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Using the recursive residue generation method (RRGM), it is shown how Green’s
function matrix elements calculated in large basis sets (N> 10°) can be utilized to
obtain controlled approximations to average values, correlation functions, and power
spectra in multimode anharmonic systems. Convergence of the method is

demonstrated through studies on five and seven mode model systems with basis sets

containing up to about 8 X 10° states.

I. INTRODUCTION

In recent years, there has been great interest in the
calculation of quantum statistical properties of multidi-
mensional systems. While a wide variety of methods exist
(e.g., path integral techniques' and semiclassical approx-
imations?), many important problems are still unresolved.
This is particularly true for dynamical averages (e.g., time
correlation functions and density matrix evolution), where
reliable nonperturbative results have been obtained in
general only for systems with a very small number of
degrees of freedom, or where the Hamiltonian under
consideration is extremely simple (e.g., harmonic).

We shall consider systems (molecules, molecular
clusters) described by a parametrized effective Hamilton-
ian, typically with a small number of electronic levels
coupled to a manifold of several vibrational degrees of
freedom (and, perhaps, a perturbing probe like the radia-
tion field). The most straightforward way to obtain a
controlled approximation for quantum averages is direct
diagonalization of the Hamiltonian expressed in a trun-
cated basis set. Indeed, this is a standard way to verify
results obtained from other approximation schemes. Un-
fortunately, the size of the matrix (V) grows rapidly with
the number of degrees of freedom, and one soon runs
out of memory in which to compute and store eigenvectors
(which are required to compute statistical averages). The
largest problems amenable to solution via direct diago-
nalization lead to Hamiltonian matrices with N < 10°,

Recently, a new method (the recursive residue gen-
eration method, RRGM) of computing Green’s function
matrix elements which avoids any necessity for eigenvector
calculation has been developed.>-> This permits the use
of very large basis sets, and thus allows the direct approach
to be extended to systems with an increased number of
degrees of freedom. Numerical calculations show the
method to be quite stable numerically even at very long
time (hundreds of vibrational periods, for example). This
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property is currently not shared by, e.g., time dependent
path integral methods.®

We describe here implementation of the RRGM to
calculation of quantum statistical averages. The general
formalism is developed in Sec. II and a nontrivial nu-
merical example (an anharmonic oscillator coupled to a
multimode harmonic reservoir) is presented in Sec. III.
We conclude by discussing anticipated further develop-
ment of the approach.

The computational approach developed here does
have limitations imposed by computer memory and time
constraints. It can, however, serve a number of useful
purposes: (1) Accurate quantum results can now be
generated for sizable nontrivial systems, so as to test the
results of less systematic approximations. (2) Direct ap-
plication to experiments (where the observables usually
are gverages) is possible for small or medium-sized mol-
ecules. (3) The method can be combined with perturbation
techniques to treat molecules embedded in condensed
phases.” (4) Studies of fundamental questions like quantum
chaos in multiphoton pumping?® will be facilitated.

In related studies, Moro and Freed®’ have developed
a recursive approach to the calculation of correlation
functions and spectra in classical statistical systems. The
Lanczos method was used to tridiagonalize complex-
symmetric matrices for use in magnetic resonance line
shape studies. They concluded that “. . . exceedingly
difficult problems of large dimensions may be conveniently
solved by using the Lanczos algorithm.” In our quantum
formulation, the Lanczos algorithm also plays a key role.

Il. THEORY

A. General formalism

Consider a system described by a time-independent
Hamiltonian H, a function of the various electronic and
nuclear coordinates. The time autocorrelation function
of an operator 4 (which yields spectra in the linear
response limit) is given by

C(t) = Tr{p(0)A(0)A()}
= Tr{p(0)4(0)e* " 4(0)e ™}, (1)
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where A(0) = A is the operator at time ¢ = 0, and p(0) is
the initial density matrix. For the applications described
here, we assume a canonical system, so that

p(0) = e?/Tr{e”™"} = &/Q. (2

In addition, the nonequilibrium average of the operator
1S
{A@)y = Tr{p()A(0)} = Tr{e*™ p(0)e~'4(0)}. (3)

If we insert a complete set of states {|i)}, C(¢) involves
multiple summation [there is a similar expression for

{AWDH):
aw = é 333 T (et
i k1l m

X { jle Py (AITY e P imY mlAli>. (4

Because of the invariance of the trace to the choice of
representation, in all of these equations we are free to use
any convenient basis set.

