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A harmonic reference system for Monte Carlo evaluation of discretized path integrals is
developed. Various equilibrinm averages are calculated for a one-dimensional quartic oscillator,
and compared to converged basis set results; it is shown that use of the reference system
substantially decreases the number of discretized points (relative to the free particle reference
system) necessary to compute accurate quantum mechanical expectation values.

I. INTRODUCTION

Recently there has been great interest in the use of dis-
cretized path integral (DPI) methods to compute equilibri-
um quantum ensemble averages."™'® A number of specific
implementations have been proposed and applied to a wide
variety of systems. The results which have been obtained for
large, nontrivial systems® are encouraging, and suggest that
optimal development of this approach may lead to a qualita-
tive improvement in our ability to calculate, quantum me-
chanically, properties of anharmonic condensed phase sys-
tems.

The advantages of DPI methods have been discussed
extensively in the literature.”* The procedure is systemati-
cally improvable by adding more quadrature points, and is
exact in the classical limit for the smallest number of points.
Powerful numerical methods (Monte Carlo, molecular dy-
namics) can be used to evaluate the many-dimensional con-
figuration integrals; all the techniques of classical simula-
tions can be brought to bear on the quantum problem when
cast in this form. As compared to basis set methods, the size
of the problem grows much more slowly with increasing
numbers of degrees of freedom.

The original formulation of the path integral for a
many-boson system {to which we restrict consideration here)
partitions the Hamiltonian into its kinetic (7') and potential
energy (V) parts, and defines the zeroth order (reference) part
of the Hamiltonian H,, to be T. For application of DPI meth-
ods to complex molecular and condensed phase systems, this
scheme can clearly be improved on quantitatively. In Ref. 2,
the use of a reference system [other than that of the free
particle) was suggested and implemented for a specific mod-
el, yielding quite good results. In this paper, we develop a
generalized, temperature-dependent harmonic reference
system which can be easily applied to anharmonic boson
potentials. Such a method will lead to accurate results in the
low temperature limit (where a harmonic Taylor series ex-
pansion about the potential minimum will be valid) as well as
the high temperature, classical limit, for a small number of
path integral points; it is reasonable to expect sensible results
in the interpolated region as well. This approach is in the
same spirit as one proposed by Doll,* but differs consider-
ably in its details.
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An immediate problem arises if the system under study
contains more than one potential minimum. In this work we
will assume that use of a single minimum will generate an
efficient sampling algorithm {note that the formalism is still
exact in the limit that the number of points increases; the
presence of multiple minima simply renders the single har-
monic reference system less useful). For condensed systems
with many minima (e.g., liquids), it is probably best to treat
the intramolecular degrees of freedom harmonically and the
translational and rotational ones in standard fashion. This
(and other) constructions of more complex reference systems
are straightforward, but will not be pursued further here.

A useful harmonic reference system can be obtained
using recently developed classical simulation techniques.>™®
Essentially a classical molecular dynamics (or Monte Carlo)
simulation is performed, and the ensembie averages (x;),
(x,x,) (at temperature T') for all sites J, jare computed. These
quantitites uniquely define a set of “quasiharmonic’ normal
modes {eigenvectors), frequencies {eigenvalues), and equilib-
rium positions; the resulting effective harmonic Hamilton-
ian reproduces the first and second moment averages of the
full anharmonic potential exactly. We can therefore expect
that V(X) = Vanharmonic (X) - unasiharmonic (X) WIH be small in
the most important regions of x space at temperature 7. It is
also possible to improve on the classical quasiharmonic ref-
erence system and obtain an optimized quasiharmonic refer-
ence system. This requires some preliminary calculations,
but can greatly reduce the number of quadratic points re-
quired for convergence at low temperatures. Optimization is
particularly valuable if the reference system is to be used for
other calculations (e.g., dynamics).

In this paper, a practical Monte Carlo scheme for calcu-
lating equilibrium ensemble averages using the above har-
monic reference systems is presented. The harmonic path
integral formalism is developed, and efficient numerical al-
gorithms are discussed. As a simple example, we treat the
one-dimensional quartic oscillator, comparing calculation
of averages of various functions of the coordinate to con-
verged basis set calculations. Comparison with primitive ref-
erence calculations display the substantial improvement ob-
tained by using our formalism. Umbrella sampling
techniques'® are used to compute the partition function it-

® 1984 American Institute of Physics

Downloaded 15 Sep 2006 to 171.64.133.179. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



R. A. Friesner and R. M. Levy: Optimized discretized path integrals 4489

self, and to obtain an optimized reference system by mini-
mizing the fluctuation of the renormalized potential energy.
Calculations employing optimzied quasiharmonic frequen-
cies yield the most rapid convergence (as a function of the
number of quadrature points) for all quantities studied.

