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We present two advances in the use of the matrix method to generate the time-dependent kernel
for resonance Raman scattering. The first of these, a collocation method, allows a substantial
decrease in computation time in addition to greater resolution of scattered profiles. Second, we
have developed a decoupling approximation in which the exact method of Friesner ez al. is used to
generate the kernel at a relatively small number of time points with the remaining points obtained
by fitting to the exact values a factorized expression containing both finite temperature and
dephasing corrections. The approximation is exact in the zero temperature limit and isbased on a
sum rule which ensures exact reproduction of integrated intensities. Calculations with a wide
variety of parameter values are presented and show that our approximate method is highly
accurate in reproducing the exact results for a wide variety of physically realistic systems. In
addition, our results for single mode systems are shown to compare favorably to those obtained

using a transform-based method.

1. INTRODUCTION

In a recent paper,' we presented a method for construct-
ing the exact time domain kernel for resonance Raman scat-
tering of a molecule described by harmonic ground and ex-
cited state potential surfaces. This approach allows accurate
simulation of temperature dependent excitation and scatter-
ing profiles for large-dimensional multimode systems even if
Duschinsky rotation is important, and hence represents an
advance in capabilities over previous time domain®*~® and
sum-over-states methods.

However, the above formulation necessitates a three-
dimensional Fourier transform to generate spectral line
shapes, thus greatly increasing computation times. While
this price will be worth paying on occasion, the reported
values would lead to undesirable expenditures when, e.g.,
extensive parameter fitting to experiments is required. These
considerations have motivated us to develop a new approxi-
mate technique, and to test an existing efficient method (the
transform method introduced by Hizhnyakov and co-
workers* and further developed by Page and co-workers®™®)
against exact results. We have also made several technical
improvements in our numerical methods which generally
reduce computation times for both the old and new methods.

Our approximation scheme (a decoupling procedure
with explicit correlation corrections) is one to two orders of
magnitude faster than the full three-dimensional transform,
and achieves acceptable accuracy (within typical experi-
mental resonance Raman noise levels) for the great majority
of parameter values we have tested. It is exact in the low-
temperature limit, and satisfies a sum rule such that the inte-
grated intensity of any excitation profile is guaranteed to be
exact (so that reliable absolute intensities can be calculat-
ed). Computation times are roughly five to ten times larger
than for a transform based method which employs a micro-
scopic model’; the latter approach, however, will be shown
to break down at high temperatures and/or large values of
linear or quadratic coupling (as is discussed in Ref. 9). The
transform method is adequate as long as parameter values
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are sufficiently far from these limits (and absolute intensities
are not desired ), and thus remains as an attractive approach
to a wide variety of practical problems.

The paper is organized into six sections. In Sec. IT we
formally develop the decoupling approximation and intro-
duce a collocation method'? which greatly improves resolu-
tion in scattering profiles and reduces computation times. In
Sec. II1, extensive comparison of excitation profiles obtained
by the three methods (exact, decoupling, and transform) for
a range of single mode models (varying temperature, linear
coupling, and quadratic coupling) are presented. In Sec. IV,
we investigate decoupled and exact results for Duschinsky
coupled multimode systems (the transform method is not
directly applicable to such cases although a related approach
which is applicable has recently been developed’®). Section
V presents some results of the decoupling theory for multi-
mode scattering profiles; these correspond to what is actual-
ly measured in an overwhelming majority of resonance Ra-
man experiments. In Sec. VI, the conclusion, future
developments are suggested, and an assessment of the var-
ious time domain methods discussed here is undertaken.

Ii. THEORY
A. Collocation method

The exact Raman kernel X is dependent on the three
time variables ¢, ¢, and u; we can express this in the form

N
K(tt'u)= z F,(t,tYexpliv,u) . ¢y
n=1

Here the set {w, },. ; comprise the set of observable Raman
scattering peaks [otherwise, F, (¢,t') ~0] and hence are in
principle obtainable from experiment. For the moment, we
fix t and ¢’ so that the F, (¢,¢') can be thought of as static
coefficients; then, the F, can be efficiently determined by a
collocation'? (or interpolation) technique. Evaluating
K(,t,'u) at the points u...1. 5, we solve the matrix equations
RF=K for F, ie., F=RK where

© 1986 Arnerican Institute of Physics 2353

Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2354

F=[F(t,t").Fn(tt")], K= [K(tt"p),...K(tt "y,
and R is the function matrix R;; = exp(iu,@;). If the set
{w, } is nearly complete for the kernel K(#,t',u) ( a condi-
tion readily achieved in practice, as will be shown below),
the error in this procedure is quite small.

