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Abstract 

We have developed a virtual ligand screening method designed to help assign enzymatic 

function for alpha-beta barrel proteins.  We dock a library of ~19,000 known metabolites against 

the active site and attempt to identify the relevant substrate based on predicted relative binding 

free energies.  These energies are computed using a physics-based energy function based on an 

all-atom force field (OPLS-AA) and a Generalized Born implicit solvent model.  We evaluate 

the ability of this method to identify the known substrates of several members of the enolase 

superfamily of enzymes, including both holo and apo structures (11 total).  The active sites of 

these enzymes contain numerous charged groups (lysines, carboxylates, histidines, and one or 

more metal ions), and thus provide a challenge for most docking scoring functions, which treat 

electrostatics and solvation in a highly approximate manner.  Using the physics-based scoring 

procedure, the known substrate is ranked within the top 6% of the database in all cases, and in 8 

of 11 cases, within the top 1%.  Moreover, the top-ranked ligands are strongly enriched in 

compounds with high chemical similarity to the substrate (e.g., different substitution patterns on 

a similar scaffold).  These results suggest that our method can be used, in conjunction with other 

information including genomic context and known metabolic pathways, to suggest possible 

substrates or classes of substrates for experimental testing.  More broadly, the physics-based 

scoring method performs well on highly charged binding sites, and is likely to be useful in 

inhibitor docking against polar binding sites as well.  The method is fast (<1 minute per ligand), 

due largely to an efficient minimization algorithm based on the Truncated Newton method, and 

thus can be applied to thousands of ligands within a few hours on a small Linux cluster.  
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Computational ligand screening (“virtual screening” or “docking”) is widely used in structure-

based drug design projects to rapidly and inexpensively identify lead compounds (1-3).  Here, we 

consider a different application of docking methods, namely to assist in the identification of 

possible substrates of an enzyme, when the function of the enzyme is unknown.  We expect this 

capability to become increasingly important as the “production phase” of structural genomics 

efforts gets under way.  These projects are expected to generate thousands of protein structures, 

with the ultimate goal of providing structural representatives of the majority of protein families.  

However, knowing the structure of a protein does not always uniquely or unambiguously suggest 

its function.  Although the term “function” can encompass a broad range of meanings, here we 

refer specifically to the reaction(s) that an enzyme can catalyze in vivo.   

 

The alpha-beta barrel enzymes, a subset of which is considered in this paper, pose a particular 

challenge for functional annotation.  The basic alpha-beta barrel scaffold of eight parallel strands 

forming a barrel, flanked by eight helices, is known to catalyze a highly diverse set of reactions. 

The SCOP database (4) enumerates 26 superfamilies, and each of these is functionally diverse.  

For example, the enolase superfamily, which provides the focus for this work, likely contains 

over 1000 members based on currently available sequences; the 12 currently characterized 

functions, associated with nine experimentally solved structures, likely represent only a subset of 

the total functional diversity of the superfamily (5-7).  Thus, for this large class of proteins, 

function must be assigned using information other than the known or predicted tertiary structure.  

For many alpha-beta barrel enzymes, the identity and spatial arrangement of the active site 

residues has been correlated with the function (and in some cases, with a proposed reaction 

mechanism), but it is not simple to extrapolate such knowledge to enzymes of unknown function.   
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The approach we are developing to address this problem can be described as “virtual metabolite 

screening”.  The central idea is to dock a database of metabolites (small molecules known or 

suspected to be involved in various enzymatic pathways in vivo) into the enzyme’s active site, 

and then rank the ligands according to their estimated binding affinity.  Binding affinity alone is 

not likely to be sufficient to uniquely identify an enzyme’s substrate among a database of 

metabolites, because it does not describe the ability of the enzyme to catalyze a reaction on the 

substrate (kcat would be much more difficult to estimate by computational means).  In addition, 

the substrates of enzymes may not bind as tightly as many inhibitors, potentially making it 

difficult to distinguish true substrates from false positives.  Nonetheless, we expect that relative 

binding affinity, if it can be estimated with sufficient accuracy, will provide a useful first filter 

for identifying possible substrates.  A relatively short list of metabolites would then be subjected 

to further scrutiny for plausibility.  For example, although the enolase superfamily enzymes 

catalyze a wide variety of overall reactions, they all share the common reaction initiation step, 

that is to abstract a proton α- to the carboxylate functional group that co-ordinates to the metal 

ion (8).  Finally, an even shorter list can be subjected to experimental testing. 

 

Current docking programs use a variety of scoring functions to estimate binding affinity, 

including force-field based, knowledge based, and empirical scoring functions (9).  Several 

studies have been carried out in the past to assess the quality of these scoring functions (10, 11).  

For efficiency reasons, energy terms including van der Waals interactions, electrostatics, and 

solvation are approximated in these scoring functions.   These approximations contribute to the 

large numbers of false positives observed in most docking calculations.   
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The alpha-beta barrel enzymes we consider pose a challenge for docking scoring functions 

because the active sites contain many charged and polar groups.  The substrate binding sites of 

the enolase superfamily members typically contain 2 lysines, 3 or more carboxylate groups (from 

Asp/Glu residues), and at least one metal ion, in addition to histidines and other polar residues.  

Thus, these binding sites are unusually polar, much more so than a large majority of binding sites 

targeted for rational drug design.  The binding affinity of a ligand in such an active site involves 

a complex interplay of strong electrostatics and solvation.  The binding of the ligand necessarily 

reduces or eliminates the solvent accessibility of many of the charged and polar groups 

(desolvation), resulting in a large reduction of the solvation free energy, which must be 

compensated by favorable electrostatic and other interactions.   

 

Most docking scoring functions, which treat electrostatics and solvation only very 

approximately, would seem poorly suited for screening against such highly polar active sites.  

However, our goal here is not to benchmark docking methods for virtual screening against alpha-

beta barrel enzymes, but rather to develop a robust method that can assist in assigning function to 

the thousands of such enzymes for which no function is known, and cannot be reliably assigned 

by other methods.  We have done so by combining docking calculations using the program Glide 

(12-14) with a physics-based rescoring procedure of our own design.  The rescoring procedure 

uses an all-atom force field (OPLS-AA) (15, 16) and a Generalized Born implicit solvent model 

(17).  Thus, the energy function used is similar to that used in sophisticated approaches such as 

free energy perturbation (FEP) and molecular-mechanics Poisson-Boltzmann surface area (MM-

PBSA) (18).  However, these methods are computationally expensive and thus are generally 
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applied only to a small number of ligands.  Our method provides only crude estimates of entropic 

contributions to binding free energies, relies on the docking program to identify the correct 

binding pose, and uses only one configuration to estimate the binding affinity.  Conceptually 

similar efforts have been described in the literature (19-23).  One distinguishing feature of the 

method described here is its speed, only ~45 seconds per ligand on a single processor, which 

allows us to rescore thousands of ligands within a few hours on a small Linux cluster.  The speed 

is due largely to the use of a fast minimization algorithm (as opposed to molecular dynamics or 

Monte Carlo used in FEP and MM-PBSA), based on the Truncated Newton method and 

optimized for use with Generalized Born solvent models.   