Il. HARMONIC PATH INTEGRAL

We consider a many-body boson Hamiltonian:
H N h 2
= z )

i=1 i

V. t+Vix), (1)

where N is the total number of particles in the system, and V’
is the exact potential. The coordinatex x in this representa-
tion are the 3N Cartesian coordinates of the NV particles.

It is easiest to proceed on the assumption that the sys-
tem under study has a well-defined potential minimum at
each temperature, and that the center of mass (translational)
and rotational degrees of freedom can be separated from H.
This description will apply nonproblematically to small mol-
ecules and solids, and reasonably well to some large mole-
cules (e.g., proteins®®) in specific conformations. A detailed
discussion of these considerations will appear in forthcom-
ing publications.

We will henceforth work in the quasiharmonic normal
mode basis set z = (z;...2,,), where M = 3N — 6. The gener-
alized coordinates z are ordinarily linear combinations of
internal coordinates (e.g., angular and radial displacements)
y, i.e.,

z=S8y. (2)

The quasiharmonic minimum z, can be taken to be at 0 with-
out loss of generality. The Hamiltonian is then

H=H,+ Voul(2), (3)

where H, is most conveniently expressed in second quan-
tized notation as

M
H,= 2 @bt b;, (4)
i=1
where b ;" (b,) creates (destroys) a vibrational excitation of
the ith quasiharmonic mode. This mixed representation of
the Hamiltonian is quite suitable for development of the har-
monic path integral formulation.
The canonical partition function Q is, in the normal
coordinate basis set

0= f dzy(z,|exp( — BH )|z,) . 5)
We set
exp(— BH) = [expl — BH /P)]*, )

and insert complete sets of (many-body) coordinate states z,
to obtain

0= f dz,~dzp (2, |exp| — BH /P)|z,)

X {z, exp( —ﬁH/P)|z3)---(zP§ 1 |exp( —BH/Psz)
X {zp|exp( — BH /P)|z,) , (7

a discretized path integral with P points.
It is now necessary to separate H into H, and V. The

traditional approach chooses H, = X (h /2m,)V3, V = V(x),
i.e., H, is that of a free particle. We instead set H,
= 3w,;b ;* b, [Eq. (4)] to obtain

<Zj|exP( —PBH/P)|z; 1)

~(z/|exp(— BZw;b " b,)/P|z; ;)

Xexp[ — BVoul(z;)/2P Jexp[ —BVoulz; . 1)/2P] .

(8)

This will be an improvement over the free particle H, if

(roughly) the commutator of H, and ¥V is substantially

smaller; the trivial case, of course, is when the full ¥ (x) is
harmonic, whereupon Vo = 0.

The term (z; |exp[ — (B/P)3w;b " b;]|z; , ) is easily
evaluated as a product of harmonic propagators, the form of
which is known exactly. We will use units such that the co-
ordinates z are mass weighted, and set #i = 1. The harmonic
propagator for a single mode of frequency  is'’

Gylz.Z2', B/P)
— [ ma }‘” exp(_—mw_
27h sinh( ffiw/P) 2 sinh( BAw/P)

X {[2* + (z')*]cosh( Bfw/P) — 222’]) , 9)
which, under the above scaling conventions, becomes
172
Gylz.Z' ,y) = (i sinh y)
2

X exp(% sinh ¥{[z* + (z'}*]cosh y — Zzz’}) ,

(10)
where we have defined y = Bfiw/P. The discretized path in-
tegral is now compactly written as

Q= IPI Golz,2, 1"Y)CXP[ - B i Vi(z,)/P ]dzl---dz,, .

i=1 i=1
(11)

Here y = (y,-¥a) is the set of M reduced parameters for the
M quasiharmonic degrees of freedom with y; = Bhw,/P; w;
is the effective reference frequency for mode j; then

_ M
Go(z:2: 4 1,Y) = [] Golz 27, 1, ;) (12)
i=1

[note that the superscripts on the z's in Eq. (12) refer to
modes, while the subscripts denote guadrature points]. Also,
Zp , is defined to be z,.