For most systems of interest, the sums in Eq. (4)
can be truncated, for one or more of the following
reasons: (a) thermal cutoff: (ilexp(—BH)|j) < 1; (b) time
cutoff: {ilexp(xiHtj) < 1; and (c) range cutoff: (il4];)
< 1. Thus, ((¢) can be computed from a finite set of
matrix elements of the operators e ??, ¢'#* and A. The
truncation limits can be increased systematically until a
desired degree of convergence is achieved.

In the first stage of computation, the RRGM is used
to compute accurate values of the thermal and time
propagators, {ilexp(—8H)\j) and (ilexp(—iH1)| j). This is
the most time consuming part of the calculation and is
discussed in more detail in the next section. These
elements are computed only once and are read into the
high speed memory as they are needed. For a large class
of relevant operators, including various products of co-
ordinates (e.g., g/q;), the matrix elements of 4 are trivial.
The final summations in Eq. (4) are then performed in
such a way as to exploit any selection rules inherent in
the operator 4. Efficient indexing procedures ensure that
only nonzero terms are evaluated. Storage requirements
can also be minimized by efficient use of a state indexing
algorithm.

B. Optimization of computation of Green function
matrix elements

The RRGM is aimed at computing thermal or time
Green functions (ilexp(xH)|j), where x = B(=1/kT) or «
= +jt, in systems with very large bases (N = 10%. In
terms of the eigenvectors and eigenvalues of H(Hla)
= E,a)), ‘

(ilexp(xH)|j) = X (ila){al jyexp(xE,).

Instead of computing all eigenvalues and eigenvector
coefficients ({ila)), the RRGM recursively generates the
largest transition amplitudes {ila){alf) and their asso-
ciated eigenvalues. The number of eigenvalues and tran-
sition amplitudes generated (N...) depends upon the
number of steps taken in the recursion procedure, Nec.

R. A. Friesner and R. E. Wyatt: Quantum statistical mechanics

In general, N,ys < N, Since some “spurious” eigenvalues
are generated, and then discarded.*'?

There are two important considerations in designing
an RRGM code to calculate statistical averages. First, one
would like to minimize the time spent in calculating each
Green function, given that a specified level of accuracy
in the final averages is desired. Secondly, the set of Green
functions which must be computed should be restricted
to be as small as possible. Each of these objectives presents
substantial problems; the solutions adopted here are not
necessarily optimal. In Sec. III B, this topic will be
revisited in the context of a specific Hamiltonian.

The first decision is a choice of basis set. We adopt
a direct product harmonic oscillator basis |j) = |a, n),
where a labels the electronic state (if there is only one
potential surface, this variable is unnecessary) and n
=(ny, ..., n), where {n;} are the usual phonon quantum
numbers. The main advantage is that matrix elements of
the potential energy are sparse and easily computed if
V(x) is a polynomial (it can be fit to one if a numerical
representation is all that is available).

The most time consuming part of the RRGM is
operating with the matrix H on the iterated state vector
(lun) or |v,), in the notation of Ref. 3). When H is a
sparse matrix, orders of magnitude decreases in computer
time can be attained. As long as V(x) consists
of products of functions of independent coordinates
[eg., Vix,, x3) = filx)falx;)], the matrix elements
(n ix)In;), {nd fH(x2)ln;) can be stored in arrays and
used to generate H internally. This avoids reading large
numbers of matrix elements from secondary storage,
typically an extremely slow process.

