Numerical tests of a generalized mulitilevel vibronic coupling formalism
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An approximate matrix continued fraction method for calculating optical line shapes of
molecular systems with multilevel excited state manifolds is compared with converged basis set
results. It is shown that the theory gives correct spectral envelopes for all parameter values

studied.

I. INTRODUCTION

The coupling of Born—Oppenhemier surfaces by vibra-
tional degrees of freedom (and the consequent breakdown of
the Born-Oppenheimer approximation) is an important ef-
fect in many processes in chemical physics. For systems with
well-defined minimum configurations, an expansion of the
coupling in powers of the vibrational coordinates is often
rapidly convergent. This type of approximation is presently
necessary if explicit solutions are desired for complicated
systems.

The simplest models include only a linear dependence of
the Hamiltonian on the vibrational coordinate. Such models
have been widely utilized in studying a variety of spectro-
scopic and dynamical problems, e.g., spectroscopy of mixed
valence compounds,'*'* Jahn—Teller systems,'” radiation-
less transitions,'®'° electron transfer,?® and absorption and
circular dichroism of molecular aggregates.*®

The most elementary linear vibronic coupling Hamil-
tonian consists of two electronic states coupled to a single
vibrational mode. This problem, which can be accurately
solved numerically,'®!! has been studied by a number of
workers using approximate techniques in order to obtain in-
sight into the effects of vibronic coupling on the manifold of
eigenstates.*'>'> From these investigations, the dependence
of the energies and wave functions of the Hamiltonian pa-
rameters can be understood, and several regions of param-
eter space can be delineated.

Reliable results from matrix diagonalization are limited
to relatively small systems because basis set size grows rapid-
ly as the number of electronic states and/or vibrational
modes increases. For many realistic systems, therefore, one
must resort to approximate methods.>*"8 The standard ap-
proach has been to use perturbation theory in either the elec-
tronic or vibronic coupling parameters. While this is often
acceptable, there are substantial regions of parameter space
for which no perturbative approach is accurate.* Thus, it
would be desirable to have an efficient approximation tech-
nique which can be used for all coupling strengths in multile-
vel, multimode systems.

In a previous paper, we proposed such a method, based
on a continued fraction algorithm suggested by Sumi'® and
generalized by us (via a matrix formulation) to explicitly
incorporate molecular cluster interactions.”*' The present
applications are to one-exciton optical properties of molecu-
lar systems with vibronic interactions among excited state
levels (e.g., absorption, circular dichroism, linear dich-
roism); a treatment of molecular crystals is presented in
Refs. 21 and 22.
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In this paper, we report numerical results (compared
with large basis set calculations) for a simplified version of
the matrix continued fraction algorithm proposed in Ref. 1.
We show that this approximation produces quantitative
agreement for the spectral envelope with basis set results
over a wide range of parameter values for two- and three-
level excited electronic manifolds. The method is straight-
forward to implement numerically, computationally fast,
and easily generalized, e.g., to continuous phonon bands.
While only zero temperature results are presented here, pre-
liminary work indicates that agreement and computational
efficiency are comparable for a finite temperature version of
the theory. As long as one does not require very high resolu-
tion spectra (e.g., for comparison with gas phase experi-
ments), the present approach appears to have no obvious
deficiency. Applications to experimental systems and exten-
sions to two-particle properties (e.g., resonance Raman,
density matrix evolution) are currently in progress.

Il. THEORY

A. Effective Hamiltonian

Consider a coupled exciton—-phonon system constructed
with an electronic ground state, M interacting excited elec-
tronic levels, and N harmonic vibrational modes.

The ground state is taken to be a crude Born—Oppenhei-
mer state with electronic energy E, set equal to zero; the
excited state surfaces are expressed in terms of the ground
state normal coordinates, {Qy }Y_ ,. In this paper only lin-
ear coupling terms in the excited-state potential energy sur-
faces are considered. The displacement of the normal coordi-
nate of mode n, Q,, in a state { corresponds to a diagonal
term " in the vibronic coupling tensor 8. An exchange
vibronic coupling of states / and j through mode » contrib-
utes an off-diagonal term with magnitude 8 . The frequen-
cies {w, }2'_, are taken to be independent of the electronic
levels.