Defining the integrand of Eq. (11) to be K (z,-z,), we
have for the ensemble average of A4 (z),

o _ S dadapd @)K (2,-2p) "

S dz,dz K (z,--2,)

We shall call the resulting expressions [Eqs. (10) and (11)] the
quasiharmonic discretized path integral (QHDPI) formula-
tion. The discretized path integral utilizing a free particle
reference system will be referred to as the FPDPI.

{Il. MONTE CARLO ALGORITHM
A. Ensemble averages

Equation (13) is now in the usual form for application of
the Metropolis Monte Carlo algorithm,'® with K (z,--z,) as
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the weighting function. Moves are chosen in the normal co-
ordinate basis set; within a particular mode, the optimal
choice of independent random variables will depend upon
7;. For ;1,2 — z{ | will be constrained to be small, and
the optimized set will be Mz — 20z — 29, 2
— 2 ,. For ¥;>1, the set 2z} itself if preferrable. A

reasonable interpolation is to define the effective coordinates

qf- ﬂ,

g9 =20,

g =2 —exp(— 7,27, for i#1. (14)

This formulation is used in the numerical results that follow.
Each ¢!/ is updated in turn, and Eq. (14) is solved for the set
of coordinates {z'/].

For the one-dimensional application in this paper, no
conversion between normal and other sets of coordinates is
necessary. For larger systems, one must choose a coordinate
system in which to evaluate ¥, and obtain the relevant set
of coordinate from the quasiharmonic normal set. This pro-
cedure will be described elsewhere.

B. Umbrella sampling

The quasiharmonic reference system is ideally suited to
evaluating the quantum partition function via standard um-
brella sampling techniques. The function

Ko = H 5o(zi,zi+ 1Y) (15)

i=1
is taken to be the Monte Carlo weight function, and we
evaluate the average of

R (i)Eexp{ —(B/P) 2 VQH(zj)] , {16}

(where Z designates the entire set of z,---z,,) over this weight
function. The resultant quantity
2K (2)R (2
F(B)= __2_0(__):_(_) (17)
2;Ko(2)
will converge to the P point approximation to the quantum
partition function divided by the partition function for a set
of harmonic oscillators with frequencies w(} ---w{%; thus
. exp(—Boly/2)
Q(B)=F(B) I] = (18)
i=1 [1— exp( — Bolk))

The method is useful because the fluctuations of Vg, will be
much less drastic than that of V. A similar approach (use of a
harmonic reference system for umbrella sampling) has been
applied to evaluation of the classical partition function of
anharmonic crystal lattices.'®

An optimized quasiharmonic frequency can be estimat-
ed by varying the parameters ¢4 S0 as to minimize the quan-
tity

[R (@) — (RED) (19)
(R (2)*

where the angled brackets denote an average in the (trial)

optimized reference system. For one dimension, the proce-

dure is straightforward; one chooses a value of @4, com-

putes (R (2)) as described above, and then uses K(Z) to sam-

(6R (2)) ="
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ple (6R (2)) in identical fashion. A small number of trial
points are sufficient to ascertain the location of the minimiz-
ing value of w 4.

For a muiltidimensional problem, there will obviously
be a tradeoff between the amount of computation necessary
to optimize the set of w4 ’s and that needed for a larger num-
ber of quadrature points. This issue must be explored in the
context of calculations on an actual system.

IV. QUARTIC OSCILLATOR
A. Basis set calculations

The quartic oscillator has been studied by many auth-
ors using a variety of different methods.'? We will consider
only parameter values where the potential has a single mini-
mum, so that the classical Hamiltonian is

2 242
H=F2_ [ MmoX | ., (20)
2m 2
where a > 0.

The essential properties (for purposes) of the wave func-
tions and eigenvalue spectrum of H are easily summarized.
As a—0, the lowest eigenvalues and eigenstates approach
those of a harmonic oscillator. As the quantum number
n—s o, the separation of the neighboring levels grows larger
and larger, for any fixed value of 2. Thus the averaged effec-
tive quasiharmonic frequency will increase as the tempera-
ture rises, a simple reflection of the narrowing (relative to the
pure harmonic system) of the potential well as x— co.

This type of situation is one in which the choice of refer-
ence system can be important, because the rise in effective
frequency means that, even at “high” temperatures the clas-
sical limit may not be rapidly reached. The relevant quantity
for evaluating the importance of quantum effects is really
Bho(B); which may decrease more slowly than She.
Hence, the primitive algorithm will require a larger number
of points to converge than at the corresponding temperature
for a harmonic oscillator.

