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A new method is presented for the solution of the time dependent SchrBdinger equation in 
its application to physical and chemical molecular phenomena. The method is based on 
discretizing space and time on a grid, and using the Fourier method to produce both spatial 
derivatives, and second order differencing for time derivatives. The method conserves norm 
and energy, and preserves quantum mechanical commutation relations. One- and two- 
dimensional examples, where a comparison to analytic results is possible, are investigated. 

I. INTRODUCTION 

Many phenomena of physics and chemistry have a common dynamical evolution 
pattern. This pattern begins with an initial state which under the influence of the 
potentials, evolves through time to produce a final asymptotic state. Among such 
phenomena are chemical reactions, photodissociation, unimolecular breakdown, 
surface scattering, and desorption. The present study presents a numerical solution 
based on quantum mechanics for the common pattern, or for the time dependent 
evolution of the state of the system. The importance of exact numerical solutions is 
twofold, first these solutions give a quantitative description of physical problems and 
also are of use as a bench mark to check approximation methods and to define their 
range of validity. 
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In quantum mechanics the state of the system is represented by the wave function 
li/, and the time evolution is governed by the Schrodinger equation 

where fi is the Hamiltonian operator of the system and the initial state is wO. (In this 
work atomic units are used in which h = 1, and the mass is given in units of the 
electron mass). Solution of the Schriidinger equation provides all dynamical infor- 
mation on the physical system. A good integrating scheme for the Schrodinger 
equation will have the following qualities: it has to provide an approximation to the 
wave function with any predetermined precision: it has to be stable to round-off 
errors in the computation: it has to be general enough to deal with any physical 
potential and initial wavepacket; and the numerical algorithm has to be fast enough 
to obtain solutions in finite computation time. 

Reviewing previous work on numerical solutions for dynamical molecular systems, 
the conventional approach has been one of stationary solutions with appropriate 
boundary conditions [l-7]. Time dependent solutions have been obtained by 
expansion of the initial state in stationary solutions [8]. This stationary approach has 
become a mature field which has developed efficient algorithms for finding the 
stationary solutions, such as the variational methods for bound states, close coupling 
methods, and the R matrix methods for scattering states. However, the stationary 
approach has proven limited when dealing with time dependent physical systems. 
primarily because of the added complexity of expansion needed to produce the time 
dependent solution. 

The direct time dependent approach in previous studies has provided clearer 
physical interpretation than the stationary approach but seldom has been used as a 
computational tool. It has the advantage of unifying the bound and scattering 
problems, such as in the work of Lee and Heller [9 ] which uses a time dependent 
variational method [lo]. There has also been a use of the finite difference method 
[ 11, 121. To date, however, none of the existing methods can comply with the criteria 
for good numerical approximation as mentioned above. 

In this present paper, a Fourier or pseudo spectral solution for the time dependent 
Schrijdinger equation is presented. The Fourier method has been actively applied in 
the last decade to solutions of partial differential equations [ 13-19 1 such as the 
acoustical equation, the KDV equation [ 141, the diffusion equation [ 15 1, and the 
Navier-Stokes equation. The basic idea behind the method is to use the properties of 
the discrete Fourier transform to approximate spatial derivatives. Time derivatives 
are approximated by differencing. 

The main advantages which the method possesses are simplicity and a high order 
of accuracy. These features allow a relatively small grid size for representing the 
problem, an extremely important factor in multidimensional problems. An important 
qualitative advantage of the method is that it maps the true Hilbert space of the 
problem to a discrete one. This mapping conserves the Hermitian quality and the 
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commutation relations of the operators which are associated with the actual obser- 
vables. 

In the next section we present the Fourier method application to the Schrijdinger 
equation and discuss its features. Next, one- and two-dimensional examples are 
presented which test the solution scheme for different types of potentials. 