Once a basis set has been chosen, a portion of it, the
active space, is selected to be used in computation of
each matrix element G;;. Because the active space can be
easily shifted for each calculation, an optimized space
can be constructed for each pair (i, j). This reduces the
size of the basis used in each computation, and thus
reduces time requirements considerably. Accuracy can be
checked by systematic increase in the active space dimen-
sion, the requirements of which will be dependent upon
the magnitude of the off-diagonal coupling elements and
energy spacings of the basis functions. Minimization of
off-diagonal coupling by a canonical transformation of
the harmonic oscillator basis set (not attempted in the
calculations reported here) is also possible, and should
serve to decrease the active space size. The active space
concept was not used in obtaining the results in Sec. III.

One great advantage of the RRGM is that compu-
tation time is virtually independent of the number of
times or temperatures computed. [This is because most
of the computation goes into the generation of a subset
of amplitudes {ila){alj) and eigenvalues E, in Eq. (4).]
Hence, the technique is especially suitable for analysis of
long-time behavior.

Selection of the Green function matrix elements to
be calculated involves analysis of the specific Hamiltonian
under study. Cutoffs in the total zero-order diagonal
energy E? and in the quantal separation An,; of two states
are imposed, and then systematically increased until
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convergence is achieved. The former is a relatively simple
thermal criterion, while the latter depends on understand-
ing the connections induced in the Hamiltonian by off-
diagonal terms. An actual implementation of this proce-
dure is described in Sec. III, where convergence of the
desired average values is demonstrated.

IN. APPLICATION TO A MODEL SYSTEM
A. Hamiltonian

In this section, numerical results will be presented
for the following system: a field perturbed anharmonic
oscillator is coupled to a multimode harmonic reservoir.
In terms of raising and lowering operators for the anhar-
monic oscillator (af, a) and the reservoir modes (5], b,)
the Hamiltonian is

H = hwyl(a’a) — x(ata)’] + V]a' + 4]

+ X hoblbi+ 3 Via'h, + ab]), (5)

i=1 i=1

where hw, and Aw; are harmonic energy spacings in the
anharmonic and the ith reservoir mode, x is the anhar-
monicity parameter, and V, and V; are parameters which
control the strength of the field and intramolecular cou-
pling. This Hamiltonian has been used previously in
studies of laser molecule interaction,* chaos in multi-
photon excitation,® and laser interaction with surface
adsorbed species.!! Numerical values for the parameters
are listed in Table 1. In contrast to earlier studies,> V,
has been assigned a large value, in order to create a highly
perturbed energy level structure, the dynamics of which
would be difficult to treat by conventional techniques.

The basis set chosen to represent the Hamiltonian
contains products of harmonic oscillator functions for the
(n + 1) modes:

[ = |naylny)y « -+ |ny),

where n; = 0, 1, ... . Note that these states are eigen-
functions of the following part of the Hamiltonian in Eq.

(5):

H® = ha,(ata) — x(a'a)?] + z hwblb;. (6)

i=1

If we allow a maximum of p states in each mode, then
the total basis size is N = p™*", In most of the applications
reported here, there are four reservoir modes (n = 4) and

TABLE 1. Parameters in model Hamiltonian, Eq. (5).

Seven mode system

Vii=1,6) 100 cm™'
Five mode system

hw, 1000 cm™!

hw (i =1, 4) 1000 cm™"

X 0.01

Viti=1,4) 30 cm™

v, 300 cm™'

0.90

080 [

070 | NO CUTOFF USED

Tetaix16 Yn
060 }

050 |

oy =16

0.40 Te(29x10 * N
0.30

0.20

RECURSION TIME PER STEP (sec)

0.10

L : 1 i

500 1000 1500 2000
N (BASIS SIZE)

0.00

FIG. 1. CPU time per Lanczos recursion step (dn the CYBER 170/750)
as a function of the basis size, with and without utilization of the cutoff
parameter (os).

p=3,4,5, or 6. This leads to bases with the dimension
N = 243, 1024, 3125, or 7776. However, some seven
mode calculations, with p = 3 and N = 2187 are also
reported.

B. Cutoff parameters

In order to achieve some degree of program opti-
mization, variations in the following five parameters o,,
., o5 were investigated. For a given basis (p, N are
fixed), the first three parameters control the number of
matrix elements, while the last two control the accuracy
of each matrix element.