To compute accurate quantum averages we first obtain
the eigenvalues E, and eigenvectors ¢, of H by performing a
matrix diagonalization using a truncated harmonic oscilla-
tor basis set {¢,, }. The Hamiltonian in this basis factors into
two blocks, those with n even, and those with n odd, because
x* connects only states of the same parity. The matrix ele-
ments are easily evaluated from the relation

V2xg,(x) = Vng,_,(x) +Vn + 14, ,(x), (21)
200 basis functions were used for each block; convergence
was checked by comparing the averaged quantities obtained
using a 250 function basis set. Three quantities are computed
for each value of 8 and a; {x*), {(x*}, and the canonical parti-
tion function Q, where

0=Y e %,

w —BE,
<x2>=n§0<¢,|x2|¢,.>e o

w0 - BE,
=3 (W, X9 o (22)
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We set fi, m and w equal to one, and express all ensemble
average quantities as functions of 8 and @ [now scaled to have
units of {fiw)~* and #w, respectively]. The zero of energy is
taken to beat + 4 S%iw (§ Bin reduced units), i.e., the ground
state energy of the unperturbed oscillator is set to 0. The
quartic perturbation raises the ground state energy, and the
partition function at low temperature ( § = 10} is essentially
exp{ — BE,}, where E, is the (positive) energy shift of the
ground state from the harmonic value.

The basis set results, listed in the first row of Tables I-
IV, are in accordance with the picture of the quartic oscilla-
tor described above. As a increases, @, (x?), and (x*) each
decrease for fixed temperature. This behavior has two
sources: (1) the increased spacing between levels, noted
above, and (2) the averages of x* and x* for a given level
decrease (this is most apparent at very low temperature,
where (x2), (x*) essentially measure the expectation values
in ground state). The latter effect parallels the expected clas-
sical result (the quartic potential confines the particle near
x = 0) but is mitigated by uncertainty effects. Comparison
with the classical (primitive algorithm, P = 1) shows that
even for Bhw =0.5, there are noticeable discrepancies
between the two calculations, especially for (x*) and Q. The
problem is therefore a substantive test of the QHDPI meth-
od at both low and high temperature.

B. Monte Carlo path integral calculations

Three types of path integral calculations have been per-
formed; a FPDPI calculation (., = 0), a quasiharmonic
calculation, and an optimized quasiharmonic calculation.
For the second of these, w4 is obtained by requiring the
quasiharmonic second moment to equal the classical value,
ie.,

52, x* exp( — Pwgnx’/2) _ S x*exp(— B {x*/2 + ax*})
J exp( — Bwgux’/2) S exp( — B {x*/2 + ax*})

= <x2>c1 . (23)
Carrying out the integrals on the left yields
a)QH(ﬁﬂ) = [ (xz)CI B } -z (24)

Table I lists values of wq as a function of # and a.

The optimization procedure described in Sec. III B was
carried out for P = 4. It was found that, for = 1.0 or 0.5,
the quasiharmonic classical values yielded as good {or better)
results when there was any difference (the latter occurred
only for @ = 5.0), so optimized results are given only for the
three lowest temperatures. While the FPDPI and classical
quasiharmonic moments start at smaller values than the ex-
act results and increase as P increases (corresponding to a
smearing of the coordinate by quantum effects), the opti-
mized values in some cases decrease or oscillate. This is be-
cause the reference system can be chosen to be more diffuse
(in some sense) than the actual system. Other optimization
procedures could easily be constructed, and would perhaps
yield somewhat better results for calculation of particular
quantities at a particular level of quadrature. It is clear, how-
ever, that the actual method employed does lead to substan-
tial improvement, especially for large values of 8 and a.

TABLE I. Quasiharmonic frequencies.