II. DETAILS OF THE FOURIER METHOD FOR THE TIME DEPENDENT SCHRI~DINGER 
EQUATION 

The central idea behind the numerical approximation is to discretize the Hilbert 
space of the problem, and to construct a new Hilbert space in which Hermitian 
operators are mapped into Hermitian operators. In the Fourier method [ 161, space 
and time are discretized with a uniform grid. Let $‘(i,, i,, i, ,..,, iN) denote the wave 
function in N-dimensional Cartesian space at location X,,, = (i, - 1) AX,,, and at time 
t = (n - 1) At, where AX,,, and At represent the increment in the mth spatial coor- 
dinate and in time, respectively. With this discretization, the time dependent 
Schrodinger equation becomes 

. awn 
1 - (i, , i, ,..., 

at 
iw) = Pty”(i,, i, ,..., i,,) (2.1) 

with l?” = -(1/2m) 9’ + Gin . p is the time dependent potential and V’ is the N- 
dimensional Laplacian operator. 

The numerical solution of (2.1) includes both spatial derivatives as well as 
temporal derivatives. The spatial approximation for the derivative utilizes the 
property of the Fourier transforms that a derivative in the spatial domain becomes a 
multiplication by iKi, in the spatial frequency domain, where Ki, is the wave number 
corresponding to the I-spatial coordinate. The Laplacian operator in (2.1) is thus 
obtained by performing an N-dimensional Fourier transform on I#’ multiplying the 
result by -(Kf, + Kf, + . . . + Ktv) and performing an inverse transform back to the 
spatial domain. In the numerical application, the derivatives are calculated by fast 
Fourier transform (FFT). 

The time derivatives in (2.1) are approximated by second order differencing 
according to 

awn 
- (i,, i, ,..., i,v) = 

tf+ ‘(i, , i, ,..., ihr) - yn ‘(i, , i, ,.... i,v) 
at 2At (2.2) 

This derivative is of second order accuracy. 
With the above spatial and temporal approximations, a typical step of the solution 

algorithm runs as follows: 

(a) Given v”(i,, i, ,..., iN), calculate V*IJP by an N-dimensional FFT on IJ? 
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followed by a multiplication by -(Kf, + ... + Kf,) and an inverse N-dimensional 
transform. 

(b) Calculate p(i, ,..., iN) v/“. (@’ is a known specified function), and in 
combination with the result from (a), form &I/. 

(c) Calculate I/+’ according to (2.2) by 

The steps in (aF(c) are repreated for the desired number of time steps. 
To initialize the solution, the method requires both I//O and VI’. whereas input data 

normally contains only IJI’. There the time integration in the first step to obtain v/O 
from IJI’ is done with a second order Runga-Cutta scheme which requires only one 
starting value. 

a. Periodicity and Boundary Conditions 

The discrete Fourier method implies periodic boundary conditions in which Xi, is 
connected to Xi,, where N is the size of the grid in the ith coordinate. These boundary 
conditions are natural for describing spatially periodic problems such as surface 
scattering, or liquid simulation. For problems where the natural boundary conditions 
are not periodic, an addition of a large potential at the boundaries stops the inter- 
ference of the wave across the boundaries. The interference can also be eliminated by 
expanding the grid size. The price in either case is that a portion of the grid is 
devoted to the elimination of this interference. 

b. Dispersion and Stabilig 

In addition to the dispersion normally associated with Schrddinger wave equations, 
the Fourier method introduces additional numerical dispersion. When this dispersion 
becomes too severe, wavelike solutions to (2.1) no longer exist, and exponentially 
increasing and decreasing solutions appear causing numerical instability. As a rule it 
is important to minimize numerical dispersion and to define the conditions in which 
the dispersion of (2.2) will be close to the true analytic dispersion. 

Assume a solution to (2.1) of the form 

I$’ = exp{i(K,X, + K,X2 + ... + K,vX.y - wt)} 

when the potential p is constant. After a substitution of this equation into (2. I ) one 
gets the dispersion relation 

sinwdt 1 .Y 
\‘ Kj + V. 

At =%,r, (2.3) 
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When the time step dt is small, this relation approaches the analytical dispersion 
relation for the Schrodinger equation given by 

This result is because the term sin w  At can then be replaced by o At. 
The stability limit of the method is obtained when the rhs of (2.3) is equal to l/At. 

Since the maximum value of Ki is Ki max = n/Ax, the stability criterion then reads 

(2.4) 

Figures 1 and 2 show the dispersion related (2.3) for 1 - D propagation for two 
values of the potential L? These figures show that by keeping the ratio o = 
(a2At/2m) AX2 less than 0.2, the numerical dispersion differs little from the exact 
dispersion. 

