically the
TNPACK implementation of Schlick and co-workers.35

The multi-scale implementation of TNPACK by Jacobson
& Friesner (J.M.P. & F.R.A., unpublished results) is based
upon a division of the molecular mechanics forces into
short and long-range components, in analogy to multi-
scale molecular dynamics methods such as RESPA.36

Short-range forces include all bond, angle, and torsion
terms in the force field, as well as all nonbonded inter-
actions between atoms separated by ,10 Å. The remain-
ing nonbonded interactions constitute the long-range
forces. The long-range forces are never evaluated during
the “inner” TN cycles (which determine the line search
direction), and only periodically updated in the outer
TN cycles (in this work, once every five Newton
cycles). The division of the nonbonded interactions into
short and long-range is also updated every five Newton
cycles.

The Generalized Born solvation model is well suited
for performing rapid minimizations because the pair
screening term is analytical and thus differentiable.
However, the resultant expression for the gradient
involves derivatives of the Born a values with respect to
the atomic coordinates, which must be determined
numerically. A simple solution to this problem, however,
can be obtained by simply holding the Born a values
fixed during the course of the minimization, then
updating them, performing another minimization, and
so on until self-consistency is achieved (defined by the
energy varying by less than 1 kcal/mol). In practice,
self-consistency rarely requires more than two cycles of
TN minimization, and the second minimization is
generally extremely rapid (i.e. only a very small
number of Newton cycles, with the energy typically
changing by only 0.01–0.1 kcal/mol). This self-consistent
minimization with GB solvent requires only ,50%
greater computational expense than vacuum
minimizations.

The method we use for the combinatorial optimization
is adopted from the method described by Xiang &
Honig,29 which is similar in spirit to earlier work.37 In
brief, all side-chains are initially built onto the fixed
backbone in a random rotamer state, and then each
side-chain in the protein is optimized one at a time,
using the single side-chain procedure described above,
holding the others fixed. The procedure is iterated to
convergence (no side-chains changing rotamer states)
After convergence is achieved, all side-chains are com-
pletely energy minimized simultaneously in Cartesian

coordinates to remove any remaining clashes. This com-
plete procedure is repeated several times (five in our
case; greater numbers of iterations did little to improve
accuracy), because different initial (random) rotamer
states lead to somewhat different optimized structures.
The lowest energy structure is chosen for comparison
with the experimental data.
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