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The natural expansion (NE) of vibrational eigenstates is useful for identifying the optimum local
coordinates for any vibrational energy and it provides a positive test for regular (nonstochastic)
behavior. In previous NE analyses, both eigenvalues and eigenvectors of the Hamiltonian matrix
were required. However, through use of the recursive residue generation method (RRGM), we
will illustrate how to perform the NE analysis without the need to compute eigenvectors of the
N X N Hamiltonian matrix. In addition, a new computational method to obtain all transition
amplitudes among a set of states is developed. The method, based upon residue algebra, reduces
the CPU requirement by a factor of N /2. To illustrate these procedures, the 4, symmetry
eigenfunctions in the classically chaotic regime (where the modes are strongly coupled) of a 2D
model Hamiltonian are analyzed with the modified RRGM.

I. INTRODUCTION

The nonstatistical distribution of vibrational energy
among molecular vibrational modes implies a localization of
some of the energy in ““privileged”” modes. Such behavior can
be observed even in the quasicontinuum if there exist eigen-
functions which are almost separable, for example,
¥ ~f(q,)g(g,) in the 2D case. Indeed, for several 2D model
potentials,'~> numerical calculations have shown that there
is still a “ladder” of equidistant eigenvalues having associat-
ed eigenfunctions which are almost separable, are localized,
and can be assigned good quantum numbers.

The natural expansion (NE) method offers a systematic
way to identify the localized “regular” states.** For a 2D
Hamiltonian, the NE of an eigenfunction is*®

V= Zdzfzgz,

where the natural orbitals {f, },{g, } are uniquely defined and
do not depend upon the choice of basis set. If the dominant
configuration in the expansion is ®, = f; g, , then there is no
other product function (within the same coordinate system)
which has a better overlap with the exact eigenfunction.
However, it is important to note that the natural expansion is
variant under a unitary transformation of the coordinates.
Therefore, there may be other sets of coordinates which pro-
vide a dominant term with a larger value than for the original
set of coordinates. At a particular energy, the optimum co-
ordinates are those for which the coupling terms in the Ham-
iltonian are minimized. By examining d 2,,, for different sets
of coordinates, one can decide upon the optimum local co-
ordinates.

*) Supported in part by research grants from the Robert A. Welch Founda-
tion and the National Science Foundation.

® Permanent address: Department of Chemistry, Technion—Israel Institute
of Technology, Haifa 32000, Israel.

J. Chem. Phys. 85 (1), 1 July 1986

0021-9606/86/130331-06$02.10

Recently, it was pointed out® that the NE coefficient d
can be interpreted as the probability that a trajectory will be
found near the phase space torus whose semiclassical quanti-
zation yields the separable wave function f; (¢,)g,(g,).

Prior to this study, the NE analysis had been applied to
2D systems by explicitly calculating all of the eigenvalues
and eigenvectors of the Hamiltonian matrix. The apparent
need to obtain all eigenvectors prevented extension of the
NE method to highly excited states in 2D and larger systems.
[For example, on the Cyber 170, we cannot solve the matrix
eigenvalue problem for N (size of matrix) > 300.] The ques-
tion naturally arose, “‘Can we perform the NE analysis with-
out explicit knowledge of the wave function?” As we will
demonstrate here, it is possible to generate the NE expansion
without explicit knowledge of the eigenvectors. Our ap-
proach is based upon use of the recursive residue generation
method®'® (RRGM), with a new feature—residue alge-
bra—added.