The above analysis does not cover the case of a time or space variable potential I? 
However, our experience and the examples which are presented show that by 
adhering to (2.4) at all points in space and time, the abnormal numerical dispersion 
can be eliminated. As a rule of thumb for the choice of the time step in practical 
application of the method, one finds first the stability limit. Then the accurate 
solution is obtained by using At = 0.2 At crit which from Figs. 1 and 2 possess a 
dispersion which is indistinguishable from the correct disperion relation. 

Examining the spatial and temporal discretization of the method, it is possible to 
use a higher order time differencing scheme. However, since with the present and 
second order differencing it was shown that spurious dispersion can virtually be 

K DX 

FIG. 1. Dispersion relation for a one-dimensional problem with zero potential. acrit = 1, the line with 
a = 0.2~~ is indistinguishable from the exact result. 
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K DX 

FIG. 2. Dispersion relation for a one-dimensional problem with negative potential. 

eliminated, the only justification for a higher order differencing scheme would be a 
saving in computational time, brought about by an increase in the time step size. 

When the dispersion relation of Eq. (2.3) is compared to the dispersion relation 
obtained by the finite difference method the differences between the methods stick 
out. Figure 3 gives the dispersion relation for one-dimensional propagation obtained 
by the explicit second order differencing method of Askar and Cakmak [ 121. It 
shows that at the stability limit Al/Ax* = $ there is a considerable deviation between 
the true dispersion and the numerical dispersion, and that the deviation increases 
when the time step dt is decreased. Apparently in finite difference calculations 
spurious numerical dispersion will always be present at the short wavelength 
regardless of the size of the time step. Only at spatial wave numbers smaller than n/5 

4 93 1 
, exact 

/' 

K DX 

FIG. 3. Dispersion relation for a one-dimensional problem with zero potential for a second order 
finite difference integrator for zero potential. (The same spatial and temporal grid as Fig. I). 
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which corresponds to a wavelength of ten grid points will the numerical dispersion 
match the exact dispersion relation. 

c. Norm and Energy Conservation and Microscopic Reversibility 

Conservation of norm, energy, and microscopic reversibility, are basic concepts of 
quantum mechanics. In order for a numerical solution to be of use, it is important 
that it possesses a discrete analog of these properties. 

Considering first the conservation of the norm, Eq. (2.1) is multiplied by w$ 

Next, the conjugate of Eq. (2.1) is taken and multiplied by IJI” to get 

(2.6) 

After subtracting (2.5) from (2.6) and then summing over all points of the mesh, the 
result is 

(2.7) 

where the Dirac symbol (Jg) is the scalar product xi ,,..., i,f(i, ,..., iN) g*(i ,..., iM). 
However, the fi operator is Hermitian (Appendix A) and the rhs of (2.7) vanishes. 
Likewise, (2.2) implies 

and the norm conservation will read 

Real($+’ v/“) = const. (2.8) 

Considering next the conservation of energy when the Hamiltonian is time 
independent, (2.2) is multiplied by at&!/at and its conjugate by ayP/at. Summing the 
result over the mesh gives 

Using (2.2) the result then becomes 

(2.9) 

(2.10) 
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After summing over all grid points and using the Hermitian property of fi, the energy 
conservation law will be obtained 

Real(v”+’ &I”) = const. (2.11) 

This conservation law reduces to the continuous time and space law when the step 
size is decreased to zero. 

In numerical application of the Fourier method, the conservation laws (2.8) and 
(2.11), were verified to the degree of the precision of the computer. 

The microscopic reversibility of the numerical method is a direct consequence of 
the symmetry of the time derivative approximation. As in the continuous case, when 
the direction of time is reversed in (2.2), the conjugate discretized equation is 
obtained. 

In addition to the above properties, the commutation relations of the physical 
space are carried over to the discrete space of the solution (Appendix B). For 
example, [P,f(i)] = -if’(?), where ~7 = -i(d/d.u) is the momentum operator, and f is 
a discrete periodic function. 