Taking the zero of energy to be

1 X 1 X
— €& —E, +— > w,(fi=1)
N ,-Z', ) ,; ’
the effective one-exciton excited state Hamiltonian is written
in second quantized form as

N M
H=3 &G+ 3 o,b}b,

i j= n=1

1
M N
+ 3 > 0N, +b). (1)

n=114yj
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Here |i) is a projection operator for electronic level / with
energy €;,€; is the off-diagonal electronic coupling between
levels i and j, w, is the frequency of mode 7, and 6 { is a
vibronic coupling parameter as explained above. 5| and b,
create and destroy a vibrational quantum in mode », respec-
tively. The normal coordinate Q, can be expressed as

1
2

The singly excited states of the system are

Pa =Z C2\in), (2)
where
|im) = |51, sl 50 ) 3)

denotes a crude Born—Oppenheimer basis state of electronic
level |i) containing n; vibrational quanta in mode . In what
follows we calculate optical transitions from the ground
state vibronic levels to the one-exciton manifold spanned by
this basis set.

B. Basis set method

The matrix elements for the Hamiltonian in Eq. (1) can
easily be computed with the crude Born—-Oppenheimer basis
states [Eq. (3)]. The Hamiltonian matrix is then diagona-
lized numerically to give excited-state eigenvectors like Eq.
(2) with excited-state energies E, .

The ground state |O,n) is a tensor product of noninter-
acting harmonic basis functions with n; quanta in the jth
mode.

|O,n) = [0} |y} [ny)...|ny) (4)

for a general N mode system, where |0) is an exciton vacu-
um.
The electronic dipole moment operator p is defined as

p=> w0} + 12 0[], (5)

where p, is the electronic transition dipole moment for the
state /. The transition moment to the state & from the ground
state is then

N
Om|p|p,) = z w C2. (6)

i=1
For an isolated molecule, the optical absorption intensi-
ty I(F) can be formulated as

I8 =éz|(0,m|ﬂf¢’a)|z5(E—Ea)

—_zmnwn)exp(—ﬁzmnwn)! (7)

where

r(l) =m0

where 8 = 1/kT, and the partition function Q is

0-on~p5ma) ®

8(E) is the Dirac delta function. To take into account var-
ious line broadening effects, we replace §(E) by the Lorent-
zian line shape function

1
L(E) =— ,
(E) T BTt

(9

where 7 is a phenomenological damping factor. I( E) is then
evaluated by inserting the eigenvalues and eigenvectors ob-
tained from the diagonalization procedure into Eqs. (6) and
(7.

C. Matrix continued fraction method for one-exciton
Green’s function

Instead of explicitly computing eigenvalues and eigen-
vectors, it is possible to calculate the optical line shape di-
rectly from the one-exciton Green’s function matrix. The
Hamiltonian in Eq. (1) can be decomposed as H = H, + V
where

M N

i, j=1 n=1

(10)

and

N
4 3 0D lb, +b1). (11)
1ln=1

I
Mk

A

~.
I

We first define matrices G(E), €, and 0, whose elements are
G;(E),;, and 67, respectively. G(E) is the thermally
averaged one-exciton Green’s function matrix for Hamilton-

ian in Eq. (1):
G(E) =é2exp( —-BZ m,»,){m|D(E)m), (12)

where Qs the partition function, and D(E) is defined below.
G, (E) is the zeroth-order Green’s function matrix associat-
ed with H, in Eq. (10) and can be easily calculated from

Gy(E) '=(E—iy)1—¢, (13)

where ¥ is the line broadening factor chosen the same as in
Eq. (9).

For asingle vibrational mode, (m|D(E)|m) in Eq. (12)
has a straightforward representation as a matrix continued
fraction:

(m|[D(E)|m)~' =Gy (E) — T} (E) — TP (E),
(14)

Gy (E+w)—(m—1)8 L

0 (15)
0

Gy (E + 20) — (m—2)0-L10

and
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I'® = (m+1)0 L

0. (16)

G, (E—w)— (m+2)0

1 0

| Gy (E — 20) — (m +3)0--8
At zero temperature only the m = O vibrational level is occupied and G(E) is reduced to (O|D(E)|0) with Y =0.

G~ (E) = Gy '(E) — T (E).

a7

For a general multimode system, no such expression exists; the exact continued fraction is highly branched and thus quite
demanding computationally to evaluate. However, if the spectral envelope, rather than highly resolved vibrational lines, is of
primary interest, a simple approximation to the multiply branched continued fraction gives quite good results.