Anharmonicity
0.05 0.2 1.0 5.0
Classi- Opti- Classi- Opti- Classi- Opti- Classi- Opti-
Bhaw cal mized «cal mized cal mized «cal mized

100 103 109 109 125 127 1.7 1.65 2.4
50 105 L1115 130 141 175 1.89 2.6
20 L1t 114 127 135 165 1.8 230 29

1.0 117 1.41 1.89 2.9
05 127 1.58 2.19 3.16
TABLEIL

(A). (x?), Bfiw = 10.
Anharmonicity parameter

0.05 0.2 1.0 5.0

Exact quantum  0.445 0.370 0.257 0.161

Primitive
algorithm
QP
1 0.0939 0.0842 0.0654 0.0359
2 0.262 0.141 0.0959 0.0525
4 0.262 0.223 0.149 0.0845
8 0.358 0.313 0.196 0.110
Quasi-
harmonic
QP
1 0.320 0.231 0.133 0.0716
2 0.364 0.269 0.158 0.0847
4 0.397 0.303 0.189 0.102
8 0.431 0.346 0.225 0.121
Optimized
quastharmonic
QP
1 0.440 0.389 0.329 0.183
2 0.431 0.367 0.175 0.157
4 0.254 0.149
8 0.151
(B). (x*), Bhiw = 5.
Anharmonicity parameter
0.05 0.2 1.0 5.0
Exact
quantum 0.448 0.370 0.257 0.161
Primitive
algorithm
QP
1 0.181 0.151 0.100 0.0558
2 0.284 0.227 0.151 0.0802
4 0.389 0.317 0.193 0.112
8 0.422 0.360 0.235 0.135
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TABLE 11 (continued ). TABLE II (continued ).
(B). {x?), B = 5. (D). {x?), Bhio> = 1
Anharmonicity parameter Anharmonicity parameter
0.05 0.2 1.0 5.0 0.05 0.2 1.0 5.0
Quasiharmonic Quasiharmonic
QP QP
1 0.389 0.291 0.185 0.100 1 0.788 0.563 0.321 0.173
2 0.421 0.324 0.204 0.112 2 0.788 0.546 0.320 0.172
4 0.441 0.357 0.232 0.129 ‘;
8 0.244 0.147
Optimized (E). {x*), BAiw = 0.5
quasiharmonic Anharmonicity parameter
QP
1 0.453 0.410 0.291 0.197 003 02 10 >0
e o= e
8 quantum 1.26 0.814 0.431 0.214
Primitive
(C). (x?), Bhw» =2 algorithm
Anharmonicity parameter QP
0.05 0.2 1.0 5.0 1 1.23 0.794 0.416 0.200
2 1.25 0.796 0.429 0.210
Exact 4
quantum 0.537 0.412 0.265 0.161
Quasiharmonic
Primitive QP
algorithm
QP 1 1.27 0.828 0.437 0.227
2 1.26 0.805 0.426 0.218
1 0.408 0.367 0.182 0.0944 4
2 0.486 0.364 0.221 0.122
4 0.526 0.395 0.246 0.143
8 0.159
TABLE III.
Quasiharmonic 7 =
Anharmonicity parameter
1 0.533 0.401 0.250 0.140
2 0.540 0.403 0.261 0.149 0.05 0.2 1.0 5.0
4 0.155
8 Exact
quantum 0.578 0.387 0.182 0.0709
Optimized
quasiharmonic Primitive
QP algorithm
QP
1 0.548 0.430 0.296 0.202
2 0.541 0.418 0.271 0.176 1 0.025 0.019 0.0096 0.0032
4 0.167 2 0.0836 0.0536 0.0225 0.0066
4 0.191 0.131 0.0539 0.0166
8 0.371 0.215 0.0961 0.0286
(D). {(x*), Bhiw = 1 Quasiharmonic
Anharmonicity parameter QP
0.05 0.2 1.0 5.0 1 0.252 0.117 0.0362 0.0097
2 0.337 0.168 0.0545 0.0144
Exact 4 0.422 0.231 0.0810 0.0225
quantum 0.785 0.550 0.315 0.172 8 0.516 0.314 0.121 0.0335
Primitive Optimized
algorithm quasiharmonic
QP QP
1 0.727 0.502 0.278 0.138 1 0.437 0.280 0.154 0.0440
2 0.778 0.535 0.303 0.157 2 0.467 0.285 0.132 0.0397
4 0.780 0.543 0.304 0.168 4 0.510 0.306 0.131 0.0416
8 8 0.535 0.336 0.143 0.0473
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TABLE I (continued ). TABLE III (continued).
(B). {x*), Bfiw = 5 (D). x*), Bfiw = 1
Anharmonicity parameter Anharmonicity parameter
0.05 0.2 1.0 5.0 0.05 0.2 1.0 5.0
Exact Exact
quantum 0.586 0.388 0.1822 0.0708 quantum 1.670 0.792 0.261 0.0796
Primitive Primitive
algorithm algorithm
QP QP
1 0.0934 0.0692 0.0248 0.0022 1 1.38 0.620 0.180 0.0430
2 0.226 0.137 0.0559 0.0147 2 1.618 0.727 0.224 0.0586
4 0.434 0.262 0.0944 0.0290 4 1.645 0.752 0.234 0.731
8 0.509 0.338 0.139 0.0441 8 0.777 0.249 0.0765
Quasiharmonic Quasiharmonic
QP QP
1 0.382 0.191 0.0709 0.0194 1 1.636 0.725 0.229 0.0629
2 0.470 0.2545 0.0918 0.0246 2 1.674 0.756 0.245 0.0747
4 0.543 0.329 0.127 0.0360 4 0.776 0.252 0.0776
8 0.569 0.385 0.152 0.0500 8
Optimized
quasﬂg;nomc (E). (x*), Biw = 0.5
Anharmonicity parameter
] 0.495 0.348 0.146 0.0569
2 0521 0338 0141  0.0516 0.05 02 1.0 50
4 0.571 0.341 0.154 0.0526
8 0354  0.167  0.0565 Exact
’ ’ quantum 4.071 1.632 0.453 0.115
Primitive
algorithm
QP
1 3.842 1.505 0.395 0.0898
(C). (x*), Bl =2
. 2 4.012 1.537 0.438 0.105
Anh t t
nharmomicity parameter 4 4226 1.665 0.452 0.117
0.05 0.2 1.0 5.0
Quasiharmonic
Exact QP
quantum 0.823 0.471 0.192 0.0712
[ 4.036 1.631 0.426 0.112
Primitive 2 4.063 1.568 0.428 0.112
algorithm 4 0.460
QP
1 0.456 0.240 0.0792 0.0203
2 0.659 0.351 0.120 0.0348 TABLE1v.
4 0.786 0.427 0.154 0.0498 ™ -
8 0.805 0.451 0.185 0.0634 (A). Partition function, S#iw = 10.
Anharmonicity parameter
Quasiharmonic
QP 0.05 0.2 10 5.0
1 0.738 0.381 0.135 0.0393 Exact
2 0.801 0.425 0.163 0.0486 quantum 0.721 0.359 0.047 0.00071
4 0.787 0.445 0.179 0.0582
8 0473 0.189 0.0662 Classical 0.0985 0.0953 0.0858 0.0698
Optimized Optimized
quasiharmonic quasiharmonic
QP QP
1 0.773 0.431 0.180 0.0705 1 0.755 0.442 0.101 0.0498
2 0.817 0.445 0.169 0.0642 2 0.743 0.418 0.0836 0.0349
4 0.450 0.184 0.0645 4 0.734 0.400 0.0700 0.0248
8 0.464 0.202 0.0689 B8 0.379 0.0612 0.0017
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TABLE 1V (continued ).
(B). Partition function, ffiw = 5