III. NUMERICAL EXAMPLES 

In ordei to establish confidence in the new method, a few examples are presented. 
Numerical approximations are compared to exact analytic solutions of non trivial 
cases. 

a. The Potential Step 

The scattering of a wavepacket from a potential step is a text book example which 
has all the quantum features of expansion of the wavepacket and of interference. As a 
numerical test, the potential has an infinite derivative and therefore is nontrivial. 
Fig. 4 presents a few “snapshots” of the absolute value of the wavefunction breaking 
against the potential step. The main test is the reproduction of the transmittance and 
reflection coefftcients. For a single K component the reflection coefficient is given by 

(3.1) 

where 
K, = ((E - V) . 2m)“‘. 

In this study, a Gaussian wavepacket is sent against the potential step. The exact 
result is obtained by averaging Eq. (3.1) over momentum space. The numerical result 
is obtained by waiting for the initial wavepacket to separate to the reflected and 
transmitted part. Figure 5 represents this comparison. As the figure shows, the 
agreement between the exact and the numerical result is good. 
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t=9 0 
t= 4.2 I 

148 t=9.6 I 

FIG. 4. Snapshots of a wavepacket approaching a potential barrier. The energy of the particle is 
1.26 and the barrier height is 1. The grid size is 128 points. 
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FIG. 5. Reflection and transmittance coefficient as a function of momentum for a Gaussian 
wavepacket approaching a barrier. The solid line is the exact result, and the points are the numerical 
approximation calculated with a grid of 256 points. 

b. The Time Dependent Harmonic Oscillator 

The time dependent harmonic oscillator is an important model for considering such 
phenomena as the multiphoton excitation of molecules. A good numerical solution to 
this analytically solvable model would mean that the method can be used to deal with 
more realistic problems such as multiphoton dissociation when the potential is 
represented by a Morse potential. Work on these lines is in progress [ 181. The 
Hamiltonian of the time dependent harmonic oscillator is 

-2 

ci=I?i”+$-f(t) with fro = & + + Ki2. (3.2) 

P = -i(d/dq) is the momentum operator and 4 is the space operator. A characteristic 
of the harmonic potential is that it conserves the Gaussian shape of an initial 
Gaussian wavepacket. The mean value of momentum and position obey the classical 
equations of motion. This feature was checked numerically for long integration 
periods and found true. 

The energy growth of the time dependent oscillator obeys the relation 

d(I?‘), = lre’ylf(t) dt 1 2. (3.3) 

When considering resonant excitation, where f(t) = sin of, the average energy 
increases proportionally to t2 and has a modulation with the frequency 2~. Figure 6 
presents the outcome of the numerical calculation with a grid of 128 points. The 
dashed line is the exact average energy; the numerical result follows this line with the 
expected modulation of 2~. 
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FIG. 6. Energy as a function of time for a resonant driven harmonic oscillator. The solid line is the 
average analytic energy growth; (A”) (---), (I?’ + P(l)) (- . - - ). 

An interesting feature is revealed when the numerical result stops following the 
exact solution. This happens when the energy obtained exceeds the highest possible 
momentum (wave number) value of the grid. Following the solution, the energy starts 
to decrease and a beginning of a periodic solution emerges. This periodic solution is a 
consequence of finite Hilbert space used to approximate the harmonic oscillator. In a 
finite Hilbert space, all operators are bound and a periodic perturbation will always 
lead to a periodic solution [8]. Increasing the grid will raise the energy in which the 
exact solution deviates from the numerical one. Using this scheme for considering 
realistic potentials, the dissociation energy provides a natural limit for which the grid 
size can be set. 

c. The Two-Dimensional Kepler Problem 

A multidimensional application of the Fourier method to the two-dimensional 
Kepler problem is an important example of the approach of this paper, and it has 
realistic significance as a model for thin films of Cesium. In the application, the 
periodic boundary represents a physical reality. In this example the potential has a 
singular point and is long range. The analytic results are obtained by transforming to 
separable coordinates R and 8. However, since the test is performed in X and Y 
coordinates (where the problem is not separable), it is numerically difficult. 