For a single mode, the w; are equally spaced (represent-
ing overtones and anti-Stokes lines), and upon choice of the
appropriate equally spaced u;, the method is equivalent to a
discrete Fourier transform. For unequally spaced frequen-
cies, a nonlinear least-squares routine is used to optimize the
collocation points. The latter technique will not be explicitly
employed in this paper, but it is an integral aspect of practi-
cal muitimode simulations, and will be discussed at length in
a future publication.

Application of the above procedure for each 7 and ¢’
yields a set of kernels F,, (¢,¢'). For delta-function scattering
peaks, the excitation profile of the frequency @, is then

I,(E) = fw fw dtdt'exp[ —IE(t' —t)]
() 0

Xexp[ —T(t+1t")]F, (1t"), (2)

where I is an electronic relaxation parameter.

If we assign each scattering peak a line shape function
L, (w,,»), a complete scattering profile at laser excitation
energy E is obtained via

Iz (@) =Y L(EYL,(0,0) .

Thus, determination of the F,, (¢, ") completely specifies the
entire set of Raman data.

Application of the above procedure to the exact three-
dimensional approach of Ref. 1 allows considerable reduc-
tion of the number of u time points and enhanced resolution
of scattering peaks for systems with a moderate number of
high frequency modes. When a large number of low frequen-
cy modes are to be explicitly included in the calculation,
basis functions of the form exp(iw,u) become ineffective;
instead, other functional forms (e.g., Lorentzian or Gaus-
sian functions) should be used in Eq. (1). This will be inves-
tigated in subsequent work.

B. Decoupling approximation

Our basic approach throughout this section will be to
calculate the exact F, (¢,¢') using the matrix method of Ref.
1 (see also Refs. 10 and 11) at a limited number of points
(t,¢'), and fit our approximate function to these points. The
fundamental structure guarantees exact results in the low
temperature limit. On this base is superimposed satisfaction
of a sum rule ensuring exact integrated excitation profiles,
and a correlation function which depends explicitlyon ¢ — ¢’
to dephase the correction term at large ¢ — ¢’ separations.
This last modification is required if the sum rule imposition
is to be maintained for high temperatures.

It is easily shown (see the Appendix) that, at low tem-
perature, the functions F, (¢,¢") factor (or decouple) into a
form

F (tt)=A, (A7 (). (3)

This expression is also approximately valid at small zand ¢,
as shown in the Appendix.
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The function A4, (¢) is obtained as follows. We choose a
small value of ¢ (#,) such that w,f,€1 and calculate
F, (1, — t,); then from Eq. (3),

A, (1) = [F,(to, — 1)1 (4)
The set F, (2,,20),..-.F, (tx,t,) are then obtained (7,,...,ty are

equally spaced time points, to be Fourier transformed over
as in Eq. (2)] to yield

A, () =F,(1;,5)/4 .} (t) . (&)
At low temperatures, this procedure alone is sufficient to
yield highly accurate results. Numerous calculations using
different values for 7, show that the approximate kernel is
insensitive to this parameter as long as , #,<1. This is illus-
trated numerically in Table V in the Appendix which com-
pares the approximate values of F(#,¢ ') obtained using three
different values of ¢, with those obtained from the exact
method.

A useful improvement at finite temperature can be ob-
tained by noting that the zeroth moment (integrated intensi-
ty) of an excitation profile is given by

Mo=jw 1, (EYdE
=jfdeexp[i(t—t')E]e’m“"’F,,(t,t')dtdt'
=ff&(t-—t’)exp[-l"(f—i—t')]F,,(t,t')dtdt’

= Jdt F,(t,tyexp( —2T't) .

