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An approximate analytic form for the time-dependent one-exciton Green’s function of a system with two
excited electronic states coupled to a single harmonic vibrational mode is derived. The Fourier transform of
this is used to calculate optical line shapes; these are compared with results obtained from exact numerical
methods and give excellent agreement. A discussion of the basic ideas of the formalism is given, and possible
extensions of this work to more complicated systems (e.g., multimode vibronic coupling problems) are

mentioned.

I. INTRODUCTION

In a series of previous papers‘ we introduced a new
method for studying analytically the eigenvalues, ei-
genvectors, and optical line shapes of a system con-
sisting of a ground state and two excited electronic
states, linearly coupled to a single harmonic vibra-
tional mode. The system is of interest both because
it has direct applications (e.g., as a simple model for
exciton—phonon interactions in a molecular dimer) and
because insights can be obtained which are valuable in
the solution of more complicated problems (e.g.,
coupling of electronic excitations to a phonon heat
bath).

This paper is a logical continuation of the first three
(hereafter designated papers I, II, and III) and com-
pletes our theoretical study of the optical properties of
this simple Hamiltonian in the strong electronic cou-
pling limit, Paper I considered only off-diagonal vi-
bronic coupling (see Sec. I A for the representation to
which this refers), determining the eigenvalue spec-
trum and some useful analytic properties of the eigen-
vectors. Paper II extended this workto include dia-
gonal coupling as well. Paper III used the results from
paper I to determine analytical formulas for optical
spectra in the strong electronic coupling limit (only off-
diagonal coupling was considered); this is the most
difficult case to treat with standard perturbation tech-
niques.

In this work we calculate the exciton Green’s function
matrix elements for both diagonal and off-diagonal cou-
pling in the strong electronic coupling limit; the ob-
servable optical spectra of corresponding physical sys-
tems are easily determined from these quantities. The
calculation in paper III is improved by using a second or-
der (rather than first-order) cumulant expansion for cer-
tain matrix elements. A brief discussion of the weak
electronic coupling region is given and some approxi-
mations are mentioned. Comparison is made with
numerical calculations, and it is shown that the analyti-
cal results presented here are quantitatively accurate
in all regions of interest.

In conclusion we contrast the underlying ideas of our
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technique with standard perturbation theory and discuss
future directions for research.

Il. THEORY
A. Exciton-phonon Hamiltonian

We will consider an ensemble of exciton—phonon sys-
tems, the zeroth-order Hamiltonian of which is given by
H=aAXA, - Afa,) + (B*B+3) +y (B + B*)(A*4, - AFA,)

+v(B+B*) (A, + AFA,) + E,, (AFA, + A¥A,) + E/ATA, .
)

Here |a) and |b) are the excited electronic states with
annihilation (creation) operators A,(A¥), B(B*) are the
usual phonon annihilation (creation) operators (all en-
ergies are written in units of #w), y is the diagonal
exciton-phonon coupling parameter, » the off-diagonal
coupling parameter, E,, the average energy of excita-
tion 3 (E, + E,), and E, the ground state energy. Deriva-
tion of this form of H from a more general two-level
Hamiltonian is discussed in paper II.

We will set the zero of energy to E,+3, and consider
only singly excited configurations such that

(V| AXA, + AfA, | ¥)=1 . (2)

In addition, we will introduce a term into the Hamil-
tonian to_account for various perturbations and correc-
tions to H; e.g., inhomogeneous broadening with respect
to E,;,, other vibrational modes equivalently coupled to
la) and |b), equivalent phonon fluctuations. The sim-
plest approach is to define a term H'(5) which leads to
broadening of every vibronic transition from the ground
state |0m) (m is a vibrational quantum number) to an ex-
cited vibronic state {¥,)