   

The key conclusion of this study is that the physics-based rescoring method makes it possible, 

with a few exceptions, to identify the substrate for the enzymes we study within the top 1% of 

the database hits (within the top 0.1% in many cases).  This conclusion holds for apo as well as 

holo structures, which is encouraging for future work aimed at identifying the function of alpha-

beta barrel enzymes whose function is currently unknown.  It is also encouraging to note that the 

rescoring procedure is quite robust.  In cases where the docking program itself yields good 

results, they are preserved by the rescoring.  In the majority of cases, however, the results from 

the docking program are improved significantly, and often dramatically, by the rescoring 

procedure. 
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METHODS 

The computational approach involves two steps.  First, we dock a metabolite ligand library 

against the enzyme active site using the docking program Glide (12-14).  We then rescore the top 

25% of the docking results using the physics-based method we have developed.  In this section, 

we describe the ligand library preparation, docking and rescoring protocols.   

 

Metabolite Ligand Library 

The Kyoto Encyclopedia of Genes and Genomics (KEGG) database contains metabolite ligands, 

toxins, inhibitors and pollutants (24).  We obtained 10,004 compounds from the KEGG database. 

After filtering out entries with unspecified chemical groups (listed as “R”), polymers, and 

monoatomic ions, 8,182 compounds remained.  Many of these lacked proper chiral center 

definitions (i.e., chiral centers listed as “undefined”).  For this reason, we used the Daylight (25) 

software chiralify to enumerate up to 16 chiral forms for each ligand.  The resultant database 

contained 19,007 compounds.  The 3D structures of these compounds were obtained using the 

ZINC database pipepline (Shoichet laboratory, UCSF), which use the OpenEye (26) software 

omicron for 1D to 3D conversion.   

 

Docking 

Glide (12-14) is used for flexible docking.  Glide uses an expanded version of the ChemScore 

(27) empirical scoring function.  The protein receptor was prepared using standard Glide 

procedures, i.e., by adding hydrogens and specifying correct charge and atom type for the metal 

ions.  Any charged residues farther than 20 Ǻ from the binding site were neutralized.  For holo 

structures, we used the impref utility script to perform a restricted minimization of residues 
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around the ligand atom such that the heavy atoms do not move beyond 0.3 Ǻ RMSD from their 

crystallographic positions.  This minimization facilitates orienting the receptor heavy atoms so 

that they can make proper hydrogen bond and van der Waals interactions with ligand atoms.  For 

holo structures, the binding pocket is identified using the bound ligand, and for apo structures, 

we specify the active site residues based on information gathered from the literature.  After 

completing the receptor preparation step, the ligands were docked using the “standard precision” 

Glide algorithm.   

 

Rescoring  

The top 25% of the ligands from the docking results were subjected to rescoring; we considered 

only the best scoring pose for each ligand.  In this work, we have found that Glide’s top ranking 

binding pose reproduced the known crystallographic poses quite well in all but one of the holo 

cases, i.e., within 1 Ǻ root mean square deviation (RMSD).  

 

Protein Local Optimization Program (PLOP) (28, 29), a software package developed and 

maintained in our group, was used for the physics-based rescoring procedure.  For each ligand, 

the protein-ligand complex (ELig-Prot), the free protein (Eprot), and the free ligand (ELig) were all 

subjected to energy minimization in implicit solvent (Generalized Born).  Note that the energy of 

the free protein (Eprot) is constant and thus does not affect our estimates of relative binding 

affinities.  For the minimization of the protein-ligand complex, the protein atoms were held 

fixed, i.e., only the ligand was allowed to minimize.  This choice yielded good results, and 

improved computational efficiency.  However, the method can be trivially modified to allow the 

receptor to relax as well, thus enabling of small amounts of “induced fit”.   
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The isolated ligand and the protein energies are subtracted from the energy of the ligand-protein 

complex energy to calculate the relative binding energy (ERBE) 

ERBE = ELig-Prot – EProt – ELig + 0.5925 · NRot. Bond 

where NRot. Bond  is the number of rotatable bonds in the ligand.  The last term in the above energy 

expression is a penalty term, kT per rotatable bond, to account crudely for the loss of ligand 

internal entropy due to binding.  A similar term is used in Glide (12-14) and other docking 

programs.   

 

We used this relative binding energy to rank order the ligands.  Note that both ligand and 

receptor desolvation are accounted for in this procedure, and the minimization of the ligand 

outside the receptor provides an estimate of the internal strain energy.  However, since entropy 

terms are not properly accounted for in our formalism, the relative binding energy computed here 

cannot be compared to the experimental (absolute) binding free energy.   

 

As mentioned above, PLOP was used for the energy minimizations.  PLOP uses the OPLS-AA 

all atom force field with the Surface Generalized Born implicit solvent model (28, 29).  The 

minimization algorithm is based upon the truncated-Newton (TN) method, specifically the 

TNPACK method of Schlick and co-workers (30-32).   The algorithm has been accelerated by 

approximately a factor of 3 by applying simple multi-scale ideas, in which the short-range forces 

are updated more frequently than the long-range ones (M. P. Jacobson, K. Zhu, and R. A. 

Friesner, in preparation).  In addition, the algorithm has been optimized for minimizations in 

generalized Born implicit solvent, which requires only 2-3 times greater computational expense 
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compared to minimization in vacuum.  On average, it took ~15 s to minimize the ligand in the 

protein in implicit solvent.  Therefore, thousands of ligands can be refined in a matter of few 

hours on a small Linux cluster, which is roughly comparable to the time required for the docking.   

 

Chemical Similarity 

 

We have used the program QikSim (33) to obtain quantitative measures of chemical similarity.  

This program computes the Tanimoto coefficient based on a series of descriptors that include 

both the numbers of common functional groups present, and “whole molecule” descriptors such 

as dipole moment and surface area.  Compounds that are chemically similar to the substrate or 

product will have a Tanimoto coefficient near 1 and those that are dissimilar will have 0 (34).  In 

the plots of chemical similarity vs. ligand rank, the data shown have been smoothed to 

emphasize the trends.   