Thus M, depends only on F, (1,t); by fitting our ap-
proximate function to the exact F, at all pairs (¢,2), we
ensure that the correct M, is obtained. To do this, we take as
an ansatz a new functional form

(6)

Because the exact F, (,2) is real, G(2) is also real. At small ¢,
G(1)—0, so our procedure in finding 4, (¢) [Egs. (4) and
(53] is still valid because G(#,) can be approximated as zero.
G (¢) is then found via
172
1 ] .

We have always found that the quantity in brackets on the
right-hand side is greater than zero.

A problem arises for high temperature and large qua-
dratic coupling or mode mixing. For these cases, G(¢) be-
comes quite large; then the assumption G(1,)-G(¢#) =Ois no
longer rigorously valid, and serious errors in F, (£,t') for
large |t — ¢'| result. This difficulty is remedied by introduc-
tion of an explicit dephasing function H(z — t"). We choose
a value ¢, such that G(¢;)=1 and compute the exact
F,(t,,t') for all . The accuracy of the calculations are not
sensitive to the precise value of ¢, chosen.

We take as our final ansatz

F,(tt")=[14+ GGt )H(t—1t")]4,(H) A7 (") . (7)
[Notethat H(t — t ') mustequal H * (¢’ — t)inorder for our

F,(tt")=[14+G()G(t")]4, ()4, (t").

F (60
4, ()

G(1) =[

J. Chem. Phys., Vol. 85, No. 5, 1 September 1986
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. M. Jean and R. A. Friesner: Multimode resonance Raman spectra 2355

approximation to preserve the exact
F,(tt"y=F}F(t'0).]

We obtain H via

symmetry

F,(t,t")
4,04, (@")
so that H is invoked only if Eq. (6) becomes inadequate.
Physically, the role of H(z —t') is quite transparent; it
damps the correction factor G(¢) G(¢ ') when the kernel con-
tains extensive destructive interference (quadratic coupling
and mode mixing are particularly effective in creating this).
The necessity of this correction can easily be observed by
comparing the approximate F, (,¢ ') with its exact counter-
part directly in the time domain.

The above three-step procedure is easily automated
computationally and requires only 3NM kernel points
(N = number of collocation frequencies, M = number of ¢
points) as opposed to NM ? points in the method of Ref. 1.
Assuming 30-300 time points are required, a factor of 10—
100 in reduction of computation time is expected (genera-
tion of the kernel is overwhelmingly the most time consum-
ing part of the calculation). This is confirmed explicitly in
our numerical results.

H(t,—t’)=[ —11/G()G(¢t')  (8)

C. Fourier transform of the approximate kernel
The excitation profile of a mode @, is given by

me Tmax
1,(E) =f f e EW=DF (tt)e T+ drdr’,
0 0

(9

where T, is chosen so that exp( — I'T,,,, ) is negligible.
To implement this efficiently, we change variables to
t,=1/2(t+1t"),t_=1/2(t —t'); then

Tm!x
I, (E) =J dt_ exp(iEt_)

Trnax

2¢_
xf di, e "F,(t, ). (10)
(1]

Symmetry properties of the kernel can then be invoked
to yield

Tmﬂx
I,(E)=2 Re[f dt_ exp(iEt_)S(t_)] , (1)
0

where
28 .
S(t) = f dt, e "“F,(¢,,t ).
(1]

Thus, S(¢.) is only evaluated once, and then employed
to compute I, (E) for all values of E via a one-dimensional
Fourier transform (if desired, an FFT can be utilized in the
last integration). This reorganization of the integration en-
sures that these steps require only a small fraction of the total
computation time.

D. Block factorization

In a typical practical multimode problem, not all vibra-
tional modes will be coupled via Duschinsky rotation in the
excited state. To evaluate the kernel most efficiently, the cal-
culation is divided into a product of coupled blocks, as indi-
cated in Ref. 1. After applying the collocation method to

each block, the expression for the overall correlation func-
tion for an excitation profile reads

NB
F,(t)y=T[ £ ),

m=1
where NB is the total number of blocks, and £ { is the appro-
priate correlation function from each block. The scattering
frequency associated with F,, is

w, =Y oy .
m

Thus a fundamental of frequency @, from block / is
composed of onefactor £ (¢,¢ ') associated with the colloca-
tion function exp(iw.u), while the remaining functions

.1 (t,t") are obtained from the m #/ block Rayleigh lines
(o, =0). Similarly, combinations of modes from two dif-
ferent blocks are assembled from the product of f{™ (z,¢")
i (t,t') with the remaining Rayleigh functions. In princi-
ple, all possible transitions can be obtained by this method;
in practice, single and double substitutions should be suffi-
cient in most cases of interest.