By solving the analytic problem, one obtains the energy spectrum 

- 22 
Enm= (2n + 2m + 1)’ * (3.4) 

For the eigenfunctions one obtains 

y,,,, = N,, e-KnmrrmL~lm’(2K,,,r) eimm, (3.5) 
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TABLE I 

Spectrum of the First Ten States of the Two-Dimensional Kepler Problem 

n 
0 I 2 3 

m 

0 
-2.0000 -0.22222 -0.08000 -0.0408 16 
-1.9458 -0.20795 -0.07325 -0.039205 

I 
-0.22222 -0.08000 -0.0408 16 
-0.22213 -0.07999 -0.0408 I5 

2 -0.08000 -0.0408 I6 
-0.08002 -0.0408 16 

3 
-0.0408 16 
-0.040745 

Nofe. The upper values are the exact ones and the lower are the numeric approximation. 

Km = 
Z 

2n + 2m + 1 

and L:(x) are the associated Laguerre polynomials. The first check of the discrete 
Hamiltonian, the energy spectrum is calculated for the first ten eigenfunctions by 
inserting Eq. (3.5) into Eq. (2.11). Table I represents a comparison between the exact 
and numerical calculations. By examining Table I, one can see that there is a good 

FIG. 7a. Excited stationary states of the two-dimensional Kepler problem. The state 

(WI, + WlL,)(l/fih 



A FOURIER METHOD SOLUTION 47 

FIG. 7b. The excited state v,~. 

FIG. 7c. The excited state (yea + y,-,)(1/d). 

numerical approximation for all states with nonzero angular momentum. This is 
because these states are zero at the origin, and therefore are not affected by the full 
extent of the singularity in the potential. Since the m = 0 states are less accurate, 
improvement of accuracy means increase in the grid size. Another check of the 
numerical approximation is to use the analytic wave functions as initial states which 
are integrated in time. If the analytic wave functions are stationary in the discrete 

581/52/l-4 
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FIG. 8. Snapshots of an initial stationary state perturbed by a periodic time dependent potential. The 
initial state is vol. The frequency of perturbation is w = 1.7777 which is resonant to the yO, -+ I,, 
transition and to a transition to unbound states. Snapshots are at df = 1.6 units apart. The energy 
changes in time: (a) E = -0.222, (b) E = -0.189, (c) E = -0.123, (d) E = -0.385, (e) E = to. 112. 

world, the overlap I(u/“, w”)l’ should be unity. For a grid of 64 x 64 a deviation of 
4% was found for state v/,~ after 4 a.t.u. (atomic time units). For a grid of 
128 x 128, deviations for the states ~~~~~~ wz, and wo3 were less than .l % for similar 
periods of time. The means that the solution has converged. 

A typical time step on a 128 x 128 grid took 20 set on a VAX 750 with a floating 
point unit. A typical run took 500 steps. Fig. 7 represents a few of the excited 
stationaty states of the Kepler problem. Figure 8 represents a time dependent solution 
where the initial state is I o,, perturbed by a periodic time dependent linear potential. 
This perturbation simulates an interaction with the electromagnetic field. As Fig. 7 
shows, the otherwise stationary state is scattered. 
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IV. DISCUSSION 

One of the most important issues of quantum mechanics [20] is the relation 
between observables and the operators that represent them, and it has been stated that 
there is a one-to-one correspondence between the observables and the operators. 
Moreover, the operators that represent observables are Hermitian because observables 
are real and Hermitian operators have real eigenvalues. In constructing a numerical 
approximation to the time dependent Schrodinger equation these ideas were behind 
the logic that led to the use of the Fourier method. The discrete space on which the 
approximation is based is a Hilbert space. Operators which correspond to obser- 
vables which are Hermitian in the physical Hilbert space, are mapped into Hermitian 
operators in the discrete space. (As Askar showed, this is not true in the finite 
difference method.) Moreover, commutation relations which are at the heart of 
quantum dynamics, are preserved in the mapping scheme from the physical to the 
discrete space. On this basis, the discrete Hilbert space is a physical world to itself 
which possesses all the qualities of quantum mechanics. This Hilbert space converges 
to the true physical world when the grid size is large enough. 