 

RESULTS 

Here we analyze the results in detail for 11 representative structures of enzymes in the enolase 

superfamily, 6 of them holo and 5 apo.  We focus on three distinct types of analysis: 

1. In cases where a holo structure is available, we compare the predicted ligand poses with 

the co-crystallized ligand.  In many cases, the co-crystallized ligand is either the product 

or an inhibitor, and is generally chemically very similar, but not identical to, the 

substrate.  When a holo structure is not available, we can still analyze whether the 

predicted pose is qualitatively consistent with the proposed reaction mechanism.  Plots of 

the substrate poses are shown in Figure 1. 
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2. We determine the enrichment of the known substrate and product relative to the other 

~19,000 ligands in our preparation of the KEGG metabolite database.  That is, we 

analyze whether it would be possible to use virtual metabolite screening to help identify 

the substrate and/or product, and thus infer a likely reaction carried out by the enzyme, if 

it were not known.  In the case of holo structures,  this establishes the suitability of the 

physics-based rescoring procedure for distinguishing ligands likely to bind to the active 

site from a large database of metabolites.  Virtual metabolite screening against apo 

structures is more representative of how the method would be used in practice to help 

assign function to uncharacterized enzymes.  Table 1 summarizes the ranks of the known 

substrates and products after docking with Glide and after rescoring the results with the 

physics-based energy function.   

3. Although the results after rescoring typically rank the known substrate very highly 

relative to the other metabolites in the KEGG database (often within the top few tenths of 

1% of the database), typically a few tens of ligands rank higher.  Are these “false 

positives” entirely spurious, or do they also provide useful clues concerning the possible 

substrate?  We have found that, after applying the rescoring procedure, the top ranked 

compounds, on average, have high chemical similarity to the known substrate, i.e., many 

of them share a common sub-structure with the substrate.  We use the program QikSim 

(33) to obtain quantitative measures of chemical similarity, specifically the Tanimoto 

coefficient.  The Tanimoto coefficients are computed for each ligand with respect to the 

known substrate and plotted against the ligand’s rank before and after rescoring.  The 

results, after applying a smoothing function to reduce the noise, are shown in Figure 2, 

and demonstrate that the results after rescoring show good enrichment of ligands that are 
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chemically similar to the known substrate in the top few percent of the database.   This 

result suggests that the top-ranked false-positives can provide useful clues concerning the 

possible substrate/function. A few of these highly ranked compounds might even be 

turned over by the enzyme, i.e., that the top-ranked compounds may suggest possible 

“promiscuous” reactions that could be tested experimentally.  The chemical similarity 

plots prior to rescoring (docking only) are more mixed, with good correlation between 

chemical similarity and rank in some cases, and anti-correlation or no correlation in 

others.  The rescoring procedure also improves the enrichment of compounds with the 

“proton alpha to a carboxylate” substructure required for the half-reaction (formation of  

an enolate intermediate) that defines the enolase superfamily (Figure 3). 

 

Overview of enolase superfamily 

Members of the enolase superfamily typically have two domains, an N-terminal capping domain 

and a C-terminal (α׀β)8 – barrel domain.  The binding pocket is located in the barrel domain, 

while residues in the specificity determining N-terminal domain also contact the substrate. 

Among the enolase superfamily enzymes, residues in the binding pocket are well conserved (8).   

They all require a doubly charged metal ion in the center, except enolase subgroup members, 

which require two doubly charged metal ions.  Depending on the residues that coordinate the 

metal ion and the residues that participate in the proton abstraction reaction, enolase superfamily 

members are classified into mandelate racemase (MR), muconate lactonizing enzyme (MLE) and 

enolase subgroups (8).  Several families exist in a given subgroup.  Enzymes in the same family 

tend to have higher sequence identity than those in different families.  Different family members 

within a subgroup usually have 10-25% sequence identity.  We have selected 11 members from 
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the enolase superfamily consisting of both holo (with co-crystallized ligand) and apo (without a 

co-crystallized ligand) structures.     

 

Mandelate racemase (MR) 

Members of the MR family catalyze the racemization of mandelic acid (35, 36).  Lys166 and 

His297 have been identified as the general bases responsible for abstracting α-proton from the S-

Mandelic and R-Mandelic acid respectively (8).   The enolate anion thus produced is stabilized 

by the metal ion and Glu317 (37).   

 

We have tested our algorithm on both holo and apo structures.  The holo structure (PDB ID 

1mdr, organism P. putida, 2.1 Ǻ resolution) is co-crystallized with an inhibitor,  S-atrolactic acid 

(36).   The reactive α-proton is replaced by a methyl group in the inhibitor.  The presence of the 

bulky methyl group pushes the side chain of the catalytic Lys166 slightly away from the position 

we expect that it would occupy with the substrate bound.  His297 forms a hydrogen bond with 

Asp270, and for this reason we protonated His297 at both the δ and the ε nitrogen in all 

calculations.   In addition, Glu317, which provides hydrogen bonding support to the enolate 

anion intermediate, is protonated during all calculations.   

 

S- and R-mandelate ranked 1228 and 1719 respectively using Glide, corresponding to the top 

6.5% and 9.0% of the total database.  After rescoring the top 25% of the database (4996 ligands), 

the ranks of S- and R-mandelate improved to 77 (0.41%) and 140 (0.74%) respectively.  

Similarly, the co-crystallized inhibitor, S-atrolactic acid, ranked 675 (3.6%) after docking, and 

enriched to 36 (0.19%) after rescoring. The binding pose of S-mandelate, after rescoring, is 
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shown in Figure 1a along with the co-crystallized inhibitor.  The heavy atom RMSD between the 

docked pose and the co-crystallized ligand’s pose is 0.47 Ǻ.   The binding pose is consistent with 

the reaction mechanism, in that the proton on the α-carbon is directly facing the catalytic residue 

Lys166 for the proton abstraction to occur.  The oxygen atoms that are co-ordinated to the metal 

ion are however slightly different from the crystal structure.  In the crystal structure, a caboxylate 

oxygen and the oxygen from the hydroxyl group of the ligand are co-ordinated to the metal ion, 

whereas in our docked pose, both carboxylate oxygens of the ligand are co-ordinated to the metal 

ion.   

 

We have also docked to the apo structure of MR from P. putida (PDB ID 2mnr, 1.9 Ǻ resolution) 

(35).  The binding pocket was defined based on the residues that interact with the ligand in the 

holo structure.  S- and R-mandelate ranked 2299 (12.1%) and 1758 (9.3%), respectively, after 

the docking phase.  After rescoring, ranks of these ligands improved to 122 (0.65%) and 732 

(3.9%) respectively.  It is interesting to note that one stereoisomer is enriched significantly over 

the other.  The all atom force field with implicit solvation based rescoring enriches the known 

substrate in both holo and apo structures to be within the top 1% of the database.   