For the multimode system at zero temperature,
G UYE) =Gy (E) —Ty(E).

(18)

Our approximation consists of replacing the exact complicated branched structure for I',(E) with the expression

1

9,. (19)

To(E) = Y8,
" Gy NE—-w,) —230,

9,

" Gy NE-20,) —350,-0,

This approximation has several attractive features.
First, it is exact in two limits: the single mode (or narrow
band) limit and through second order perturbation theory in
the vibronic coupling tensor 0. Secondly, it is easy to imple-
ment numerically for an arbitrary (linearly coupled) exci-
ton—phonon system, and is computationally efficient. Final-
ly it is shown in Sec. III that, for line broadening of the order
of the vibronic peak spacing, quantitatively accurate results
are obtained when compared with basis set calculations for
all parameter values studied. We also expect that, as the den-
sity of vibrational modes increases, the approximation be-
comes reliable without phenomenological broadening (be-
cause a Markov picture, in which sharp structures are
washed out, becomes valid).

Having calculated G(E), the isotropic optical absorp-
tion intensity J(E) is obtained from

1
I(E) = —;ZPVW ImGi_,-(E), (20)
iJ
where p,; is defined in Eq. (5).

lll. RESULTS

The optical absorption spectra for the two- and three-
mode systems were calculated using both the approximate
continued fraction and the basis set method as described in
the previous sections. For comparison the spectra are nor-
malized to make the area under the spectral line equal to 1.0.

We used a CDC Cyber 170/750 main frame for all cal-
culations reported here. Because of the limitation of the al-
lowed memory space in the computer, the basis set method
implementation requires formulating the Hamiltonian ma-
trix in a band storage mode. The employment of a banded
matrix routine (e.g., EIGBS of the IMSL package) leads to
considerable reduction in computational effort. Banded
450 450 matrices (225 vibrational basis functions for each
electronic state) can easily be constructed and diagonalized
to give eigenvalues and eigenvectors. A smaller Hamiltonian
matrix, e.g., 162X 162 (81 vibrational basis functions for
each electronic state) was used for some small vibronic cou-
pling tensors.

Without loss of generality, we take the electronic inter-
action matrix e to be diagonal:

J 0 0
[g 3] and |0 O 0
o 0 -—-J

for two- and three-level systems, respectively. This situation
can always be produced via canonical transformation of the
electronic basis set. A range of energy level separations span-
ning the weak (J<w) and strong (J>®) electronic coupling
regimes was explored. The vibronic coupling parameters are
chosen to reflect typical values for molecular systems rang-
ing from weak to moderate coupling. All parameters are
scaled to the vibrational frequency @, (which is set equal to
1.0), and represented as multiples of it. The magnitudes of
the electronic dipole moments u,, x,, are set equal to 1.0,
respectively, in arbitrary units, and the dipole directions as-
sumed to be parallel.

For two excited electronic states, the above parameter
description corresponds physically, e.g., to a molecular
dimer with one excited state per molecule expressed in the
electronic eigenstate (denoted by 1 and 2) representation.
The coupling J is the splitting between these states while the
condition |p,| = |p,| = 1.0 indicates that both eigenstates
possess equivalent oscillator strength. The diagonal compo-
nents of 8, represent the equilibrium shift of coordinate j
from the ground state, while the off-diagonal component 8,,
induces mixing of the electronic eigenstates 1 and 2. For a
symmetric dimer, the diagonal components can be interpret-
ed as arising from symmetric coordinate motion, while the
off-diagonal components arise from antisymmetric motion.

For strong electronic coupling (J large as compared to
typical values of elements of @), absorption into the one
(E <0) and two (E > 0) electronic manifolds are reasonably
well separated, although the vibronic coupling produces
both symmetric progressions and mixing. AsJ decreases, the
two peaks merge into one; as |8| increases, the vibronic pro-
gressions become longer, and the spectrum tends toward
that of a monomer (weak electronic coupling). Intermediate
electronic coupling produces results between these ex-
tremes.
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FIG. 1. Spectra at various resolutions. (a) Narrow band limit; (b) a typical vibronic coupling case at high resolution; (c) the same as (b) but at medium

resolution; (d) the same as (b) but at low resolution.