H'(5)=05(A%4,+ A}A,) . ®)
Then
HB)=H+H (5), 4)

and ensemble average quantities 4 are computed by
taking

A= fA(ﬁ)p(o)da , (5)
where p(5) is a normalized distribution function. Fur-

ther discussion of this idea can be found in paper III and
Ref. 2.
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In paper II we showed that the parameter space (A, g,
v) of H can be divided into two regions, each of which
possess a specific type of approximate analytical solu-
tion. The first region, weak electronic coupling (in
different language, the diabatic region) is approximately
defined by

2a<1 6)
or
v<y

The second, strong electronic coupling (the adiabatic
region) is roughly the complement of this;

2a>1 and v>y. (7

In addition the diabatic region may again be entered for

very large v(} v® > A); we will not discuss this case
here.

We will continue to use terms “strong” and “weak”
electronic coupling in what follows, to retain continuity
with previous work., However, the rigorous meaning of
these terms is given by Eqs. (6) and (7) and the cor-
responding discussion in paper II, and they should be
understood accordingly.

B. Strong electronic coupling

From paper II, the eigenvalues of & in this limit are
well represented by

Epa=Eg+n[at+ G2 +0* =)+ 3] =n+T,+E, ,

(8)

where
1/ 24l ) [( a? >2
2_ 2 2, 2y _ 2, .2
S"‘2(2n+1+7 v mr1 VY
1/2
_8A2 2]
2n+1 ’

and o is a quantum number referring to the symmetry
of the eigenstate [a@ =+ corresponds to the (+) sign in
Eq. (8), while @ = — corresponds to the () sign].

The eigenfunctions corresponding to E,,a are

Vo = @) X% (@ £5,) + | D) Xoa @ £5,) @)

where X% (@), ¥ (@) are solutions to a Hamiltonian A
with y =0;

f=a(A*A, - A3A,) + B*B + —vﬁ (A*A, + AFA,) (B + B*) ,

(10)
=G+t -2V, (11)
In Eq. (9) @ is the vibrational coordinate.

Each state ¥,, will have non-negligible configuration
interaction with one state ¥, .., where E, ,» =E,, and
¥, o+ has the correct symmetry (see paper II for de-
tails). In the calculations which follow, we will ignore
this interaction, and take the ¥,, to be the correct sing-
ly excited eigenstates. The justification for this ap-
proximation is as follows.

(1) Although configuration mixing is significant, the
actual values of the interaction matrix elements are
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small, i,e., the eigenvalues are displaced very little

(a few percent maximum) from the values given by Eq.
(8). The line broadening from H’(5) will tend to smooth
out the effects of such small displacements.

(2) The sign of the interaction is random (as a func-
tion of eigenstate quantum number) and so, over a large
number of states, the effects will tend to cancel.

(3) The excellent agreement obtained with numeri-
cal calculations indicates that the approximation is a
reasonable one.

We shall calculate the exciton Green’s function ma-
trix elements G, in the { la}, |b)} electronic basis. In
paper II we gave symmetry arguments to show that

(Xoa | X0a) =0 (12)

Then, G,, #0, and we need only calculate G,, and G,,.
Initially we fix § and calculate the time Green’s func-
tion’s

G“(ty 5)=<8“(t, 5)) . (13)

The outer brackets represent an average over the

canonical ensemble of the vibrational mode (this is

effectively an average over the thermal distribution of
the ground vibronic states), and

S, 6)=expliH(5)t] A¥ exp[-iH(6)1] A, . (14)

Notice that H' does not affect the eigenstates; it simply
adds a displacement § to the excited state energy. To
proceed further, we substitute Eq. (14) into Eq. (13) and
perform the canonical average to obtain

Gult, 8)= 2.2 (Om|expGH?)| Om){Om |A¥|¥yq)

x<wna|exp(" th)|d)na> (ana |A1I0m> ’ (15)

where |Om) is the electronic ground state with m pho-
nons, and B is the inverse temperature 1/k2T. Defining
the phonon number operator i, =B*B, and noting that

|Om) is an eigenstate of %, we can rewrite Eq. (15) (see
paper III) as
Gyt 8)= 2 (Xia|exp(=iE.yt) explingt)
no
xexp (= Bho) [Xna) » (16)
where
na = Ena +5.