 

The chemical similarity plots in Figures 2a and 2b reveal that the rescoring procedure enriches 

not only the substrate but also compounds that are similar to the substrate, for both the holo and 

apo structures.  Understanding how compounds chemically similar to the substrate bind in the 

binding pocket may provide clues to determine if these enzymes can promiscuously catalyze 

functions of other enzymes.   
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Glucarate Dehydratase (GlucD) 

GlucD catalyze the conversion of D-glucarate or L-idarate to 5-keto-4-deoxy-(D)-glucarate 

(KDG) (38).   Lys207 and His339 are responsible for abstracting the α-proton from L-idarate and  

D-glucarate respectively (5, 38).   Three histidine residues are present in the binding pocket: 

His32, His339 and His368.  His339 makes a salt-bridge interaction with Asp313.  The other two 

histidines are also in close proximity to carboxylate residues.  Therefore, we protonated the δ and 

the ε nitrogen of all three histidine residues during the docking and rescoring calculations. The 

protein structure considered in this family had a competitive inhibitor, 4-deoxy-D-glucarate, 

bound in the active site (PDB ID 1ecq, 2.0 Ǻ resolution) (38).   In this case, the docking program  

performed excellently in the absence of rescoring.  Specifically, the ranks following Glide 

docking are 5 (0.03%) for D-glucarate, 40 (0.21%) for L-idarate and 8 (0.04%) for KDG.  After 

rescoring, their ranks improved slightly to 4 (0.02%), 15 (0.08%), and 1 (0.005%) respectively.  

The predicted pose for the D-glucarate, shown in Figure 1c, is in good agreement with the 

proposed mechanism, whereby the α-proton is positioned close to the Lys207 for abstraction to 

form the enolate anion intermediate.   

 

Consistent with the similarity of the ranks of the known ligands before/after rescoring, the 

chemical similarity analysis, shown in Figure 2c, reveals that the enrichment of ligands similar to 

the known substrates does not change significantly upon rescoring.  This is not the case with the 

majority of the other cases.  We have not identified any clear reason why the Glide scoring 

works much better in this case than in the others.  

 

Muconate Lactonizing Enzyme-I (MLE-I) 
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Members of this family perform the cycloizomerization of cis-cis muconate to muconolactone 

(39).   No holo crystal structure is available in this family.  We have studied a high-resolution 

apo crystal structure (PDB ID 1muc, 1.85 Ǻ resolution) (40).  The ligand binding pocket is 

defined based on the residues that participate in the reaction, Lys167, Lys169, Lys273 and 

Glu327, as well as the residues that co-ordinate to the metal ion, Asp198, Glu224 and Asp249 

(8).  After docking using Glide, the substrate was ranked 3679 (19.4%) and the product was 

ranked 1933 (10.2%).  After rescoring, the substrate and the product ranks improved to 1020 

(5.4%) and 56 (0.29%), respectively.  We believe that the relatively poor performance of the 

substrate relative to the product may be due to the docking algorithm generating an incorrect 

pose for the substrate.  Nonetheless, the strong enrichment of the product, and ligands that are 

chemically similar to it (Figure 2d), would arguably provide important clues to the function of 

the enzyme, if it were not known.  The binding pose of the product, muconolactone, along with 

active side residues is shown in Figure 1d.       

 

Methyl Aspartate Ammonia Lyase (MAL) 

MAL catalyzes the reversible β-elimination of ammonia from L-threo-(2S,3S)-3-methyl aspartic 

acid to yield mesaconic acid (8, 41).  This enzyme catalyzes the reaction with the 3R substrate 38 

times slower than with the 3S substrate (8, 42).  Thus, MAL is a stereo selective and not a stereo 

specific enzyme.  Lys331 acts as the general base to abstract the proton α to the carboxylate 

group that coordinates the metal ion.  We have performed virtual metabolite screening with both 

a holo structure, in which the substrate was bound in the active site (PDB ID 1kkr, 2.1 Ǻ 

resolution) (41), and an apo (PDB ID 1kko, 1.33 Ǻ resolution) (41) structure.   

 



Kalyanaraman Page 18 

Six side chains were missing in the structure of the holo enzyme; none of these residues is 

located near the binding pocket, and we did not build them before docking, but did reconstruct 

them prior to rescoring using PLOP.  Glide ranked the substrate, L-threo-(2S,3S)-3-methyl 

aspartic acid, for the holo structure as 1723 (9.1%), and the rescoring procedure brought the 

substrate to 198 (1.0%).   

 

In the apo enzyme structure, the metal ion, which is required for enzymatic function, was 

missing.  We therefore devised a strategy for placing the ion in the binding site, based on its 

position in other enolase superfamily member.  Specifically, we used a structure-based alignment 

algorithm (combinatorial extension) (43) to align the MAL apo enzyme to the MLE-I apo 

enzyme (PDB ID 1muc), and then copied the metal ion coordinates from the PDB.  Although we 

could have used the MAL holo enzyme structure to obtain the ion’s coordinates, this would not 

represent a generally applicable strategy, i.e., in the context of attempting to assign function for a 

functionally uncharacterized enzyme with no holo structure available.  The choice of MLE-I for 

obtaining the metal ion coordinates is arbitrary; the position of the metal ion is extremely well 

conserved in structural alignments of enolase superfamily members, and thus the absence of a 

metal ion in an apo crystal structure is not a serious impediment to performing virtual metabolite 

screening. 

 

After adding the metal ion, the protein was prepared for docking using the procedure outlined in 

Methods.  Glide ranked the substrate 1119 (5.9%).  The rescoring procedure improved the rank 

to 9 (0.05%).  That is, the results for the apo structure, after rescoring, are actually significantly 

better than the results for the holo structure in this case.   
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The substrate binding poses for the holo and the apo structures are shown in Figures 1e and 1f.  

The co-crystallized substrate is also shown in Figure 1e.  The RMSD difference between the co-

crystallized substrate and the binding pose predicted by docking and rescoring calculations is 

1.16 Ǻ.  The proton α-to the carboxylate is still present near the base Lys331.  A similar binding 

pose is also observed for the apo structure as shown in Figure 1f. 

  

The chemical similarity plots for holo and apo structures are shown in Figures 2e and 2f 

respectively.  In case of the holo structure, both Glide and rescoring show similar trends.  

However, for the apo structure, the results after Glide docking do not show any correlation 

between chemical similarity and ligand rank (or perhaps a slight anti-correlation).  However, the 

rescoring procedure enriches substrate-like compounds significantly.    

 

Alanine-Glutamate Epimerase (AEE) 

The L-Ala-D/L-Glu epimerases belong to the muconate lactonizing enzyme subgroup and 

catalyze the epimerization of a component of the murein peptide substrate (44, 45).  