If we consider the Green operator in the eigenvector
basis,

G(E) = 2 la){a|/(E—E,),
the matrix elements in a zero-order basis {|n > } are given by
G, (E)= Z(n|a) (a|n'}/(E—E,),

where (n|a){c|n’) is the transition residue at the pole E,.
The RRGM was developed in order to compute these resi-
dues without first finding any of the eigenvectors {|a) }. The
RRGM has been applied to multiphoton absorption,>'2
electronic absorption spectra,'* thermally averaged correla-
tion functions,'® thermal reaction rate constants,'> and per-
colation in lattices.'® The method will then be reviewed in
Sec. I and an extension, residue algebra, will be introduced.
Applications to highly excited states in a model 2D system
are presented in Sec. IIL
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Il. NATURAL EXPANSION BY THE MODIFIED RRGM:
THEORY

Prior to this study, natural expansions have only been
applied to relatively low energy states of 2D model Hamilto-
nians.* 8 For clarity, we shall repeat in Sec. I1I the NE analy-
sis of an eigenstate for the two-mode system which was stud-
ied recently by Moiseyev et al’> The eigenstate
V¥, (g1,9;) = |E,) can be expanded in terms of a real-val-
ued, separable, product basis

[nm) =¢,(q,)¢,,(42), (1)
such that
|E,) = 3 |nm)(nm|E,). )

Approximate eigenvector coefficients C,,, = (n,m|E, ) can
be computed by diagonalizing the Hamiltonian matrix

H = {(n',;m'|H |n,m);n = 1,2,...Nym = 1,2,...,N,}.
The g, density kernel for state a,
T'(gi.9:)) = f V2 (91.92)¥, (91,42)dq; (3)
is given by
N,
I'(qi.41) =2An‘,n¢:' (91)¢.(q1), (4)

where the symmetric density matrix A has elements,
N,
Ay =Y (n'\m|E,)(E, |n,m). (5)

The fact that the eigenvalues of A are the population proba-
bilities of configurations in the NE of state |E,, ) can be seen
as follows: Denote the eigenvalues and eigenvectors of A by
{d,;} and {D,}, respectively. Then, the matrix elements 4 ,.,
can be constructed in the eigenvector representation

N
=Y D% D,d} (6)

I=1

By substituting Eq. (6) into Eq. (4), we obtain the diagona-
lized density kernel

N,
T'(q1.91) =IZ dift(g)fi(q). €))
=1

Similarly,’ it is possible to diagonalize the density kernel
I'(¢;.,9,). Such that

T'(g3.92) = digt(g;)8,(g;) (8)
]

and by comparison with Eq. (3), one can get

min(N,,N,)

z d, £1(41)8:(q2). 9

I=1

‘Pa (ql’qz) =

We have thus shown that {d } are the eigenvalues of A.

In conventional NE procedures, the matrix elements
{4,,.} are obtained by first computing the eigenvectors
{{n,m|E,)} of the Hamiltonian matrix. The advantage of
the RRGM?®'° is that it enables 4,,, to be evaluated without
the need to calculate the eigenvectors of H.

A. Matrix A by the RRGM

In the first step, the N X N Hamiltonian matrix is recur-
sively converted into the M X M tridiagonal matrix T:

U'HU =T, (10)
where
Uy, =&y,
a, B; 0.
B a B,
T=]10 B a, (11)

The M comumn vectors U;, each of length &, are recursively
developed by the Lanczos algorithm:

BJUJ+I=HUJ‘_’ajU Bj—l j—13
a, =U" HU,

B, =norm[HU;, —a;U, — B, _,U,_,], B,=0. (12)
To start the recursion, we prime the method with a starting
vector U,. To simplify the notation, let the index & be defined
from (n,m) and let / be attached to (n’,m) such that

H,, = {n,m|H |n',m). (13)
The normalized primer is then defined by (/ = 1,2,...,N)
0 ifi#kori##l,
(Ul)i = { P .
/2 fi=kori=1L
From the tridiagonal matrix T, the M eigenvalues {E,} are
obtained. In addition, another set of (M — 1) eigenvalues
{E {¥’} can be obtained by diagonalizing the reduced matrix
which is obtained from T by deleting the first row and col-

umn. It has been shown by Nauts and Wyatt>'° that the
residues (squares of eigenvector coefficients)