In this paper, only results generated from a single block
are presented. The block factorization method will, how-
ever, yield order of magnitude reductions in computation
time for large systems, and is therefore an important adjunct
to the present approach. It will be explored in detail in forth-
coming work.

(12)

lll. SINGLE MODE EXCITATION PROFILES

In order to test the validity of our approximation, we
have performed numerous calculations on both single and
multimode systems using the exact and approximate meth-
ods. For one mode systems, we compare our results with
those obtained using the transform method of Page and co-
workers.>™ The transform method results are scaled such
that the integrated intensity of an excitation profile is equal
to that obtained from the exact matrix method. In our imple-
mentation of this approach, we use the excited state frequen-
cy in Eq. (3) of Ref. 8, which has been shown to improve
accuracy for systems with quadratic coupling. The absorp-
tion spectrum required to implement the transform method
was computed by using the numerical methods of Ref. 1,
with only one exponent combining step being required.

For a single mode, we write the Hamiltonians for the
ground and excited states as

Hf=w/2(b*b+bb*), (13a)
He=He4gb+b*)+v(b+b™)?, (13b)

where w is the oscillator frequency and & *,b the boson cre-
ation and annihilation operators. The vibronic parameters g
and v describe the equilibrium displacement (linear cou-
pling) and frequency shift (quadratic coupling) of the excit-
ed state relative to the ground state.

In all the results presented here, we have set the frequen-
cy equal to 1.00 and scaled all other parameters to this value.
Thus the temperature parameter S is actually fo( = v/
kT). Values of 8 = 1.0 and 0.5, for example, correspond to
room temperature for 200 and 100 cm ™! modes, respective-
ly. The linear coupling parameter g is related to the dimen-

J. Chem. Phys., Vol. 85, No. 5, 1 September 1986
Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2356 J. M. Jean and R. A. Friesner: Multimode resonance Raman spectra

TABLE 1. Parameters for one mode system (@ = 1,00, ' = 0.2).

Case g v B n,
1 0.55 0.00 1.0 12
0.5 14
2 1.00 0.00 2.0 20
1.0 22
0.5 24
3 0.55 - 0.10 1.0 16
0.5 20
4 0.55 0.40 2.0 16
0.5 24
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FI1G. 1. REP for fundamental of one mode system case 1. (—) exact; (--)
decoupled approximation; (---) transform method. (a) B=1.0; (b)
B =0.5.

sionless normal coordinate displacement A by the formula

g=— Aw
V2
The quadratic coupling parameter v is related to the excited
state frequency by

o = [(0)* + 2w]"2.

The number of time points n, for the zand ¢’ dimensions
in general depends on the resolution desired, and thus will
depend on the extent of vibrational dephasing and on the
Lorentzian (lifetime) damping factor I'. Unless otherwise
specified, the results discussed in this paper were calculated
using n, = n,. = 36 with a damping of I" = 0.20.

The number of ¢ time points, or equivalently the num-
ber of collocation frequencies, depends on the number of
bands present in the scattered spectrum (anti-Stokes bands
included). Large values for the coupling parameters and/or
high temperatures naturally require a greater number of
points to achieve the desired accuracy. The Hamiltonian pa-
rameters along with the number of collocation frequencies
for each calculation are shown in Table I. These values were
chosen to ensure convergence; one could make do with a
smaller number of collocation frequencies with little sacri-
fice in accuracy.

We begin our discussion of Raman excitation profiles
(REP’s) for one mode systems by considering an oscillator
with moderate displacement in the excited state. The REP of
the fundamental is shown in Fig. 1. The quantity plotted as
intensity corresponds to I, (E) in Eq. (2). The abscissa cor-
responds to the incident frequency minus the zeroth order
energy separation of the ground and excited states. Note that
the 0-0 band occurs at the Franck—Condon energy shift
AE= — g/o.