As in paper III, we define a normalized x!, such that

me IXna>— 1. amn

The relation between %}, and x%, is obtained from the
equation

(Xoa | Xoa) = (Ko | Xoa) = ¥y | AXA, — AFAp | ¥pg) = 8E, /84

o [(o- ) ]

=Vp, (18)
where 3s? /34 can be evaluated from Eq. (8). Thus

|%hay=1/VZ A £v,)"? | Xsa) 5 (19)
where the + or — signs in Eq. (19) depend upon both ¢
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and a.
For notational convenience we define
Ono = exp(=~ iE,q t) exp(ihgt) exp(~ Bhy) . (20)

We now rewrite Eq. (16) in terms of the ¥, and per-
form the sums over o explicitly

Gyt 6):% [Z(gmm,,,[ij,,) Qxv,)
+ 20 10,70 (1% u,,)] : (21)

We finally obtain explicit expressions for G,, and Gy,

Gualty 0)= 5 | 2 1R800 88+ (R B0 [0

T DM CALMEERRC AP PA

(22)
Define
=2 (@035,
A= R0, 55
n
) (23)
X= 2 (% |0 X5 Vn
n
A= Z 6(“::- l 67-- | )-(:.> Vp o
n
We have
Gaalt, 8)=z[AN1+ A7)+ 205 - 23] . (24)
Analogously,
Gult, 8)=3[21+21]-2[X5 =23 . (25)

In paper III we evaluated the A} by making a first order
cumulant expansion of each term in the sum, converting
the resulting sum into an integral, and analytically
evaluating this integral. Here we have additional com-
plications because of the presence of the s?, term (s? is
identically zero for all » in the limit 4 =0). In fact, it
is almost as convenient to evaluate the sums over »n
directly as it is to convert them to an integral. Fur-
thermore, this procedure provides greater flexibility
in the types of terms which can be included, and is
somewhat more accurate, In what follows, we will de-
fine the 2} as sums over n which must be evaluated nu-
merically, truncating the summation at a point where the
individual terms become sufficiently small.

A further improvement can be made in the results
of paper III by considering higher order terms in the
cumulant expansion. The details of this process are
presented in Appendix A, where we evaluate the relevant
matrix elements.

The inclusion of higher order terms from the cumulant
expansion will improve the approximate expressions only
if these terms are not cancelled by other, still higher
order terms. We have investigated this point by com-
paring the results for the first and second order cumu-
lants with numerical calculations (see the results sec-
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tion). We find that for y =0, the second order terms
significantly improve the calculation of [ $ + 7] but not
of [x3 -23]. While no rigorous justification for this can
be offered, it is plausible that the weighting factors v,
and the fact that a difference is being taken could lead
to cancellation of the higher order terms in the ex-
pansion for A; — X3, and that this cancellation could be
less efficient when the second order terms are included
explicitly. This point needs further study; in what fol-
lows, however, we will use the above scheme. For
y#0, the second order correction pi(s)=[s2(n+1)]/2
(see Eq. A14) should be made for both the [A] + ;] and
[X5 =2;] terms. The results from Appendix A can finally
be combined with Eqs, (23), (8), and (16) to yield

1= % Z exp{~-Bn) exp[~it(E,, + 5 £ )]

xexpl - (@2 + p2)] , (26)

where z=7 ,exp(~Bn) is the normalization of the har-
monic oscillator and

=4 Ly2
2 Tpln+t3z)
P = *"ﬁf— , 27
while

1
= Z Z exp(~ Bn) exp[ - it(E,, + 6 + T,) v, exp(- p2 ) .
n

(28)

To calculate observable quantities, we must Fourier

transform G;; (¢, 6) and average over the distribution in
5. The relevant functions are then