R. A. Friesner and R. M. Levy: Optimized discretized path integrals

Anharmonicity parameter

0.05 0.2 1.0 5.0
Exact
quantum 0.852 0.600 0.219 0.0267
Classical 0.194 0.184 0.158 0.124
Optimized
quasiharmonic
QP
1 0.865 0.644 0.285 0.0558
2 0.859 0.625 0.263 0.0459
4 0.855 0.616 0.245 0.0384
8 0.607 0.232 0.0333

(C). Partition function, ffiw = 2

Anharmonicity parameter

0.05 0.2 1.0 5.0
Exact
quantum 1.046 0.872 0.551 0.235
Classical 0472 0.428 0.349 0.260
Optimized
quasiharmonic
QP
1 1.047 0.890 0.598 0.287
2 0.880 0.578 0.265
4 0.564 0.251
8 0.242

(D). Partition function, Sfiw = 1

Anharmonicity parameter

0.05 0.2 1.0 5.0
Exact
quantum 1.410 1.195 0.854 0.507
Classical 0.908 0.795 0.620 0.450
Quasiharmonic
QP

1 1.414 1.21 0.877 0.548
1.412 1.20 0.867 0.525

(E). Partition function, Sfiw = 0.5

Anharmonicity parameter

0.05 0.2 1.0 5.0
Exact
quantum 2.163 1.799 1.313 0.8679
Classical 1.71 1.45 1.09 0.773
Quasiharmonic
QP
1 2.16 1.81 1.33 0.890

C. Numerical resuits

Monte Carlo results presented here were obtained with
20 000-50 000 steps per discretized point (the precise num-
ber used depended on various parameters). The step lengths
were varied to yield acceptance rates of between 30% and
70%; the variance did not appear in any case to depend criti-
cally on the precise choice of step length. Typical numbers
are accurate to 4 5%. A detailed study of this aspect of the
problem is not the purpose of this paper, but it can be noted
that improvement of the reference system generally yielded
improved statistics as well, a not very surprising result.