The phenomenological damping factor y is related to
various line broadening factors and the lifetime of the excit-
ed states. The resolution of the optical spectrum is deter-
mined by 7. Three values of ¥ were investigated: (a)
¥ = 0.01 (high resolution) results in highly resolved spectra
with many discrete lines, as are observed in gas phase experi-
ments. (b) ¥ = 0.2 (medium resolution) yields a nontrivial
vibronic peak structure, but without sharp individual lines.
(¢) ¥ = 0.5 (low resolution) produces a single broad peak
(which may be significantly asymmetric). Spectra of types
(b) and (c) can both be observed in condensed phase envi-
ronments.

In the remainder of this section, we present graphs
(Figs. 1-6) comparing the optical line shape I(E) (in arbi-
trary units) from the basis set and matrix continued fraction
calculations. The energy E is in units of the frequency w,
(which is set equal to 1.0). The dotted line is the result of Eq.
(19), while the solid line is obtained from Eqs. (7)-(9). The
numerical values of w; (j# 1) and the elements of € and 8 for
Figs. 1-5 are given in Table I. The figure captions describe
qualitatively the type of parameter set under study. For Fig.
6 (three-level system), parameter values are given in the
figure captions.

When all modes have the same frequencies and vibronic
coupling tensors (the single mode limit), the approximate
Green’s function reproduces exactly the spectra from the
basis set calculation for any degree of resolution. A typical

o
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b
R
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<
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8
(=3 i) T T L
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ENERGY

FIG. 2. A narrow band limit spectrum. The approximate Green’s function
method reproduces high resolution spectra from basis set calculations.
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FIG. 4. Effects of different vibronic coupling tensors.
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FIG. 5. Spectra for randomly chosen parameter sets. FIG. 6. Three-level three-mode system. Only the results for small vibronic

coupling values are shown here. (a) A narrow band limit: J= 1.0,
@, =0, =, = 1.0, all §; =0.1; (b) A different frequency case: J = 2.0,
w0, =0.8, @, =06, 8, =0.2,8, =0.1 (i#)).

TABLE I. Parameter values and basis set size for two-mode, two-level system numerical examples.*

Figure J o gld gln g2d g2n H matrix ¥

1(a) 1.0 1.0 0.5 0.4 0.5 0.4 450450 0.01
1(b) 1.0 0.5 0.7 0.7 0.3 0.3 450X 450 0.01
1(c) 1.0 0.5 0.7 0.7 0.3 0.3 450450 0.20
1(d) 1.0 0.5 0.7 0.7 0.3 0.3 450450 0.50
2 1.0 1.0 0.5 0.5 0.5 0.5 450450 0.20
3(a) 0.1 0.5 0.5 0.5 0.5 0.5 450450 0.20
3(b) 0.5 0.5 0.5 0.5 0.5 0.5 450X 450 0.20
3(c) 1.0 0.5 0.5 0.5 0.5 0.5 450450 0.20
3(d) 2.0 0.5 0.5 0.5 0.5 0.5 450 450 0.20
4(a) 1.0 1.0 0.5 0.5 0.7 0.7 450450 0.20
4(b) 1.0 1.0 4b> 0.4 4b* 0.3 450X 450 0.20
5(a) Sa* 0.8 0.5 0.3 04 0.2 162162 0.20
5(b) 1.0 0.6 0.6 0.4 0.4 0.3 450450 0.20

* All parameters are expressed in (energy) units of the vibrational frequency w,, which is set equal to 1.0. The column labeled ““H matrix” gives the basis set
size used in the numerical diagonalization procedure.
O =03 =g1d,0{ =0 =gln 6P =017 =g2d, 61 = 05 = g2n.
4b+ 0{’ =06,05 =070 =0.7,62 =0.5.
Sa* €,,=1.0,€,,=0.56,=05,6,= — 1.0.
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high-resolution spectrum for a system in the single mode
limit is shown in Fig. 1(a); all of the spectral lines are in
excellent agreement with the basis set result.

As shown in Fig. 1(b), the approximation made on the
continued fraction does not exactly reproduce highly re-
solved spectral lines (¥ = 0.01) for systems with different
frequencies and/or vibronic coupling tensors. However, the
gross peak structures (¥ = 0.2) and the spectral envelopes
(7 =0.5) are in good agreement [Figs. 1(c) and 1(d), re-
spectively].