Recently, a holo structure of the complex of  L-Ala-L-Glu with the AE epimerase from Bacillus 

subtilis has been published (46).   We have docked to the holo structure (PDB ID 1tkk), 

consisting of 359 residues.  Residues Lys160, Lys162, Asp191, Glu219, Asp244, Lys268, and 

Asp321 define the active site.   The carboxylate oxygens of Asp191, Glu219, and Asp244 form 

close interactions with the Mg2+ ion.   The negatively charged side chains of Asp321 and Asp323 

form hydrogen bonds with the amino group on the Ala residue of the substrate (45). The δ and ε 
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nitrogens of His223 and His309 were protonated, because they form hydrogen bonds with the 

carboxylate group of Asp225 and the carbonyl group of Leu352, respectively. 

 

Most dipeptides, including Ala/Glu, are not present in the KEGG database.  For this case, we 

added to the KEGG database all 400 dipeptides formed from the standard L-amino acids.   In the 

holo case, the docking program ranked the L-Ala-L-Glu substrate at 174 (0.92%) and the L-Ala-

D-Glu product at 116 (0.61%).  After rescoring the top 25% of the database, the rank of the 

substrate and product improved to 89 (0.47%) and 80 (0.42%), respectively.  The docked pose 

superimposed on the holo structure is shown in Figure 1g.  The docked ligand conformation 

agrees quite well with the co-crystalized ligand. 

 

Two apo crystal structures of the L-Ala-D/L-Glu epimerases are available, from E. coli and 

Bacillus subtilis.   We have used the structure of the epimerase YkfB from Bacillus subtilis (PDB 

ID 1jpm, Chain B, 2.25 Ǻ resolution) consisting of 366 amino acids. The structure contains 

several disordered residues (Lys20, Lys165, Lys207, Lys349, and Leu359) modeled as Ala 

residues.  We have used PLOP to predict the conformations of these side chains prior to docking.  

The His residues were treated as in the holo structure.  The docking program ranked the substrate 

L-Ala-L-Glu at 3232 (17.0%) and the product L-Ala-D-Glu at 2519 (13.2%).  After rescoring the 

top 25% of the database, the rank of the substrate and product improved to 934 (4.9%) and 1281 

(6.7%) respectively.   The docked conformation of the substrate is shown in Figure 1h.  

 

The rescored rank for the epimerase is relatively poor compared to the results for the holo 

structure and the other apo enzymes that we have studied.  This relatively low rank is due to a 
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major structural change that occurs upon substrate binding.  Loop residues 14-30, which are 

believed to be responsible for substrate specificity (44, 45), close around the substrate upon 

binding.  The open conformation of the apo loop and the closed conformation of the holo loop 

are shown in Figures 4a and 4b, respectively.  When the apo and holo structures are 

superimposed, the overall RMSD is around 0.3 Å with this only major displacement occurring in 

the above mentioned loop.  In the holo structure, loop residue Arg24 forms hydrogen bonds with  

the carboxylate group of the Glu side chain in the substrate, and residue Lys162 interacts with 

carbonyl oxygen of Ala and carboxylate oxygens of Glu in the substrate as well as Asn193.  In 

the apo structure, the loop is displaced by approximately 12 Å, eliminating any interactions with 

the substrate.  Also, the side chain of Lys162 is rotated by ~6 Å away from the active site.   

These conformational changes appear to lead to the incorrect docked pose in the apo structure.  

Thus, significant structural changes such as loop movement close to the active site could prove to 

be a major challenge in determining substrates and functionality using apo structures.  We are in 

the process of using side chain and loop prediction algorithms in addition to the 

docking/rescoring framework presented in the paper to address these issues. 

. 

The chemical similarity plots for the holo and apo epimerase structures are shown in Figures 2g 

and 2h, respectively.  Again, the trend between chemical similarity to the known substrate and 

ligand rank is more favorable after applying the rescoring protocol, which strongly enriches 

compounds similar to the substrate. 

 

Ortho-Succinyl Benzoate Synthase (OSBS) 
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OSBS catalyzes the syn-elimination of H2O from the substrate 2-succinyl-6-hydroxy-2, 4 – 

cyclohexadiene-1-carboxylate (1R, 6R) to yield 2-succinyl benzoate (47, 48).  Residue Lys133 

abstracts the α-proton from the substrate, and the resulting enolate ion intermediate is stabilized 

by both the metal ion and Lys235 (48).  We have performed virtual metabolite screening on the 

product bound holo structure of OSBS (PDB ID 1fhv, 1.77 Ǻ resolution) (47) and an apo 

structure (PDB ID 1fhu, 1.65 Ǻ resolution) (47).   

 

For the holo structure, the substrate ranked 1166 (6.1%) and the product ranked 926 (4.9%) after 

the docking phase.  After rescoring, the ranks of the substrate and product improved to 39 

(0.21%) and 8 (0.04%) respectively.  Interestingly, we also docked a substrate analog with an ‘S’ 

configuration instead of ‘R’ at position 1.  Its rank improved from 996 to 102 after rescoring.  If 

this compound binds to the enzyme, neither the α-proton abstraction nor the syn-elimination of 

water can take place.  The rescoring procedure clearly brings the true substrate (1R, 6R) ahead of 

the diastereomer (1S, 6R).   

 

The metal ion required for catalysis, Mg2+, was missing in the apo structure.  Using a procedure 

identical to that used for the apo MAL structure, we structurally aligned the apo OSBS structure 

to the apo structure of MLE-I, and copied the metal ion coordinates. After the usual receptor 

preparation steps, Glide predicted ranks for the substrate and product to be 1871 (9.8%) and 

3492 (18.4%) respectively.  The rescoring protocol dramatically enriched the product to 57 

(0.29%), and the substrate to 993 (5.2%).   
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The predicted poses of the substrate OSB are shown for the holo and apo OSBS structures in 

Figures 1i and 1j respectively.  In the case of the holo structure, we have also shown the co-

crystallized product in Figure 1i.  The heavy atom RMSD is 0.64 Å.  In addition, the reactive α-

proton in both holo and apo structures is positioned near the base Lys133.   

 

The chemical similarity plots for the holo and the apo structures are shown in Figures 2i and 2j.  

In both cases, there is a much better correlation between chemical similarity to the substrate and 

rank after rescoring.      