G=12,..M),

(14)

Ry(Eq kd) = (12(k+ D|E,)* = (U\|E,)* (15)
can be determined from these two sets of eigenvalues:
E —EW E __E(U)
Ry(E, k] = (L ) ¢ )
(Ea _El) (E a——l )
(E,—E®®) (E,—-E,
e ,  (16)
(Ea_Ea+l) (Ea_EM)

where E,, is the eigenvalue associated with the eigenfunction
|E, ) which we are attempting to analyze with the NE meth-
od. (Recall that M is the number of recursion steps )

Similarly, we generate the residues R,
Ry(E kD) = (1\2(k — D|E, ) = (V||E,)?, (17)

by priming the Lanczos algorithm with the vector V,:

0 ifistkori#l,
(V), =142 ifi=k,
— 142 ifi=1
The residues R, (E,,k,I) are then computed from the two

sets of eigenvalues {E,} and {E ("}. The desired transition
residue in the A matrix [see Eq. (5)] is finally given by
(|EL)(E k) =1/2[Ry(E,.k]) — Ry (E, kD],
(18)
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and therefore, 4,,, is obtained for each value of (k,/) from
two sets of residues, which were computed without knowl-
edge of any of the eigenfunctions.

B. The residue algebra

If N basis functions, {|# (/)m (i) );i = 1,2,...,N} are used
to evaluate H, then approximately N(N + 1) residues are
needed when the RRGM is used to calculate the density
matrix A. Therefore, the CPU time required to build A will
increase nonlinearly (~N?) as N is increased. The residue
algebra technique, which we will propose and test, will re-
duce the number of calculations so that the CPU time re-
quired to build A will increase only linearly as N is increased.

Let us assume that we wish to obtain a/l possible transi-
tion amplitudes among a given set of vectors,
{|)i = 1,2,...,N} (in our case, |i) = |n,m)). Among this set
of states, there are N diagonal “transitions” and N(N¥N — 1)/
2 off-diagonal transitions; there are thus a total of
N(N + 1)/2 transitions to compute. Then, the transition re-
sidues (actually, residues of the transition amplitude) can be
obtained formally if we know a set of intermediate ampli-
tudes {(C|E,)}:

(|E,)E, |
= [(IE)EL|C) | [(IEL)ELIC))/[{CI|E)T?,
(19)

where |C ) is the normalized composite vector,

|IC) =1AN[1) + [2) + -+ [N)]. (20)

To compute all N(N + 1)/2 transition amplitudes, we will
divide the calculation into two steps.

(1) The survival (diagonal) amplitude of the composite
vector is computed, by initiating the Lanczos algorithm with
the primer

(1/YN /N ,.,1/{N).

From this calculation, we obtain the N residues
(CIE, Y,a=1.2,.,N.

(2) The transition amplitude between each “interest-
ing”state |7) and the composite vector is computed. This in
turn requires two recursion sequences, which are primed

with the normalized vectors

[U) = (I + [CH/[2(1 + )],

V) = (i) = |C)H/[2(1 =812,
where S'is the overlap between the nonorthogonal vectors |/}
and |C),

S={|C)=1/yN. (22)
From these two recursion sequences, we generate 2.V resi-
dues, {(U,|E,)? and (V,|E,)}a = 1,2,..,N}. The i—»C
transition residues are then generated from the equation
(i|Eg ) (E4|C)

=172[(1 + $)(U,|E, ) — (1 =) (V| |E,)*]. (23)
This can be verified by substituting Eq. (21) into the right-
hand side of Eq. (23).