(1) Core cutoff. Let E? denote the (diagonal) energy
for basis state i, H%i) = E?|i). Then if E? > ¢, where
o, is a specified cutoff parameter, the matrix elements
G;;(B) for “up transitions” j = i are not computed. Of
course, o, must be allowed to increase as 8 decreases.
The states {|/>} which satisfy this criterion define the set
of core states.

(2) Membrane cutoff. If state / lies in the core, then
in performing the trace operation in Eq. (4), a certain
number of states [, k, /, m in Eq. (4)] may have to be
included, even though these states lie outside the core.
However, if E? > ¢, (where o, = ¢,), we do not calculate
G;;(x). States excluded from the core, but satisfying the
inequality oy < E? < o, lie in the membrane.

(3) Energy separation cutoff. Even if states i and j
are such that E? < o, and E? < ¢,, they may be too far
apart—in energy separation—to produce large G;;(x) val-
ues. So, if |[E? — E9 > ¢;, then the matrix elements are
not computed. In systems with energy bands, this criterion
is clearly designed to favor intraband transitions and
transitions between neighboring bands.

(4) Shift vector cutoff. Let the quantum number
vectors associated with states i and j be denoted n; = (n,,
ny, ..., n) and n; = (1, nh, ..., ny). Then the shift
vector is (n; — n) = (An;, Am, ..., An,), and the
magnitude of the total shift is S;,
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TABLE II. Convergence of time correlation function.* (8 = 0.002 cm?; basis: p = 3, N = 243))

R. A. Friesner and R. E. Wyatt: Quantum statistical mechanics

Ny
Number recursion as Cutoff Total
steps parameter C(t=1ps) CPU (sf
30 107 0.2031, —0.0368 368
40 107 0.2382, —0.0362 523
50 10 0.1523, ~0.0152 682
30 1078 0.2518, —0.0243 379
40 107 0.2448, —0.0405 536
50 1078 0.2374, ~0.0385 694
50 107 0.2332, —0.0354 - 702
50 107" 0.2329, —0.0354 702
50 107" 0.2329, —0.0354 704
50 not used 0.2329, —-0.0354 800
100 not used 0.2329, -0.0354 1611

*In all of the above cases: Q@ = 2.3007, {x*) = 0.68611, C (r = 0) = 0.5866. For this set of parameters
there are 282 diagonal and off-diagonal matrix elements, of which 151 are independent.

® Digits in error are underlined.
¢ Times for CYBER 170/750.

4 Other parameter values: ¢; = 2400 cm™', o2 = 2400 cm™', a3 = 1500 cm™', o, = 2.0.

2 Ang

k=1

S,‘j =

If S;; is too large, G;j(x) tends to be small (due to bad
Franck-Condon overlap), so G;; is computed only when
Si j < O4.

(5) Recursion cutoff. A key step in the RRGM is
used of Lanczos recursion'? to generate a new basis, for
each transition i — j. The most time consuming step
involves multiplication of an “old” recursion vector by
nonzero elements of the Hamiltonian matrix A to obtain
a new vector: Upew = HUyq. In order to speed up this
multiplication, we skip the scalar multiplication step
(H)p(Uqa), if the gth element of Ugy is sufficiently small;
i.e., if (Uga)g < 05. Also, we want to keep the number of
recursion steps (N.) as small as possible, and the value
of o5 as large as possible, consistent with a given accuracy
in the final averages. For a given value of o5, too many
Lanczos recursion steps can lead to poor results, so
preliminary comparisons need to be done to minimize
the CPU . time by decreasing N.. and increasing os.
Numerical results illustrating this point will be presented
in the next section.

C. Computation times and cutoff parameters

In this section, the use of o5 (which controls whether
an element of H will be multiplied by an element of U,y
in the Lanczos recursion method) to reduce computer
time will be considered. First, when o5 is not used, the
CPU time per recursion step is /inear in N, as shown by
the upper curve in Fig. 1. The total CPU time, for one
Green function matrix element, is approximately

T = Nyp[AN + B], N

where on the CYBER 170/750, A ~ 4 X 10™* s and B
~ 10 A. The first term involving AN is the contribution
(per recursion step) from the Lanczos method. The second
term involving B arises from operations performed afier

the Lanczos process is completed (this includes eigenvalue
computation and sorting, and residue computation). It is
noteworthy that the computation time per step, 7/Nre,
is linear in the total basis size. For a fixed value of N, T
is also linear in Ni..