Since the value of g in this example represents a signifi-
cant displacement of the excited state, we observe reson-
ances at a number of excited vibronic levels.

For both temperatures chosen, agreement between the
exact and approximate matrix method calculations is quan-
titative (the curves are indistinguishable). While the trans-
form method gives excellent results at 8 = 1.0, it breaks
down somewhat when the temperature is raised to £ = 0.5.
For displaced oscillators with smaller values for g or at lower
temperatures, we have found that the decoupled approxima-
tion and transform method agree with the exact result.

The breakdown of the transform method at relatively
large displacement is further exemplified in Fig. 2, which
shows the REP of a one mode system with g = 1.0 at three
different temperatures. At high temperature we begin to see
some discrepancy between the exact and approximate re-
sults, although agreement between the two remains quite
good.

Since modes with appreciable displacement in the excit-
ed state will show significant overtone intensity in the scat-
tered spectrum, an important aspect of any computer simu-
lation of experimental data of such systems will be modeling
the overtone REP’s in addition to that of the fundamental.
As an example, Fig. 3 shows the REP of the first overtone at
low and high temperature for the same system shown in Fig.
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Figures 4 and 5 display REP’s for systems which con-
tain both linear and quadratic coupling. It is clear that at
high temperatures the transform method consistently over-
estimates the intensity of the highest energy vibronic peak.
While the decoupling approximation displays some discre-
pancies (especially for high temperature and negative qua-
dratic coupling), it does provide a superior fit in all the cases
we have examined.

We have performed a series of calculations with v rang-
ing from + 0.05 to + 0.40 (not shown here) with similar
results. It is apparent from comparing values of the kernel
for the exact and approximate methods directly in the time
domain that for systems with negative frequency shifts, rep-
resenting closer spacing of vibrational levels in the excited
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FIG. 2. REP for fundamental of one mode system case 2. (—) exact; (i)
decoupled approximation; (---) transform method. (a) §=2.0; (b)
B=10; (c) B=0.5. )

state, the form of the correlation function H(z —¢’) is not
valid at all times. Calculation of two functions, one at short
times and one at long times, would more closely model the
dephasing present in these systems and lead to more accu-
rate results; however, this would necessitate generation of
more kernel points using the exact method and lead to in-
creased computation times.

IV. MULTIMODE EXCITATION PROFILES
" Forsystems with more than one mode we generalize Eq.
(13) to
He=3 2 b/ b +b,b
- Z ?( i i + i Y ) ’

i=1

(14a)
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i ‘
He=H*+ ¥ {g(b, +b) +v(b, +5+)%

i=1

N
+ 3 ¥ 8,6, +57)5+b%)

i=1j>1

+ (b +b;7)(b; +b.)}, (14b)

where ¥ is the number of normal modes and §;; elements of
the Duschinsky (rotation) matrix. For two mode systems,
28}, (@,@,) /% is the sine of the angle of rotation the normal
coordinates experience under electronic excitation.

For multimode systems in which mode mixing does not
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decoupled approximation; (---) transform method. (a) f=10; (b)
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play a role, the calculation can be factored into a product of
one mode calculations with G(¢), 4(?), and H(t — t’) com-
puted for each mode separately. In this section we focus our
attention on coupled systems for which such a factorization
is impossible.

Figure 6 presents REP’s for both modes of a two mode
system at # = 1.0 and 0.5. The Hamiltonian parameters of
this system are shown in Table II. In addition to being cou-
pled via Duschinsky rotation, both modes experience signifi-
cant displacement and frequency:shifts in the excited state.
Agreement between the exact and approximate methods is
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S.00

excellent. In the high temperature spectra, however, we note
spurious oscillations in the approximate profile far off reso-
nance. These are manifestations of the problem of modeling
the vibrational dephasing in systems which have different
ground and excited state frequencies with a single correla-
tion function of the form H(¢ — ¢'). As can be seen from the
spectra, however, these oscillations do not affect accuracy in
the region of interest; thus such occurences will present no
problems in actual simulations. :

Figure 7 shows the REP’s for the lowest and highest
frequency medes of a coupled five mode system at a tempera-

ture of 8 = 1.0. The Hamiltonian parameters for this system
are shown in Tables III and IV. We define a Duschinsky
matrix using the off-diagonal elements in the second order
term in the Taylor series expansion of the excited state Ham-
iltonian.