In the remainder of the paper we set ¥ equal to 0.2 (me-
dium resolution), as the intended applications of our formal-
ism are to condensed phase systems. Accurate simulation of
gas-phase spectra requires use of an explicit basis set meth-
od.

We now consider the effects of variation in J, @, and the
elements of 8 for a two-mode two-level excited state mani-
fold.

Figure 2 illustrates that Eq. (19) is exact in the narrow
band limit (@, = w,, 8, = 0,). This could also be proven
analytically by means of a canonical transformation.

Figures 3(a)-3(d) shows the effect of setting w, equal
to 0.5. This results in some erroneous frequency denomina-
tors in the perturbation expansion of G(E) as compared to
an exact prescription. As can be seen, at a resolution of
y = 0.2, the resulting error is quite small for all values of
electronic coupling J, and despite use of moderate values
(0.5) for the elements of 0. Calculations were also per-
formed with all 8 set equal to 1.0. Agreement was generally
acceptable, but the results are not shown here because the
basis set results were not fully converged.

Differences in the vibronic coupling tensors 8, and 0,
also lead to small discrepancies; here the numerators ( coeffi-
cients) of exact diagrammatic expansion are only approxi-
mated by Eq. (19). As shown in Fig. 4, these effects are also
small.

Figure 5 shows two typical spectra generated from a set
of randomly chosen values of @,, 0,, 0,, and J. We have not
uncovered a single two-mode two-level case where agree-
ment at the ¥ = 0.2 resolution level is not comparable to that
shown here (this does not rule out the possibility of disagree-
ment for extremely large and different 8 values, which we
were unable to study because of failure of basis set conver-
gence). Higher resolution agreement generally improves as
®; — @,, 0, — 0,,and |0,],|0,| diminish (the last of these is
due to exact limiting behavior in the second order of pertur-
bation theory).

Figure 6 displays several calculations for an excited
state manifold with three electronic states and three vibra-
tional modes ( 192 basis functions were employed in the basis
set method). Storage limitations restrict consideration to 0
matrices of small amplitude; otherwise, it would be difficult
to converge the basis set computations. For the examples
presented, agreement of approximate and basis set methods
is comparable to that for the two-level two-mode cases.

IV. CONCLUSIONS

At this point, it is appropriate to compare the approach
in this paper with other work. Although the finite tempera-

ture and continuous phonon bandwidth versions of the the-
ory will appear in a subsequent publication, our results to
date indicate that they are equally successful; this will be
assumed in what follows.

As stated in Ref. 1, the matrix continued fraction ap-
proach is a natural outgrowth of the work of Friesner and
Silbey.* Greater accuracy is achieved at the cost of raising
the computational effort from minimal to moderate, and ob-
scuring the simplicity of the earlier work. Thus, the present
method is preferable for quantitative studies. An additional
benefit is the reliability of a single method for all electronic
parameter regimes (weak and strong electronic coupling).
This means that the partitioning scheme suggested in Ref. 1
(into high- and low-frequency vibrational modes) can be
dispensed with in many cases.

As mentioned in the Introduction, perturbative ap-
proaches, whether in the electronic coupling constants (lin-
ear response theory,’ classical coupled oscillator theory®) or
in the exciton—phonon interaction,” have serious restrictions
in their regions of validity. In addition, these methods ordin-
arily entail a Markovian approximation, which eliminates
detailed spectral features. The variational small polaron
method (the most flexible perturbative approach) shares
this last defect, and is also invalid in the adiabatic limit.>

The degenerate ground state (DGS) theory of He-
menger® is also nonperturbative. However, it is difficult to
generalize to finite temperature, computationally demand-
ing for large clusters, and does not separate homogeneous
and inhomogeneous broadening.® [For the present theory,
inhomogeneous broadening is easily included by convolut-
ing G(E) with appropriate functions. ] Furthermore, accu-
racy with regard to complicated spectral envelopes has not
yet been demonstrated.

The global accuracy of the present formalism at 0 K can
be attributed to its exact treatment of electronic coupling
and correct limiting behavior in both the narrow and wide
phonon band (via the second order self-energy) regimes.
The effect of additional approximations inherent in the finite
temperature theory will be discussed elsewhere.

We note that inclusion of some high frequency vibronic
levels in the G, matrix (as suggested in Ref. 1) would lead to
greater accuracy at high resolution. This approach will be
explored in subsequent publications.
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