When o5 is introduced, the CPU time per recursion
step decreases, because during the first few recursions
there are many small values in the recursion vector Ugyg.
An example is shown in Fig. 1, for 65 = 107 the
reduction in CPU time per step is about 25%. This value
of g5 provides sufficient accuracy in the final averages.

Table 11 illustrates convergence of the time correlation
function at ¢t = 1 ps, C(1), for one basis set (p = 3, N
= 243). If o5 is “too large,” o5 = 1074, the results are
poor for all values of N, but they become progressively
worse as N, increases. However for N, = 50, cutoff
parameters of 1074, 1075, 1078, 107", 1072, and O (i.e.,
the cutoff option was bypassed) yield increasingly accurate
values of C(1). For the remaining calculations reported
here, we chose N, = 50 and o5 = 1073, which provides
a satisfactory compromise between high accuracy and
low CPU time. With these choices, CPU times for cal-
culations with three different bases are shown in Table
III. The calculation of average values is segmented into

TABLE III. CPU times (s) on CYBER 170/750.

Generate
Basis Parameters Green Compute

0y, 02 function average

P N (cm™) files* values

3 243 2400 615 37
3400 2650 138

4 1024 2400 2270 40
3400 9950 140

5 3125 2400 6 050 40
3400 26 220 140

6 7776 2400 8156 40

* Green functions were computed at 400 times and two temperatures.
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TABLE IV. Dependence of average values, the time correlation function, and the spectral peak height upon basis size and parameter values.
Basis
B
p N Parameters® (cm) Q {x%y Re[C(0)] C Tyan
3 243 o) = oy = 2400 cm™! 0.002 2.3007 0.6861 0.5640 0.159 1708.1
0.004 1.5771 0.6075 0.5910 0.195 2868.5
3 243 a; = 03 = 3400 cm™' 0.002 24105 0.7125 0.6497 0.181 144.2
0.004 1.5789 0.6085 0.5991 0.198 182.7
4 1024 @) = g3 = 2400 cm™' 0.002 2.3098 0.6929 0.5661 0.162 78.3
0.004 1.5812 0.6105 0.5923 0.198 58.5
4 1024 o, = 0, = 3400 cm™’ 0.002 2.4438 0.7302 0.6804 0.197 164.5
0.004 1.5832 0.6128 0.6109 0.201 58.5
5 3125 g = 0y = 2400 cm™! 0.002 2.3096 0.6928 0.5661 0.162 67.4
6 7776 ¢, = 0y = 2400 cm™! 0.002 2.3097 0.6927 0.5661 0.163 75.6
0.004 1.5817 0.6107 0.5923 0.198 58.7
* Parameters not listed take the following values: o3 = 1500 cm™, a4 = 2.0, a5 = 1075, Npee = 50.
®When A = 1 in Eq. (9), [ is the maximum of I(w) over the frequency range [0, 250 ps”'].
two major steps: production of a disk file of all Green T ot ,
function matrix elements, followed by assembly of these Iw) = 4| b e“T(dtl,
elements into average values. ' .
'@ = [C@) - Cle™, )

D. Equilibrium averages

In this section, the dependence of Q, {x?), and C(0)
will be examined for different basis sets and for different
choices of the parameters o;. The displacement coordinate
in the anharmonic mode is x. In Table IV, these values
are shown for two values of § (0.002 and 0.004 cm).
First, for the lower temperature (8 = 0.004 cm), with o,
= 0, = 2400 cm™!, we observe convergence as p is
increased from 3 to 6. However, the slight discrepancy
between (x2) and Re[C(0)] is due to incompleteness in
the number of interacting states. When ¢, and ¢, are
increased by 1000 cm™! to expand the number of core
states, the difference between (x*) and Re[C(0)] decreases.
Now, turning to the higher temperature (8 = 0.002 cm),
we note slightly larger differences between <x2> and
Re[C(0)]; for example, {(x*) — Re[C(0)]} is 0.06 for p
= 3, and 0.05 for p = 4 when o, = ¢, = 3400 cm™".
However, these differences are smaller than for the re-
stricted core (o; = o, = 2400 cm™Y).