_ ( a 2 H ¢ )
7 \9Qi3Q; Jo.=0g =0

While the decoupling approximation underestimates
somewhat the intensity in the resonance region for the lower
frequency mode, the overall band shape is quite similar and
represents a reasonable approximation to the exact result.
For the higher frequency mode, agreement between the ap-
proximate and exact profiles is excellent.

V. SCATTERED PROFILES

In Ref. 1 we pointed out a distinct advantage the matrix
method has over other time-dependent methods in that the
entire Raman surface I(E,w, ) is produced.

We have found that in order to-achieve a desirable level
of resolution for scattering profiles, upwards of 100 time
points along the i time direction must be used if an ordinary
Fourier transform in ux is employed. Replacement of the
Fourier transform by the collocation method of Sec. IT A
produces a delta function spectrum which can be used to
model a scattered spectrum by assigning each peak a line
shape function defined by one or more broadening factors;
this procedure generates much more accurate scattering
profiles with less computational effort. In the examples pre-
sented here, we use a Lorentzian line shape defined by the
parameter y. Extension to other types of functions (Gaus-
sian, Voigt, etc.) presents no difficulties.

Figure 8 shows a scattered spectrum for the one mode
example case 2 (Fig. 2). The incident frequency is in reso-
nance with the 0-0 band. The large displacement (g = 1.0)
coupled with a sparse vibrational manifold produces a long
progression.

Scattered profiles for the two mode system of the pre-
vious section are presented in Fig. 9. The incident frequen-
cies are approximately in resonance with the 0~0 band (a)
and the 0-1 band (b) of the lower frequéncy mode. For both
these cases, the differénce between the approximate and ex-
act results is negligible.

Finally, Fig. 10 shows the Raman spectrum of the five
mode system with an incident frequency of @, = 1.0. For
the most part, agreement between the exact and approxi-
mate calculations is excellent; however, we note some discre-
pancies in the overtone region. This example illustrates the
limitation of the approximation in treating strongly coupled
systems, and points out the need for an exact method if pre-
cise quantitative results in all spectral regions are desired.

Vi. CONCLUSION

We have presented two significant advances in the use of
the matrix method to generate resonance Raman line
shapes. The first of these, use of the collocation method, was
motivated by the fact that in general we know the entire set
of frequencies corresponding to the ground surface before
we undertake a computer simulation, so an integral trans-
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form over a large number of time points and an essentially
continuous set of frequencies is inefficient. This advance
alone produces a fourfold or more decrease in the computa-
tion time.

The second advance is the use of a factorized form for
the coefficients F(t,t’) appearing in the Fourier expansion
for the kernel. This technique necessitates generation of the
exact kernel at a relatively small number of time points. De-
pending on the number of time points required, the decou-
pled approximation can save from one to two orders of mag-
nitude in time.

We have tested this approximation with a series of one,
two, and five mode calculations varying the excited surface

over a wide range of geometries. The approximation pro-
vides an excellent fit to the exact spectrum in all cases except
when there is substantial quadratic coupling at high tem-
perature ( 8 = 0.5). This value of £ corresponds to room

TABLE I1. Parameters for two mode systems (I" = 0.2).

Mode w g v B n,
1 1.00 0.40 0.20 1.0 26
1.50 0.50 0.30 0.5 30

S, =0.25
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five mode example. (a) w5 = 1.00; (b) w5 = 3.00. B = 1.0.

TABLE II1. Parameters for five mode systems (n, = n, = 36,n, = 40).

Mode ) g v

1 1.00 0.30 0.30
2 1.25 0.35 —0.20
3 1.75 0.60 - 025
4 2.25 0.75 Q.10
5 3.00 1.20 0.00

TABLE IV. Duschinsky matrix for five mode systems.

Mode 1 2 3 4 5

1 0.00 0.10 0.20 0.20 0.35
2 0.10 0.00 0.10 0.15 0.20
3 0.20 0.10 0.00 0.20 0.25
4 0.20 0.15 0.20 0.00 0.25
5 0.35 0.20 0.25 0.25 0.00

temperature or above only for modes with frequencies of 100
cm™! or less. Highly accurate simulation of such modes
would require the exact method; however, the decoupled
approximation still provides an excellent starting point for
simulation of these types of systems.