At this stage, we have (N + 1) residues at each energy:

(i|E,){E,|C), i=1,2...,N and (C |E, )* From these we

(21)

are able to compute N(V + 1)/2 transition residues through
Eq. (19). Thus, the residue algebra reduces the time re-
quired to compute A by a factor of N /2!

lil. NATURAL EXPANSION BY THE MODIFIED RRGM:
APPLICATION

A. Review of computational methods

Due to the propagation of roundoff error during the
Lanczos recursion, some spurious eigenvalues (in the ter-
minology of Cullum and Willoughby'?) may be included
when the eigenvalues of T are computed. The spurious eigen-
values are of two types:

(1) Uncovered eigenvalues which lie between accurate
eigenvalues. Residues attached to these eigenvalues
are always very small.

(2) “Ghost” eigenvalues which are multiple copies of
eigenvalues which have converged. As the number
of recursion steps increases, these ghosts gradually
work in from both edges of the spectrum toward the
interior. When an eigenvalue has attached ghosts,
the net residue is split over the multiple copies. As a
result, when a new ghost joins a set of (nearly) de-
generate eigenvalues, the “old” total residue is split
into more pieces, but the sum of all of the pieces is
conserved.

As a result of the appearance of spurious eigenvalues, not all
of the eigenvalues of T are eigenvalues of H. This is why the
number of recursions needed to generate all (or most) of the
eigenvalues of H may exceed the size of H.

In order to compute the residues from Eq. (16), it is
preferable to remove the spurious eigenvalues from both
lists, {E, } and {E ("}, before applying this formula. Cul-
lum and Willoughby'” have proposed and tested an efficient
procedure for sorting out the spurious eigenvalues. If only
the eigenvalues are desired, then it is important to remove
the spurious ones.

In most physical problems, we are interested in both the
eigenvalues and the residues (products of eigenvector coeffi-
cients). This is because the residues appear in expectation
values of operators over the basis states. The presence of
spurious eigenvalues is then of no consequence and Wyatt
and Scott'® have developed another method for computing
all of the eigenvalues and residues from the tridiagonal ma-
trix. Unlike the Cullum—Willoughby procedure, this method
does not require removal of spurious eigenvalues by compar-
ing lists of eigenvalues. This method computes the eigenval-
ues of T and the squares of the coefficients in the first row
(only) of the eigenvector matrix of T. These squares are the
residues ((U,|E, )?or (V,|E_)?) that we seek. The method
“works” because unconverged “incorrect” eigenvalues have
very small residues and multiple copies merely share the
overall “strength” (total residue) associated with a given
pole of the Green operator.

B. Numerical example

In this section, calculation of the natural expansion co-
efficients by the RRGM with and without residue algebra
will be illustrated. As an example, we will study the 2D Pul-
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len—-Edmonds!® (PE) Hamiltonian
1 /—3?
H=— + 2)
2 ( dqi o

+—1—( —9° +q2) +Agigs.
2\ ag 2

(24)

This is the simplest model which exhibits both classical and
quantal transitions'®*° from regular to chaotic behavior.
The parameter A (usually, A = 0.05) plays the role of 4, as
can be seen by making the transformations ¢,—g,/4 /2. It
has been found that if E is high enough (£ )15), the trajec-
tories are mostly chaotic'® and the eigenfunctions are chao-
tic in the sense that they tend (when smoothed) to fill uni-
formly the available phase space.”’ In such a case, these
chaotic eigenfunctions are far from separability (since they
cannot be assigned good quantum numbers) and the static
SCF method is not applicable.?> However, it was found re-
cently that these “‘chaotic eigenfunctions” can be described
by just a few natural configurations.® (This is in spite of the
conjecture that many random components are needed to de-
scribe chaotic eigenfunctions.)

Qur strategy is as follows:

(1) Construct the density matrix A by the RRGM
(without using eigenvectors of H and without use of the
residue algebra) and compare the eigenvalues of A (which
are the population of the natural configurations) with pre-
vious results which were obtained by the conventional NE
method® (i.e., with eigenvectors of H).

(2) Repeat the RRGM calculations, but employ the re-
sidue algebra, as described in Sec. II B. As a result of this
comparison, we will show that use of the new algebraic tech-
nique significantly speeds up the calculations and enables us
to study large systems which could not be studied before, at
least on the Cyber 170.