 

Enolase 

Members of the enolase subfamily catalyze the reversible dehydration of 2-phospho-D-glycerate 

to form phosphoenolpyruvate in the glycolytic pathway (49).  [Note that “enolase” refers to both 

to the entire superfamily, as well as a subset of the enzymes in that superfamily.]  Unlike the MR 

and MLE subfamily members, the enolase subfamily members bind two metal ions in the active 

site, which are coordinated by carboxylate groups from the protein, as well as the carboxylate 

and the phosphate group of the ligand in the holo structure.  We have performed virtual 

metabolite screening using a structure with the competitive inhibitor, 

phosphonoacetohydroxamate, bound in it (PDB ID 1ebg, 2.1 Ǻ resolution) (49).  The substrate 

and the product were ranked 8 (0.04%) and 11 (0.06%) by Glide.  After rescoring the top 25% of 

the docked database, rank of the substrate and the product changed to 30 (0.16%) and 17 (0.09%) 

respectively, a very slight decrease.  Nonetheless, it is encouraging that, in cases where the 

docking program ranks the known substrate very highly, the rescoring procedure retains very 

high ranks.  The binding pose of the substrate is compared to the co-crystallized inhibitor in 
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Figure 1k.  The heavy atom RMSD is 0.6 Ǻ.  The α-proton is favorably located near the base 

Lys345.  The chemical similarity plot, shown in Figure 2k, reveals that the results both before 

and after rescoring greatly enrich compounds similar to the substrate in the top few percent of the 

ranked list.   

  

DISCUSSION 

The first key conclusion of this study is that the docking algorithm generally performs well in 

predicting the pose of the substrate and product.  The key criteria for assessing the poses are 

RMSD, when a holo structure is available, and the positioning of the alpha proton for abstraction 

by the relevant catalytic residue.  Calculation of the RMSD for substrates, when it is possible at 

all, is slightly complicated by the fact that the co-crystallized ligand is generally either the 

product of the reaction or an inhibitor.  Nonetheless, in all cases where a holo structure is 

available (6 total), the RMSD over common atoms is ~1 Ǻ or better, and the α-proton is 

appropriately positioned for abstraction.  Although no holo structure is available for MLE-I, the 

predicted pose of the substrate is almost certainly incorrect based on the known chemistry (the 

two carboxylate groups in the predicted pose are positioned pointing away from each other, 

which would prevent the cyclization reaction from occurring).  It is interesting to note that the 

substrate in this case had the worst rank out of the 11 cases, 19% after docking and 5% after 

rescoring.  We suspect that the incorrect pose is related to conformational changes in the receptor 

upon substrate binding; when we performed docking with reduced van der Waals radii, we could 

create poses that seemed consistent with the proposed mechanism, albeit with poor energies.  An 

incorrect pose also seems to limit enrichment of the known substrate using the apo OSBS 

structure, as well. 
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The overall high quality of the predicted poses is important for two reasons.  First, as suggested 

by the relatively poor result with MLE-I, the rescoring procedure, as currently implemented, 

relies on the docking algorithm to predict the pose with reasonable accuracy.  The ligand 

minimization performed during the rescoring permits optimization of the hydrogen bonding 

interactions and other relatively small (but energetically important) conformational changes, but 

does not result in qualitative changes in the pose.  Second, the predicted substrate binding poses, 

if sufficiently accurate, could be used to help form hypotheses concerning the enzymatic 

reactions carried out by an enzyme (e.g., what might the product or mechanism be?), given 

knowledge of or a predicted substrate.  All members of the enolase superfamily extract a proton 

alpha to a carboxylate, and this knowledge can be used to help further screen the binding hits, 

after rescoring.   

 

The second key conclusion is that the physics-based rescoring procedure is critical to the 

robustness of our method, and permits the known substrates (and products) to be ranked very 

highly out of the 20,000 metabolites in our version of the KEGG ligands database.  In 8 out of 11 

total cases, the rescoring procedure succeeded in ranking the known substrate in the top 1% of 

the ranked list, in contrast to only 3 out of 11 prior to the rescoring.  The cases where the docking 

scoring function performed well retained very high ranks after rescoring.   

 

The worst result, MLE-I, ranked the known substrate at ~5% (the docking algorithm alone 

ranked the known substrates in the top 5% in only 3 out of 11 cases).  Although this is hardly a 

disastrous result, it is worth noting that the product ranked very highly in this case, within the top 
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0.5% (a similar result was found for the apo structure of OSBS).  In general, we found that the 

known products ranked highly, and it may be possible to use potential products in the hit lists to 

create hypotheses about the possible reactions carried out by the enzymes, although this is not as 

straightforward as simply prioritizing possible substrates for testing.   

 

Perhaps unsurprisingly, the results for the holo structures are better on average than those for the 

apo structures.  The results for the holo structures primarily measure the ability of our scoring 

function to distinguish known substrates from other metabolites, which are assumed not to be 

substrates (although a small number could in principle represent substrates in promiscuous 

reactions).  The physics-based rescoring performs excellently in this test, with the known 

substrate in all six cases ranking in the top 1%.  It is worth pointing out that this is not simply a 

“redocking” exercise but rather more akin to “cross-docking”, because the co-crystallized ligands 

are, in all but one case, not substrate but either inhibitor or product.   

 

The apo cases are more relevant to our ultimate goal of using virtual metabolite screening to 

assist in assigning function to alpha-beta barrel enzymes.  The results, although not as strong as 

those for the holo structures, are generally encouraging.   In one case, MAL, the results for the 

apo structure are better than those for the holo structure.  In all cases, the substrate ranks within 

the top ~5% of the ranked list.  Thus, at a minimum, we should be able to eliminate ~95% of the 

metabolites from the database based on virtual screening, without further improvements in the 

methods.  This may be adequate for some purposes; other available information (including 

operon context, sequence-based clustering, chemical similarity analysis as discussed below, and 

the half-reaction associated with the superfamily) can likely be used to reduce the probable 
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substrates further.   The worst case is MLE-I, which is discussed above.  We reiterate that the 

product ranked highly in this case (and the OSBS apo case), and relatively poor enrichment of 

the substrate is probably due to an incorrect pose.  The second worst case is AEE.  In this case 

and for OSBS, we hypothesize that a large loop motion associated with ligand binding, which is 

not currently modeled by our method, precludes better enrichment.  We believe that it will be 

possible to further improve results on these cases by sampling the protein receptor during the 

rescoring stage, rather than leaving it rigid.  Although this is beyond the scope of this work, we 

provide further comments on this possibility, currently under testing, in the Conclusions.   

 

A third major conclusion is that, after the rescoring procedure, the top-ranked compounds tend to 

be chemically similar to the known substrate, as shown in Figure 2 (this is not always the case 

with the standard-precision Glide scoring function).  More broadly, a strong correlation exists 

between chemical similarity and ligand rank after rescoring.  For this reason, we believe that the 

top ranked ligands, other than the substrate, provide useful qualitative information about the 

likely chemical nature of the substrate (e.g., size and functional groups likely to be present).  A 

few of the top-ranked ligands may even prove to be “promiscuous” substrates upon experimental 

testing.    