Tables IT and ITI compare the exact quantum results for
(x?) and (x*) with the three path integral calculations for
various temperatures, anharmonicity, and number of qua-
drature points. A path integral calculation was considered
converged with respect to P (this is indicated by a dash in the
next highest level of quadrature) when agreement with the
basis set results fell comfortably within the noise level.

Several general observations can be made. First, all
three calculations show improvement, as expected, with in-
creasing P. The quantity (x*) shows the slowest conver-
gence, and indeed for large values of 8 and a is not fully
converged even in the best calculations. [The degree of con-
vergence of 4 is roughly estimated by (dp;/Agxacr)] A
check was made to determine if some of this effect was due to
poor Monte Carlo statistics by using 22K (z,--z,) [rather
than K (z,--z,)] as an importance sampling function. This
improves the statistics but yields essentially the same results
as in Table II and III. It thus appears to be the case that for
the path integral calculations quantum corrections to {x*)
are more difficult to compute accurately than those to (x2).

The most dramatic effects occur at the lowest tempera-
tures. For Bfiw = 5, for example, the optimized quasihar-
monic calculations yield comparable results for P = 1 (for all
values of a) to the FPDPI results using P = 8. This observa-
tion contains the main point of this paper; for a small addi-
tional amount of work, convergence of path integrat calcula-
tions for anharmonic boson systems can be enormously
enhanced by use of appropriate harmonic reference poten-
tials. Highly anharmonic systems, of course, will still require
many quadrature points to achieve accurate calculation of
all quantities (e.g., {x*) for Bhw = 10, a = 5.0).

Results for the partition function, Q, are presented in
Table IV. The Monte Carlo results are obtained using the
optimized frequencies for Sw>2 and the quasiharmonic clas-
sical frequencies for Sw < 2. As in the previous calculations,
convergence is slowest at low temperature and large anhar-
monicity (where the most important part of the calculation is
to obtain the ground state energy). Comparisons are made
also with the classical partition function, obtained through
numerical one-dimensional integration of the quartic poten-
tial. Attempts to evaluate the partition function using a free
particle reference system led to extremely poor statistics and
inaccurate results.

V. CONCLUSION

It is clear that the quasiharmonic reference system in-
troduces a significant quantitative improvement in the path
integral calculation of ensemble averages for suitable prob-
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lems. Even P =1 (“quasiharmonic classical mechanics”)
will often yield quite reasonable answers. Furthermore, it is
straightforward to implement and involves little additional
computer time; the quasiharmonic propagator has a form
that is nearly as simple as that for a free particle. The new
requirement is the original classical quasiharmonic normal
mode analysis; this is also relatively straightforward, even
for quite large systems (see Refs. 5-8).

The optimized reference system described above has
some common features to that proposed in Ref. 2. In particu-
lar, the use of a variational procedure to determine the para-
metrization of the effective Hamiltonian is employed in both
methods. The principal results presented here are a synthesis
of these ideas with the classical temperature-dependent ef-
fective normal mode analysis of Levy, Karplus, and co-
workers; this synthesis enables a straightforward Monte
Carlo path integral treatment of many-body systems with
complicated anharmonic boson potentials.

As mentioned in the Introduction, it is possible to com-
bine quasiharmonic and free particie propagation, applying
each to different degrees of freedom. In principle, there is no
reason why one could not also utilize anharmonic reference
potentials, although a convenient form for the zeroth order
propagator Gy{x,x', 8) may be difficult to obtain. It is also
possible to use a different number of quadrature points for
different degrees of freedom.

It seems likely that further optimization of DPI meth-
ods will allow routine calculation of quantum equilibrium
averages for large, complex systems. The same cannot be
said for dynamical problems; there has been considerable
work done in this direction recently'*!* but the difficulties
appear to be much greater. Here too, however, use of a refer-

ence system can be quite helpful. Application of the QHDPI
formalism to calculation of time correlation functions will be
presented in a forthcoming paper.
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