For all the one mode cases studied, our approximate
method performs as well as or better than the transform
method although the latter is more efficient computational-
ly. The method of choice in performing a simulation will
depend on the objective of the calculation, the nature of the
system, and the desired accuracy.

As discussed in detail in Ref. 9, accuracy of the trans-
form method increases as the number of relevant modes be-
comes larger, i.e., as the kernel is required only at shorter
times. This will be true of the decoupling theory as well, for
similar reasons. The question of the quantitative adequacy of
various approximations for specific multimode systems re-
mains to be investigated; the transform approach is likely to
be inaccurate primarily (as indicated in Ref. 9) when con-
sidering strongly coupled, low frequency modes as individ-
ual scattering modes rather than as part of a heat bath.

While calculations on small model systems have a defi-
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FIG. 8. Scattered profile for one mode system case 2. (—) exact; (-) de-
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nite heuristic value, the real utility of our method will be in
modeling excitation and scattered profiles of large multidi-
mensional systems such as transition metal complexes or
protein chromophores. To simulate spectra of these systems,
extensive searches of parameter space will be required before
a set can be found that will simultaneously fit the wealth of
experimental data available on these systems. The use of the
decoupled approximation along with block factorization
will facilitate this search. Once a set of parameters is found
which provides a reasonable fit to the data, the calculation
can be refined using the exact method. Investigations along
this direction are currently in progress.
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APPENDIX
The Raman intensity at frequency » can be expressed as
a Fourier transform over a time-dependent kernel, A (¢,¢ ' ):

ia‘}’,ﬁ/l (a’) = (ZMZ)_IMng;gM%eMie

xf dpei““’f dtf dt’
— w0 0 (4]

@expl —iE(t'—t) —T(t+1t")]A(t,t"u),

where E is the incident energy and I' the electronic damping
term. M §° is the matrix element of the § component of the
system’s electronic transition dipole operator between the
ground (g) and excited (e) states. The exact expression for
the kernel within the adiabatic, Condon, and single elec-
tronic excited state approximations is (see Ref. 1)

K(t,t'u) =ZA(t,t ' u)
— Z (nleiz’Heein’l

CHH® it — i g
Xe itH e it t+u—IiBYH |n), (Al)

where Z is the partition function, and the trace is over the
eigenstates of the ground state Hamiltonian H*.

We want to show that the coefficients in the Fourier
expansion of the kernel [Eq. (1) ] can be factored into a form

F,(tt')=4,(04,F (1))

atT=0K.
We denote eigenkets of the ground and excited state
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TABLE V. Exact and approximate values for the Fourier expansion coefficients of Eq. (1) at selected values of £ and ¢ for the two mode system in Table I1.
The values listed are for the fundamental of the lower frequency mode (@ = 1.00) at 8 = 1.00.