X (E)=Im f expGE?)dt f »(B)doAE(L, ), 29)
so that
ImG,, (E) =3 [X{(E) + N (E)]
+3[B(E) -X3(E)]
ImG,, (E) = 5 [N {(E) + X{(E)] - 3 [X3(E) - X3(E)] . (30)

These functions can, in principle, be evaluated for
any distribution p(5). If we take p(5) to be a Gaussian

1

p®)= T expl~ 8t/ WP, (31)
where W is the width of the distribution, we obtain
1
I(E)= " Z exp(~pn)exp[- (E + T, - E,, )%/ £2]
. 32)
Vg,
where £,= (W2 +4¢% +4p2)!/%
Similarly
1
X3(E)= 2 Z exp(—pn)exp[- (Ex T, - E,;)* /1]
v
Yo
“Vam,
= (W2 +4p))'? (33)

We will use Egs. (32) and (33) in all calculations which
follow.
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FIG. 1. Comparison of exact and approximate G ,,—G,; for
weak electronic coupling; A=0,2, v/ V2=0.5, v=0.0, W=1,0,
B=0.1, Absorption is normalized to 1 and in dimensionless
units; energy is in units of Aw,

15 20 25 30 35

From Eq. (32), it is apparent that the effect of the
second order corrections ¢, are to broaden the indivi-
dual effective transitions at energy E=E,, + T, by vary-
ing amounts for each n (¢, increases as n increases)
and thus represent a variable intrinsic vibronic life-
time, Allowing ¢,— 0 (this will occur as A— =) re-
covers the first order cumulant result of paper III for
vy=0.

Note that we have here calculated the imaginary parts
of the exciton Green’s function matrix elements. The
real parts could be obtained by taking the real part
(principal part) of the Fourier integrals in Eq. (29) or,
equivalently, by a Kronig—Kramers transform of the
line shape functions in Eq. (30).

C. Weak electronic coupling

We will confine ourselves in this section to a few brief
remarks concerning the relevance of our results to the
weak electronic coupling region. For the most part,
this region is best treated via standard perturbation
theory techniques which have been discussed at length
elsewhere.?

As shown in paper III, the absorption line shape (this
was proportional to G,,) as a whole is quite different
in the weak couplings regime than the results obtained
from Eq. (30). However, we note here that, at least
for only off-diagonal coupling ( = 0), the calculation of
part of the Green’s function,

Im((_;aa _Cbb):XT‘Z _X;. ’

gives correct results in the weak as well as strong
coupling region. Our evidence is based entirely on
comparison with numerical calculations. Figure 1
compares a typical calculation of Im G,, ~ Gy, for
parameter values in the weak coupling region; agreement
is excellent. The reason for this agreement still needs
to be determined.

Richard Friesner: Optical line shapes

l1l. ABSORPTION AND CIRCULAR DICHROISM
SPECTRA OF A MOLECULAR DIMER

The Green’s functions derived in Sec. II can be used
to calculate a variety of observable quantities., To re-
tain continuity with paper III, we choose as an explicit
physical system a molecular dimer composed of two
molecules, each with a single excited state coupled to
a single vibrational mode. The vibrational frequencies
and couplings are assumed to be identical, butthe zeroth-
order excited state electronic energies may be different.

The Hamiltonian is then
Hgimor=J(AtA, + AYA,) + (BB, + BYBy)
+ AE +g[A¥A (B, + Bf) + A¥A,(B¥ + B,)]

+e(AfA, - A¥4,) . (34)

Here the labels 1 and 2 refer to molecules 1 and 2; all
operators are as in the previous section; AE is the aver-
age separation from the ground state; J is the electronic
exchange integral; and € is the separation between the ex-
cited states of molecules 1 and 2. All energies are in
units of hw.