 

Finally, the rescoring procedure appears to be capable of capturing selectivity.  The known 

substrates of the 7 enzymes considered here all contain carboxylate groups, as well as a proton at 

the carbon α to the carboxylate, which is abstracted in the half-reaction that defines the enolase 

superfamily.   Compounds with this substructure are strongly enriched in the top few percent of 

the ranked ligand list, especially after rescoring, as shown in Figure 3.  However, the method 
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also shows the ability to identify the correct ligand containing this substructure from others.  In 

Table 2, we have gathered the ranks for each known substrate obtained after docking and 

rescoring using each of the enzyme structures.   The columns of the table make it possible to 

assess whether a given ligand scores better against the enzyme for which it is the known 

substrate than against the other enzymes.  The rows make it possible to assess whether the 

known substrate for a particular enzyme outranks the known substrates for other enzymes.  By 

both criteria, the results after rescoring show strong evidence of capturing selectivity, i.e., the 

right ligand for the right enzyme.  The only problematic case is the apo MLE enzyme.  Although 

the known substrate scores better against MLE than against any of the other enzymes, the D-

glucarate and S-mandelate ligands outscore it.  The results before rescoring (i.e., using the 

docking scoring function) show very little ability to capture selectivity, with GlucD and enolase 

being the only exceptions.   

 

 

CONCLUSION 

 

We have developed a physics-based method for rescoring protein-ligand complexes generated by 

a docking program, and applied it to virtual metabolite screening against a diverse set of alpha-

beta barrel enzymes in the enolase superfamily, which have highly charged binding sites.  We 

conclude by briefly commenting on the strengths of, and possible improvements to, our 

approach.   
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In general, the rescoring method appears to be highly robust, improving the rank of the known 

substrates significantly in a large majority of cases; the only exceptions are cases where the 

docking program performs excellently to begin with.  We attribute this success to the treatment 

of electrostatics and solvation in our energy function, which consists of the OPLS-AA force field 

and a Generalized Born implicit solvent model.  Thus, the rescoring method accounts for 

desolvation of both the protein and ligand upon binding, which would be very difficult to 

account for in grid-based scoring functions used in high-throughput docking.  We believe this to 

be critical for studying the enolase and other alpha-beta barrel enzymes, in which the active sites 

generally contain a large number of charged groups (and the substrates are frequently charged as 

well).  Initial tests of our method on virtual inhibitor screening against polar binding sites have 

also demonstrated significant improvements in enrichment (N. Huang, C. Kalyanaraman, J. 

Irwin, B. K. Shoichet, and M. P. Jacobson, in preparation). 

 

The other major strength of the method described here is its speed.  The average computational 

cost of rescoring a protein-ligand complex in this work was ~45 s, on a recent-generation single 

processor PC.  Thus, tens of thousands of complexes can be rescored on a small cluster with 

relatively modest computational expense, in contrast to more sophisticated but expensive 

physics-based methods such as MM-PBSA and FEP.  The speed of the method is made possible 

by a highly efficient minimization algorithm, based on the Truncated Newton method, in 

Generalized Born solvent.  In fact, the minimization itself requires only ~15 s on average, with 

the remaining time associated with loading the protein, assigning parameters, etc.  Further 

algorithmic optimization will reduce this computational overhead.  This speed enables our 
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method to be used with large ligand libraries, such as those used in most virtual inhibitor 

screening applications.   

 

One requirement for the success of our method is correct assignment of protonation states on 

both the protein receptor and ligands.  In this work, we manually assigned protonation states to 

histidines in the binding site, based on their hydrogen bonding partners, but we can envision 

automated assignment of protonation states, e.g., using algorithms based on continuum 

electrostatics.  In tests where we set the histidine protonation states incorrectly, the results of the 

rescoring were almost invariably worse, sometimes dramatically (data not shown).  This is not 

surprising, because we include full electrostatics in the rescoring.   

 

One major limitation of our method is the treatment of entropic losses associated with ligand 

binding.  We crudely account for the loss of internal ligand entropy by using a simple penalty 

based on the number of rotatable bonds.  Translational and rotational entropy losses are not 

accounted for at all.  Although we attempt to reproduce only relative and not absolute binding 

free energies, we nonetheless expect that improved treatment of entropic losses would improve 

the enrichment of binders by our rescoring method. 

 

Finally, all rescoring results presented here treated the receptor as entirely rigid.  Relaxing this 

constraint could potentially improve results in cases where nontrivial conformational changes 

occur upon ligand binding.  The simplest approximation would be to simply allow residues in the 

binding site to minimize along with the ligand (which requires only modest increases in 

computational expense); early results suggest that this strategy can improve results on docking to 
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apo structures.  More elaborate rescoring methods can include, e.g., rotamer searches for side 

chains in the binding site, to deal with larger conformational changes.   
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Tables 
 
 
Table 1. Ranking of known substrates and products after docking and rescoring.   
 
 
Enzyme Substrate Rank after 

Docking 
(%) 

Rank after 
Rescoring 

(%) 

Product Rank after 
Docking 

(%) 

Rank after 
Rescoring 

(%) 
MR 
           Holo 
            
           Apo 

S-mandelate 

 
6.5 

 
12.1 

 
0.41 

 
0.65 

R-mandelate 

 
9.0 

 
9.3 

 
0.74 

 
3.9 

 
GlucD 
            
           Holo 

D-glucarate 
 
 

0.03 

 
 

0.02 

5-keto,4-
deoxy-D-
glucarate 

 
 

0.04 

 
 

0.005 
MLE-I 
           Apo cis-cis 

muconate 

 
19.4 

 
5.4 Mucono-

lactone 

 
10.2 

 
0.29 

 
MAL 
           Holo 
 
           Apo 

L-threo(2S, 
3S) 3-methyl 
aspartate 

 
9.1 

 
5.9 

 
1.0 

 
0.05 

Mesaconic-
acid 

 
10.7 

 
14.1 

 
0.08 

 
2.2 

 
AEE 
          Holo 
 
          Apo 

L-Ala-L-Glu 
dipeptide 

 
0.92 

 
17.0 

 
0.47 

 
4.9 

L-Ala-D-Glu 
dipeptide 

 
0.61 

 
13.2 

 
0.42 

 
6.7 

 
OSBS 
 
           Holo 
 
 
           Apo 
 

2-succinyl-6-
hydroxy 2,4-
cyclo 
hexadiene 1-
carboxylate 

 
 

6.1 
 
 

9.8 

 
 

0.21 
 
 

5.2 

2-succinyl 
benzoate 

 
 

4.9 
 
 

18.4 

 
 

0.04 
 
 

0.3 

Enolase 
 
           Holo 
 

2-Phospho-
glycerate 

 
 

0.04 

 
 

0.16 
Phospho-enol 
pyruvate 

 
 

0.06 

 
 

0.09 
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Table 2.  Rank (in percent) of the known substrate of a particular family compared against other 

family members, after docking (a) and rescoring (b).  The entry “>25” signifies that the ligand 

ranked lower than the top 25% after the docking phase, and thus was not subjected to rescoring.  