The significant point about these results is that
RRGM is a controlled route to converged statistical
averages. As more states are allowed to interact, by
expanding the basis (p) and/or the core and membrane
(o1, 02) for each basis, we will converge to exact average
values.

E. Correlation functions and power spectra

The time correlation function C(¢f) for x was com-
puted:

Q1) = (1/Q)Tr{e PHxe*Hixe H} 8)

In addition, the power spectrum Kw) was obtained from
the Fourier transform of C(¢):

where A is chosen to scale /(w) (in practice, 4 is defined
so that J(w) = 1 at its peak within the frequency range
[0, wmax]). In Eq. (9), C is the long time average of the

1.0

3/3/3/3
Frequency Distribution J
Aw =10 ps -l

p (w)

1 L] T
O 50 100 150 200 250
w (p sh

FIG. 2. Distribution of frequencies (w = AE/A) below 250 ps™* for the
Hamiltonian of Eq. (5) with the following basis: p = 3, N = 243, The
maximum value has been scaled to unity. The values of AE were
obtained by direct matrix diagonalization.
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real part of C(¢); C represents a “DC shift” in the motion
of the wave packet due to the anharmonicity in the
Hamiltonian. The DC shift is subtracted from C(f) so
that very low frequency components will not dominate
plots of the power spectrum. QOur interest is in the
dynamics relative to C, not the fact that the correlation
function is shifted at long times. Finally, the Gaussian
factor exp(—at?) defines a “time window” which prevents
relatively long times from entering into the calculation of
I(w). In practice, for the five mode systems, we chose a
so that the correlation function was damped (~ 1% of the

0.6
B = 0,004

qQ

o
N
4

Re (T'(t))

‘]]HH[. AL A
I!IH!HV yyy

o
°

-o2 §

0.6

04 1

0.2 4

Im (T(t))

0.0

=0,2 -

0,0 0.3 Q.6 Qs .2 LS

t (ps)
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t = 0 value) by ¢ = 1.5 ps. (This condition requires that
a = 2.) As expected, this damping factor introduces a
slight broadening in each of the spectral lines. A range of
different a values was investigated; however, the reported
spectra are not highly sensitive to this value. In these
calculations, C(f) was computed at 400 time steps (At
= 0.004 ps, and X(w) was computed at 10° frequencies in
the interval [0,250 ps~']. In addition, for the seven mode
system, 800 time steps were used, and the effect upon
I(w) of different window cutoffs (varying a) was investi-
gated.

1,00
B+0.004 Imox = 182.7
p*3,N=243

c
075 1
3
—
0.50 1
0.25 N §
N A
N
S NN N
N \ %
LN A
SN

0 50 100 150 200 250
wipsh

FIG. 3. Real and imaginary parts of the time correlation function, (a)
and (b), and the resulting power spectrum (c), for the basis p = 3
N = 243, with 8 = 0.004 cm. Also, o, = ¢; = 3400 cm™'.
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For the parameters in this Hamiltonian, the states
fall into bands separated by about 1000 cm™. Thus, in
Kw) there should be intense lines due to neighboring
band transitions around » = (1000 cm™")/(5.3 cm™' ps)
= 200 ps~'. In addition, intraband. transitions contribute
to lines at much lower frequencies. In order to obtain a
more quantitative measure of the energy separations
(frequencies) in systems of this type, we diagonalized H
with p = 3 states in each mode, so that N = 243. The
frequency distribution shown in Fig. 2 clearly shows peaks
around 230, 190, and 40 ps”!, in addition to the
very low frequency peak from nearly degenerate states.
However, since this “static” distribution does not reflect

. B =0.002
0,4
0.2
£
o 00
@
-0.2
—004
T L) L 1
00 03 06 0.9 2 L5
t(ps)
B =0.002
0.4 A b

Im (T(H))

00 03 06 09 1.2 15
't (ps)

1979

the intensity of dynamical transitions, we now turn to
I'(¢) and Kw).