As in paper I, we can remove one vibrational mode by
a canonical transformation; in addition, we transform
the electronic states to the {a), |b) basis so as to pro-
duce a Hamiltonian isomorphic to Eq. (1). We set AE
=0 [this is equivalent to setting E,,=0 in Eq. (1)] so that
E =0 will be the average energy of the monomer spectra.
When all of this is completed, we can use the results
of Sec. II by setting

A= UEted)?,
pogd/ U+ DV
y=ge/Wt+ /2

We continue to define H’ as in Sec. II.

The absorption and circular dichroism (CD) spectra
can be calculated from the Green’s functions (in the
strong electronic coupling limit) as

HE)=Im[ | 14 |2Gyy + | tog |* Gog + 21y - $2G]

=Im( |ty |*Caa + | os | *Gon] 5 (36)
8(E)=KIm G, (E)
=K g, Im(G,, — Gy,) . 37)
Here
g =Cyby+ Colhy 5 (38)

Hy=Cilg = Calby »

are the transition dipole moments of the electronic
states la), 1b). The coefficients ¢y, ¢, are those of the
canonical transformation from {1), [2) to [a), [b). In
Eq. (37) K is a constant which depends on the dimer geo-
metry and monomer absorption band (see paper III) and
6, again accounts for the electronic rotation to the la),
|b) basis and is given by

Oup=d/ T2+,

In all of the above calculations, we have used the re-
sult that G,, = 0.

(39)
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FIG. 2. Comparison of exact and approximate (both first-

and second order cumulant expansions) low energy absorption
line shape for the dimer parameter values J=1.0, g/2=0.5,
€=0.0, W=1,0, 3=0.2. Absorption is normalized to 1 and in
dimensionless units; energy is in units of Fw.

For absorption we obtain finally
+%(r “’aa|2 - |#bb '2)(X§ -X3)

2157 L T J S
=3 |u| (X1 +X1]+2 Trr a7z (W k)0 -33)
(40)
where we have taken |u,|%=|pu,i%= li1* and evaluated
¢y, Cy explicitly. For the calculations which follow,
we set | u|®=1 and take y, and p, to be parallel; then

1B =3[R+l g | ey Ri-%0] . e

N

| 2

For the circular dichroism, we set K=1 so that

J

O(E)= (72+—€2717-2— (XE —XE) . (42)

00
= -002
D _004
o
@ 4
I !
Q -o.10}- 4
[a 2
14 i/
3 EXACT- N\ 7
=) N\ /i
g -o.20 O\ /
@ ~O IST ORDER CUMULANT /
(&} A\ /
2ND ORDER CUMULANT \ N
N\
~0.30— L ' ! L
-5 -4 -3 -2 - 0

ENERGY

FIG. 3. Comparison of exact and approximate (both first and
second order cumulant expansions) low energy circular dichro-
ism for the dimer parameter values J=1.0, g/vZ =0.5,
€=0,0, W=1,0, $=0.2, Ellipticity is in arbitrary units of

K (see text and paper III); energy is in units of Aw.

IV. RESULTS

We present here calculations of the absorption and
circular dichroism expressions derived in the previous
section and compare them to numerical results obtained
by direct diagonalization of H using a truncated basis
set. (The latter calculations are performed as described
in paper III.) This is equivalent, as a test of the theory,
to comparing individual Green’s functions and at the same
time allows a simple physical interpretation of the
quantities which are evaluated.

We first show that for ¢ =0 (y =0 in the |a), [b) repre-
sentation) the second order cumulant expansion produces
substantial improvement over the first order truncation
used in paper III. Figure 2 compares the first and sec-
ond order approximations for the absorption line shape
with numerical results for the low energy region (E <0)
for a typical set of parameters; agreement is improved
significantly for the second order expansion (agreement
is excellent in the high energy region for both methods.
To show that the second order terms do notf improve the
calculation of A} — X3, we compare the CD (proportional
to this quantity) for this case with numerical results in

034 (a)