e

EXACT APPROXIMATE

oty =0.05 oty =0.10 Wty =0.15
o o ReF(t,t')  ImF(t,t') ReF(t,t')  ImF(t,t') ReF(t,t')  ImF(t,t')  ReF(t,t") ImF(t,t')
6.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.00 1.20 2.186x10"% ~1.369x1077 2.074x10°%  -1,390x10"7 1.985x10°®  -1.415x10°7  1.919x107® 1.44ax10°7
0.00 2,40 -5.85310°% ~1,276x1077 -6.1511x10°8 -1,285x10°7  -6,460x107% -1.299x10°7  -6,782x10°%  -1.319x1077
0.00 3.60 ~-8,189x10"® -7,679x10"¢ -8.404%1078  -7,633x10"®  -8,650x10°%  -7,623x107%  -8.919x10"®  -7.647x10"*
1.20 0.00 2.186x10"%  1.363x1077 2.074x10°%  1.3%0x10"7 1.985%x10°°  1.415x16™7  1.s19x107®  1.444x10”7
1,20 1.20 9.467x1072 ~1,531x107° 9.467%10°2  -4.553x10~°  9,467x10"2  -2.394x10710  9.467x10"2  -2.941x10720
1.20 2.40  8.35%1072 -6.179x1072 §.745x1072  -5,345x10"2 8.697x10°2  ~5.419%10°2  8,642x1077  ~5,499x1072
1.20 3.60  4.048x1072  -7.057x1072 4.,048x1072  -7,057%10"2 4.048x1072  -7.507x1072  4.048x10°2  -7,057x107?
2.40 0.00 =-5.853%10"%  1.276x10~7 -6.151x10°8  1.205x10"7  -6.463x107%  1.299x10°7  -6,782x107% 1.319%10°7
2.40 1.20 8.35%10°2 6.179%1072 8.745x1072  5,345x1072 8.697x102  5.419x1072  8.642x1072 5.499%10"2
2.40 2.40 1.214x1071  -1.124x107% 1.214x10°1  -1,124x10"? 1.214x107)  -1.178x10"%  1.214x10°!  -g,870x10~*
2.40 3.60 8.715x10°2 ~4.269x1072 8.715x107%  -4,269%1072 8.715x1072  -4.269x1072  8,715x10"2  -4.269x1072
3.60 0.00 -8,189x107® 7.679x1078 ~8,404%10°8  7,633x10"®  -8.650x10"® 7.623x107%  ~B.919x10"% 7.647%10®
3.60 1.20 4.048x1072  7.057x1072 4.972x10°%  ¢,439x1072 4.892x10°2  6.500x1072  4.809x1072 6.562x1072
3.60 2.40 8.715X10°2  4.269x1072 8.715x1072  4,269x107? 8.715x102  4.269%10"2  8.715x1072 4.269%1072
3,60 3.60 8.416x10"2 -6.650x10°10 8.416x10"2 -9,055x10°10  B,416x1072  -9.720x10710  8.416x10"2  -7,572x10"10

Hamiltonians by |n) and |m), respectively. By inserting a
complete set of states between each pair of exponential oper-
ators, we can rewrite Eq. (A1) as

K@tw) =3 33T (nlmd (mln') ol |m'y (')

n

® eir'E,,, e o BtE, . e Kt'—t—iBE, eiy(E,,. —E,) .

(A2)

At T = 0 only the zero phonon state is populated so the sum
over n collapses to one term. The energy of this state is de-
fined to be zero. By comparison with Eq. (1), we see that for
scattering into the state |/ ),

Fi(t) =3 3 {0lm) {(m|l){I|m’) (m’|0)

@& Em g Em (A3)

Since the sums over m and m' are independent of one
another, the expression can be factorized into the form

Fi(tt') = [z O|m"y{m'|l) e——itEm.]

® [; (O|m){m|l) e“’lE"'] . (A4)

At finite temperature, the coefficients in Eq. (1) can be

factored atshort (zand ¢ ') timesinto a form analogous to Eq.
(A4). This is most easily seen by writing the finite tempera-
ture version of Eq. (A3) as

Fth=Y e PEn g i —DE Y (n|m)

X (m|l + ny e & 3 (nm'y(m'|l + n) P

(AS)
and expanding the exponentials in time to first order to give

Fi(tt) =3 e "[1—iE,(t'— D]
X3 {n|m){m|l +n)(1 —iE,t")

@Z (njm"y{m'|l + n)(1 +iE, 1) . (A6)
Defining
o, =Y E,(n|m)(m|l +n) = Z E,. (n|m')(m'|l + n)

and using the relation

2 (”*m)(mll'i‘ 3) = 6n,n+1

m
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allows Eq. (A6) to be written (for non-Rayleigh lines) as
Ftty=Se ™2 tt'[1—iE,(t'—1)]

=u'[& +i(t—1t")E,], (A7)

where
&= Ze—BE"‘Ti

and

Equation (A7) can also be arrived at by writing F, (¢,t') in
the factorized form-

Fi(t)y =& {t[1 +i(6/6)1 1}
o2 {e'[1 —i(g/ENt']},
which agrees with Eq. (A7) to third order and has the form

J. M. Jean and R. A. Friesner: Muitimode resonance Raman spectra

F,(t,t')y =A(t)A *(¢'). Exact and approximate values of
F(t,t') at selected time points for @ = 1.00 of the two mode
system discussed in Sec. IV are shown in Table V.
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