The Ala-Glu epimerase (AEE) is not included in these results because the amino acid dipeptides 

are not part of the standard KEGG LIGANDS library. 

 
 
(a)  

 S-mande-
late 

D-glucar-  
ate 

cis-cis 
muconate 

L-threo 
(2s,3s)-3- 

methyl 
aspartate 

2-succinyl-2-
hydroxy-2,4-

cyclohexadiene-
1-carboxylate 

2-
phospho-
glycerate 

MR (holo) 6.5 12.8 22.6 24.7 10.7 6.5 
MR (apo) 12.1 22.9 >25 >25 12.6 7.6 
GlucD (holo) >25 0.03 >25 3.9 >25 0.93 
MLE-I (apo) 3.8 0.69 19.4 23.7 16.0 6.8 
MAL (holo) 4.9 0.22 10.6 9.1 5.1 2.7 
MAL (apo) 7.1 11.6 >25 5.9 >25 >25 
OSBS (holo) 12.9 11.5 13.3 25.7 6.1 11.7 
OSBS (apo) >25 >25 >25 >25 9.8 >25 
Enolase (holo) 3.7 5.7 >25 1.9 >25 0.04 

 
 
 
(b)  

 S-mande-
late 

D-glucar-
ate 

cis-cis 
muconate 

L-threo 
(2s,3s)-3- 

methyl 
aspartate 

2-succinyl-2-
hydroxy-2,4-

cyclohexadiene-
1-carboxylate 

2-
phospho-
glycerate 

MR (holo) 0.41 4.5 21.1 9.3 18.8 21.9 
MR (apo) 0.65 9.8 >25 >25 12.0 19.8 
GlucD (holo) >25 0.02 >25 5.0 >25 8.6 
MLE-I (apo) 3.2 3.3 5.4 4.1 23.1 23.9 
MAL (holo) 6.2 11.0 22.2 1.1 23.8 22.6 
MAL (apo) 0.78 4.1 >25 0.05 >25 >25 
OSBS (holo) 2.1 6.5 18.7 7.0 0.21 12.3 
OSBS (apo) >25 >25 >25 >25 5.2 >25 
Enolase (holo) 21.2 1.4 >25 1.1 >25 0.16 
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Figure Captions: 

 

Figure 1. Substrate binding pose for (a) MR holo, (b) MR apo, (c) GlucD holo, (d) MLE-I apo, 

(e) MAL holo, (f) MAL apo, (g) AEE holo, (h) AEE apo, (i) OSBS holo, (j) OSBS apo and (k) 

enolase holo structures.  Residues that participate in catalysis and coordinate to the metal ion are 

also shown.  For holo enymes, we also show the co-crystallized ligand (green).  The metal ion 

present in the binding pocket is either Mg2+ or Mn2+. 

 

Figure 2. Chemical similarity (Tanimoto Coefficient) as a function of % of database for (a) MR 

holo, (b) MR apo, (c) GlucD holo, (d) MLE-I apo,(e) MAL holo, (f) MAL apo, (g) AEE holo, (h) 

AEE apo, (i) OSBS holo, (j) OSBS apo and (k) enolase holo structures.  The Tanimoto 

coefficient decreases from 1 as the chemical similarity decreases.  Chemical similarity is defined 

by descriptors that include both the numbers of common functional groups and whole molecule 

descriptors such as dipole and volume.  Enrichment of compounds that are chemically similar to 

the known substrate after docking (blue line) and rescoring (red line) are shown.  The results 

have been smoothed to decrease noise and emphasize the overall trends. 

 

Figure 3. Percentage of compounds with a hydrogen atom at the carbon α to a carboxylate group, 

which is required for the half-reaction that defines the enolase superfamily.  The results have 

been smoothed to decrease noise and emphasize the overall trends. 

 

Figure 4. Conformation of loop residues 14-30 in AEE in the (a) open (apo) and (b) closed (holo) 

forms. 
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Fig 1a) Holo MR (1MDR)    
 
 

 
Fig 1c) Holo GlucD (1ECQ) 
 

 
Fig 1e)  Holo MAL (1KKR) 
 
 
 
 
 

 

 
Fig 1b) Apo MR (2MNR) 
 

 
 
Fig 1d) Apo MLE-I (1MUC) 
 

 
Fig 1f) Apo MAL (1KKO) 
 



Kalyanaraman Page 43 

 
Fig 1g) AEE  Holo (1TKK) 
 
 

 
Fig 1i) Holo OSBS (1FHV) 
 

 
Fig 1k) Holo Enolase (1EBG) 
 

 
Fig 1h) AEE  Apo (1JPM) 
 
 

 
Fig 1j) Apo OSBS (1FHU) 
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Fig 2a) Holo MR (1mdr)    
 

 
Fig 2c) Holo GlucD (1ecq) 

 
Fig 2e)  Holo MAL (1kkr) 
 

 
Fig 2b) Apo MR (2mnr) 
 

 
Fig 2d) Apo MLE-I (1muc) 

 
Fig 2f) Apo MAL (1kko) 
 



Kalyanaraman Page 45 

 
Fig 2g) AEE  Holo (1tkk) 
 

 
Fig 2i) Holo OSBS (1fhv) 

 
Fig 2k) Holo Enolase (1ebg) 
 

 
Fig 2h) AEE  Apo (1jpm) 
 

 
Fig 2j) Apo OSBS (1fhu) 
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Fig 3a) Holo MR (1mdr)    

 
Fig 3c) Holo GlucD (1ecq) 

 
Fig 3e)  Holo MAL (1kkr) 
 

 
Fig 3b) Apo MR (2mnr) 

 
Fig 3d) Apo MLE-I (1muc) 

 
Fig 3f) Apo MAL (1kko) 
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Fig 3g) AEE  Holo (1tkk) 
 

 
Fig 3i) Holo OSBS (1fhv) 

 
Fig 3k) Holo Enolase (1ebg) 
 

 
Fig 3h) AEE  Apo (1jpm) 
 

 
Fig 3j) Apo OSBS (1fhu) 
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Fig 4a) AEE Apo (1jpm) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Fig 4b) AEE Holo (1tkk) 
 
 
 
 
 
 
 
 