In order to find the 4, symmetry eigenfunctions of the
PE Hamiltonian, N even parity basis functions were con-
structed from a direct product of harmonic oscillator func-
tions,

l/\/i[¢n (q1)¢m (q2) + ¢m (q1)¢n (qZ) ]’
n#m,
¢n (ql)¢n (q2)1

n=nm,

Il(llsl2)) =

(25)

where /= 1,2,....N,/, = max (n,m), I, =min (n,m). The
Hamiltonian matrix elements are given in Ref. 19.

In order to obtain the density matrix A, Eq. (18) should
be modified slightly to accomodate the symmetry restriction
in Eq. (25). In our case, the elements of A are given by

Ay =3 UL EEUL)YDA),  (26)
where
1 =max(n',m), I, =max(nm),
!} =min(n'm), [, = min(n,m). Q27

in which / and j are associated with (n',m) and (n,m) as

shown in Eq. (27). In addition, the symmetry factors are
given by

fe {1 ifn=m (orn' =m),
- 142 ifnm (orn'#£m).

To avoid computation of the eigenvectors, |E ), of the
matrix H, we used the RRGM as described above:

(HEME| ) =12[(U|E,)* —(VIE,)*],  (29)

where |U) = (|i) + | /})/\2 and |V') = (i) — | j)/42 are
the two starting vectors used by the RRGM to bring H into
tridiagonal form (T). The residues, (U |E,)* or (V |E,)?
are obtained from the first row of the eigenvector matrix of T
(see Sec. III A on the Wyatt and Scott'® method).

The number of recursions used here (M) were about 2N
(N is the dimension of H)—this ensures accurate eigenval-
ues for T (and H). The accuracy criterion was that all eigen-
values of T which were obtained from the two starting vec-
tors (U, or V,) used to prime the Lanczos algorithm should
agree within a specified tolerance, AE<0.005.

The eigenvalues of A computed via the RRGM were
compared with the population probabilities obtained by the
conventional procedure® (i.e., calculate |E, ) ). The RRGM
values were accurate to within 1 X 107° of the exact values!
The NE results for seven low eigenvalues and three high
eigenvalues are listed in Table I. However, as N increases,
the CPU time becomes prohibitively large, as shown in Fig.
1. In fact, on the Cyber 170, it was not possible to go above
N = 200.

TABLE 1. Natural expansions using the RRGM: N = 300, M = 500.*

(28)

E, ar E, a2
1.012 069 0.999 663 28.943 228 0.427 778
0.293 929
3.079 643 0.529 800 0.109 954
0.470 156 0.109 134
0.025 470
5.075 339 0.453 161 0.003 930
0.438 418 0.003 883
0.108 401 0.000 434
0.000 428
5.302 0623 0.892 321 29.098 270 0.239 597
0.058 389 0.152751
0.049 306 0.087 705
0.085 749
7.126 805 0.489 350 0.068 529
0.485 298 0.064 530
0.014 218 0.047 497
0.011 164 0.045 159
0.005 054
7.607 216 0.548 890 0.004 983
0.426 823 0.000 193
0.012 854 0.000 193
0.011453
9.154 836 0.475 244 29.444 299 0.480 814
0.473 799 0.480 811
0.023 544 0.016 491
0.022 048 0.016 488
0.002 378
0.002 376
0.000312
0.000 310

* All eigenvalues in the range 0 < E,, < 30 were analyzed, but only some of
them are shown here.
®QOnly values of d 2 larger than 0.0001 are listed here.
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FIG. 1. CPU time requirement (on the Cyber 170/750) for RRGM calcu-
lations with and without the residue algebra. N is the basis size.