Before considering results for this model Hamiltonian,
we will examine some properties of C(f) for a simple
model which exhibits some features of the more compli-
cated system. Consider a Hamiltonian with a nondege-
nerate ground state (¢, = 0) and an excited level with two
nearly degenerate states (e, = A, e3 = A + 4, 6 € A). In
the eigenvector representation,

3
A== 3 ePdele,

(10)
Jik=1
1.00
B = 0.002
pe3,N=243
I mox® 1442
0.75
¢ g
3 0507
—
0.25 -

FIG. 4. See caption to Fig. 3; the only difference is that § = 0.002 cm.
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where x; is a matrix element of the operator x. The real
and imaginary parts of C(f) are

Re(C) = (1/Q){x} + eP2x3, + e Fetx3,
+ xF(A)os(An) + x1FE(A + 8)
X cos(A + 8)t + x3:F}(8)cos(5t)}
Im(C) = (=1/Q){x1,F5(A)sin(A?) + x}:F5(A + 8)

X sin(A + 8)t + x3,F 5(8)sin(80)}, (1
where

Fi(e)= 1 + &7,

Note the following characteristics of C(¢): (a) High inter-
band frequencies (A and A + 8) appear in C(¢) along with
the lower intraband frequency (6). (b) At ¢ = 0, Re(C)
> 0, while Im(C) = 0. (c) As ¢ increases, Re(C) oscillates
about the positive value

C(B) = (1/Q){xt: + ePoxdy + e P x3s}.

In a harmonic system C = 0 because x; = 0, so C (the
DC shift) results from anharmonicity. (d) In the high T
limit (8 — 0), Fo(e) = 0, so that

Re(C) = C(0) + 2{x?, cos(Ar)
+ x}3 cos(A + 8)t + x33 cos(dr)},
Im(C)=0.

These features (plus others) will be observed when we
examine correlation functions for the more complicated
Hamiltonian in Eq. (5).

We will now return to the model Hamiltonian in
Eq. (5). First, Fig. 3 shows Re[I'(¥)], Im[I'(#)], and K{w)
for a relatively small basis (p = 3, N = 243), at a relatively
high value of 8 (0.004 cm), which corresponds to T
= 362 K. Some features of the three state model are
evident in these plots of J(w), and in the power spectrum
shown in Fig. 3(c). The oscillation of Im[C{(#)] about the
value zero, large values of I(w) near w = 200 ps~! due to
interband transitions, and less intense values for frequen-
cies below 50 ps~! due to intraband transitions are clearly
evident. The high frequency oscillation in ((f) has an
easily calculated period. Since AE® ~ 1000 cm™' for
these interband transitions, 7 = 2wA/AE® ~ (30 cm™!
ps)/(1000 cm™') = 0.03 ps, a value close to what is
observed in Fig. 3(c). Continuing with results for the
same basis, Fig. 4 shows I'(f) and I(w) for a lower value
of B (0.002 ¢m), which corresponds to T = 725 K.
Comparing the spectra in Figs. 3 and 4, we note that the
lines are more symmetric at the higher temperature.

Turning now to power spectra for a larger basis
(p = 4, N = 1024), Fig. 5 shows I(w) at the same two
temperatures. Although the values of Q and {(x?) listed
in Table II are within a few percent for the two different
bases (e.g., {(x*) = 0.7125 for p = 3 and 0.7302 for p
= 4 when 8 = 0.002 cm), the power spectra are more
sensitive to changes in the basis set.

Finally, Fig. 6 shows both I'(f) and I(w) when S
= 0.004 cm for the largest basis illustrated here: p = 5,

N = 3125. Except for slight differences in the frequency ‘

range between 210 and 240 ps~!, the power spectrum is
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FIG. 5. Power spectra for the basis p = 4, N = 1024, at § = 0.004 cm
(a), and 8 = 0.002 cm (b). Also, ¢, = 2 = 3400 cm™".

very similar to the low temperature result for p = 4, N
= 1024 in Fig. 5. This indicates that the power spectrum
in Fig. 5 is adequately converged for most interpretive
purposes. Other plots (not shown) for N = 7776 confirm
the convergence. It would be virtually impossible to study
the convergence of /(w) for large basis sets (N > 10%) with
any method but RRGM.