Another important advantage of the Fourier method from the numerical point 
of view is that numerical dispersion can be eliminated at all frequencies. Therefore 
the calculations are valid for all wavelengths that are represented on the spatial grid. 
A good demonstration of this feature is the example of the time dependent harmonic 
oscillator where energy is pumped in and the numerical solution follows the analytic 
solution almost to the maximum frequency represented on the grid. This is in contrast 
with the finite difference method where spurious numerical dispersion is always 
present. The dispersion curve for finite difference shows that artificial numerical 
dispersion is small only for wavelengths larger than ten grid points. This means that 
for comparable accuracy, the Fourier method requires a factor of live less grid points 
for each spatial dimension. This fact becomes extremely important in multidimen- 
sional calculations (3-D). Admittedly, because the Fourier method uses a nonlocal 
function expansion the number of operations per grid point is higher than with the 
finite difference method. However, utilization of the fast Fourier transform (FFT) 
algorithm immensely improves numerical efficiency. Aside from its accuracy the 
Fourier method is completely vectorizable and therefore will work well on vector 
computers and array processors. The reduction in the number of grid points is 
extremely important for multidimensional problems. 

Comparing the Fourier method to standard functional expansion methods, it 
appears that the two approaches are complementary. When there is a good 
knowledge of the problem and conditions of symmetry can be used, expansion 
methods are efficient. This is because the number of expansion functions can be kept 
small. For more general problems, where there is no natural expansion, a direct 
solution method is preferable. An interesting possibility would be the use of hybrid 
methods which would use function expansion for part of the spatial dimensions, and a 
Fourier method for the remaining dimensions. 

Altogether it can be concluded that the Fourier method has a promising potential 
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as a routine tool in the study of molecular dynamics. One of the main reasons is that 
the approximation is controllable so that accurate and stable results are obtainable. 
Another reason is that the method has numerical effkiency especially with the new 
generation of vector computers. 

APPENDIX A: HERMITIAN PROPERTIES OF THE FOURIER METHOD 

In this appendix it is proven that in the discrete Hilbert space, the Hamiltonian is 
Hermitian. For any two functions u and v this property is written 

(u&l) = (u&4), where l?= -$-02 + P”. 

Concerning the potential operator p it is a multiplication operator, and therefore 
obviously Hermitian. It remains to be shown that any of the terms a’/axf in the 
definition of a’, is Hermitian. The first step is to prove two lemmas. 

LEMMA 1. With the Fourier method 

(A.11 

for any functions f, g. 

Proof: Since u;) =$* g, where * defines a convolution and - denotes a spatial 
Fourier transform, one obtains 

-& fg = iK, c ?CK:) i(K, - K:) 
K; 

= c j;(Kl) i(K, - K:) g”(K, - K;) + iK: f(K:) g(K, - K;) 
K: 

= c f(K;) g (K, - K;) + -$ (K;) g(K, - K;). 
K; 

The inverse transform of (A.2) proves (A. 1). 

LEMMA 2. 

-ix-o 
- dx - 64.3) 

for any function f: 
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Proof: By the property of FFT, 

\- d! d.(O) -- 
- d.u dx 

(A.4) 

but dy/dx = iKx.. and therefore (A.4) gives zero. Returning to the term u(~*t~/Jx~) by 
applying Lemma 1 one obtains 

a2v a av au av 
%q=ax: Ti ( ) 

--- 
axi axi 

a av a au a2u =-u---~r-+fv 
a-xi axi axi axi ax; (A.5) 

upon forming the inner product (u(a2v/axf)) as in (A.5). The first three terms on the 
rhs give zero. In view of Lemma 2 the term @‘u/ax:, v) remains, thus completing the 
proof of the Hermitian property of fi. 

APPENDIX B: COMMUTATION PROPERTIES OF THE FOURIER METHOD 

The discrete numerical approximation obeys the same commutation relations for 
functions of momentum and position as the original physical space. For any 
operators 6, k the commutation relation is defined as 

[AB] =AB -&i. (B.1) 

Consider the relation between the momentum operator B = -i(a/‘lax) and a function of 
the position operator f(g) in one spatial dimension. With the product differentiation 
rule obtained in Appendix A, one gets 

[fi,f(-?)]g=-i$f(i)g-f(i)ig=--if’(x^)g V3.2) 

for any discrete functionf: Therefore 

[ p^, f(2)] = -if’(i). (B-3) 

In (B.2) and (B.3) it is understood that the derivatives are calculated by the Fourier 
method. When the operator f(i) is band limited and bounded in the grid. Derivatives 
by the Fourier approximation are exact [2 1 ] in such cases and therefore the 
commutation relation (B.3) is equal to the commutation relation of the physical 
space. 
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