Use ‘of the residue algebra significantly reduced the
CPU requirement of the RRGM calculations. To emphasize
the role of residue algebra, Eq. (26) is rewritten

Ay =S f) F [ 503) | EL)(E,L|C)]

* [(](11912)|Ea><Ea|C>]/[(CIE¢1)2]! (30)

where the indices are defined in Egs. (25) and (27) and all of
the residues [( - |E,){(E,| )] were obtained by the
RRGM [see Eq. (29)]. As expected, the time required to
compute the residues was reduced by a factor of N /2. The
coefficients in the NE analysis obtained with the algebraic
technique are in complete agreement with the previous re-
sults.®

The deviation from linearity in the dependence of CPU

time upon N, obtained in the RRGM-residue algebra calcu-
lations, arises from two sources.

(a) Different numbers of recursion steps (M) were re-
quired for the different basis sizes.

(b) The routine used to compute eigenvalues of the tri-
diagonal matrix (the QL algorithm) has its own
dependence upon &, beyond the linear dependence
in the residue algebra calculations.

Several comments should be made with regard to the
computation times reported here, which are large even for
the residue algebra method (20 900 CPU s, for a 350X 350
matrix). First, the matrix multiplication algorithm is com-
pletely unoptimized; optimization can reduce times by sub-
stantial amounts. Vectorization on a supercomputer (Cray
or Cyber 205) can further reduce times by factors?* of 50—
100. These improvements alone make calculation on matri-
ces of several thousand basis functions amenable.

A second crucial point concerns the number of recur-

sion steps required per Green’s function matrix element. It
should be possible to decrease this by a factor of 5-10 by
employing canonical transformations on the Hamiltonian
and/or the initial Lanczos vectors, even for strongly coupled
systems like the one studied here by us,'™'® recursion
numbers on the order of 5%-10% of the matrix dimension
have produced effective convergence.

Finally, the present application (to the NE) requires
computation of a/l Green’s function matrix elements. For
many other uses (e.g., statistical mechanics involving two-
particle Green’s functions) only a small fraction of elements
are required. In such cases, the advantage of the residue alge-
bra version of the RRGM over conventional diagonalization
procedures becomes overwhelming.

In using the RRGM (even with residue algebra), the
price that we have to pay is measured in CPU time. Yet, the
method allows us to study larger systems than could be pre-
viously studied. For example, on the Cyber 170, we could
not carry out standard RRGM calculations of NE coeffi-
cients for N> 200 nor could we carry out the direct analysis
by calculating the eigenvectors of the Hamiltonian matrix
for N> 250. As can be seen in Fig. 1, the use of residue alge-
bra significantly reduces the CPU requirements and thus
permits NE analysis on larger systems.

IV. SUMMARY

The natural expansion method offers a systematic way
to identify localized states which can be assigned “good”
quantum numbers, even in the “quasicontinuum.” The iden-
tification of such localized highly excited states is important
in investigating the possibility of mode specific reactions. In
the natural expansion, coefficients of the “optimal” product
function (optimal in the sense that there are no other pro-
duct functions which have a higher overlap with the exact
wave function) are calculated. The square of the natural
expansion coefficent of the dominant configuration, d2,,,
measures the strength of the coupling between the two
modes (d %,,—1 as coupling—0) and the applicability of
the local mode approximation.

Prior to this study, natural expansions have been limited
to relatively small model Hamiltonians, since all eigenvec-
tors of H were computed and stored. However, through use
of the RRGM, the natural expansion analysis can be per-
formed without the need to compute eigenvectors of H. Use
of the RRGM then enables us to study larger systems which
could not be studied before, due to limitations on computer
storage. However, the price we pay in using the RRGM is
measured in CPU time.

The residue algebra, a method to obtain all transition
amplitudes among a set of states, is presented and used here.
This method reduces the number of calculations so that the
CPU time required to build the density matrix increases only
linearly as the size of the basis increases. To illustrate the
applicability of the modified RRGM, we studied a two-
mode system, most of whose excited states cannot be as-
signed good quantum numbers.
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