In order to investigate the influence of both the
number of bath modes and the Gaussian cutoff on the
power spectra, we studied a seven mode system with p
= 3 and N = 2187. Unlike the previous results, 800 time
steps were used to obtain the correlation functions and
power spectra. Figure 7 shows I(w) for three values of the
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cutoff parameter: a = 0.5, 0.25, and 0.0 (no cutoff). The
absorption peaks are all of similar width, although the g
= 0 spectrum [Fig. 7(c)] shows slightly sharper lines, with
some “noise”’ between the peaks. (The noise is due to the
correlation function not damping completely at the end
of 800 time steps.) The main point is that use of a cutoff
function did not lead to excessive broadening in the
earlier plots for the five mode system.

One additional comment should be made concerning
the power spectra shown in Figs. 3-6: The three peaks in
each I(w) plot arise from intraband transitions (w ~ 30
ps”!) and nearest neighbor interband transitions (w
~ 200 ps™'). Energies of the states in each band are split,
so that transitions occur between upper (lower) states in

1981

1.00
B* 0.002
p=5,N = 3125

I,ﬂ o 7.4

0.75 J

FIG. 6. See caption to Fig. 3; the differences are that p = 5, N = 3125,
B = 0.002 cm, and o, = o, = 2400 cm™'.

one band to lower (upper) states in the adjacent band.
This leads to the two high frequency peaks (w ~ 180,
200 ps™') in each of these figures.

IV. CONCLUSION

In this study, we have demonstrated that direct
computation of Green’s function matrix elements in large
basis sets (N » 10%) can be utilized to obtain accurate
results for quantum time correlation functions of a non-
trivial multimode Hamiltonian,

The controlled nature of the approximations, per-
mitting a systematic study of convergence, is evident and
offers the possibility of producing definitive resuits for
important model Hamiltonians of various types.
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FIG. 7. Power spectra for a seven mode system with p = 3, N = 2187,
for three values of the Gaussian cutoff parameter [see Eq. (9)].
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A central issue that can be resolved by such a
technique is the validity of applying various uncontrolled
approximations to specific problems. For example, classical
correlation functions are often assumed to accurately
model the actual quantum correlation functions, under
appropriate conditions. The questions are, what are the
“appropriate conditions,” and how good is the agreement?

For a one dimensional quartic oscillator, a recent
calculation'? indicates that even for relatively high tem-
peratures (Bhw =~ 2.0), the classical time correlation
function erroneously falls off much more rapidly than the
exact (as determined by a converged basis set calculation)
result. Using RRGM, this sort of comparison will now
be possible for multidimensional potentials. A similar
effort is aimed at studying the validity of path integral
and semiclassical approximations.

It is currently feasible to apply the RRGM directly
to experimental systems with a relatively small (1-10)
number of relevant degrees of freedom and an accurately
parametrized potential surface. Such work is currently in
progress, e.g., for the CH;F molecule.'* Technical im-
provements in the computer code and implementation
on a Class VI vector computer (e.g.,, CYBER 205 or
CRAY 1) will exceed this capability, and is presently a
high priority. '

For very large molecules or condensed phase envi-
ronments, the RRGM/SM approach must be combined
with perturbative analytic methods. A straightforward
way to do this is to select a set of relevant modes whose
dynamics will be explicitly treated, and apply standard
second-order time-dependent perturbative methods to the
remaining degrees of freedom. This results in a set of
Redfield-type equations'® for the reduced density matrix.
The advantage over conventional treatments of this type
is that the system Hamiltonian contains many more
states, and, hence, most of the dynamical recurrences of
interest; the memory kernel of the bath is then correctly
treated by a Markoff approximation. Solution of these
equations via the RRGM will appear in subsequent
publications.’
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