030

o
N

(o]
T

EXACT

ABSORPTION

o
o

0.04

ENERGY

03l EXACT

N\ APPROXIMATE

O.l

0.0 =~
-0

-02

I

CIRCULAR DICHROISM

-03—

1 |

|

| |

L

| | 1 1 L

-5 -4 -3 -2 -| o] | 2 3 4 5 6 7
ENERGY

FIG. 4. (a) Comparison of exact and approximate absorption
for dimer parameters J=1.0, g/A2=0.5, €=0.5, W=1.0,
#=0.2, Absorption is normalized to 1 and in dimensionless
units; energy is in units of #w. (b) Comparison of exact and
approximate circular dichroism for dimer parameters J=1.0,
gN2=0.5, €=0.5, W=1,0, $=0.2, Ellipicity is in arbitrary
units of K (see text); energy is in units of #w.
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TABLE L.
circular dichroism as a function of €.

Richard Friesner: Optical line shapes

Comparison of exact and approximate calculations of various characteristic parameters of the absorption and
The meanings of the table headings are as follows: LET (low energy tail)

=YY I{E)dE, ROT STR (rotational strength) = 2, 8(E)dE; Ayax isthe amplitude of the absorption maximum, and E(Ay xx)

is the energy at which the absorption maximum occurs.
W=1.0.

The remaining dimer parameters are J=2.0, g/V2=0.5,

(A) 8=0.2
LET ROT STR Ayvax ElAyay)

€ Exact Approximate Exact Approximate Exact Approximate Exact Approximate
0.0 0,089 0,083 -0,808 - 0,814 0,442 0,427 2.4 2.4
0.5 0.093 0.092 —0.799 —0.796 0.433 0,420 2.4 2.4
1.0 0.102 0,114 —0.770 — 0,746 0.408 0.402 2.5 2.5
2,0 0.131 0.169 —0.664 —-0.613 0.329 0.358 2,8 3.0
(B) 8=0.5

0.0 0.055 0,049 -0,895 - 0,901 0.511 0,506 2,2 2.2
0.5 0,062 0.060 —0.881 —-0.879 0.500 0,496 2.3 2.2
1.0 0,081 0,088 —0.839 —0.821 0.471 0.473 2.4 2,4
2,0 0.139 0,162 —0.701 —0.666 0,389 0,418 2,8 2.9
(¢) B=1.0

0.0 0. 037 0,020 - 0,935 - 0.939 0.535 0.537 2.1 2.1
0.5 0. 046 0,042 —0.916 -0.914 0.525 0.527 2.2 2.2
1.0 0,071 0.074 - 0,864 - 0,851 0.499 0.502 2.3 2.3
2,0 0.143 0.156 -0.708 ~0,684 0,425 0,445 2.8 2.9

Fig. 3. Agreement is excellent for the first order cu-
mulant and not as good for the modified line shape.

In Fig. 4 we examine a nonzero value of ¢, comparing
the analytic and numerical results for 6(E) and I(E).
Agreement for both line shapes is quite good in all energy
regions.

Table I shows the effect of variation of € on charac-
teristic parameters (low energy absorption, rotational
strength of the CD, amplitude and position of the ab-
sorption maximum) of the optical line shapes. Increas-
ing € leads to a decreasing rotational strength and
greater low energy absorption. This is consistent with
the intuitive picture that separating the excited en-
ergy levels of the dimer drives the spectrum towards
that of two isolated molecules. Of course, in these cal-
culations we do not see the completion of this process,
since before this occurs we pass into the weak coupling
regime,

The value € =2,0 in Table I (i.e., € =J or, in the
language of Sec. II, y =wv) is at a point where the strong
electronic coupling scheme is beginning to break down.
Thus, agreement is not as good for this value as it is
for the smaller values of e.

V. CONCLUSION

Application of our formalism to other physical sys-
tems or other types of experiments than those discussed
in Sec. III is straightforward, as long as the system
can be represented by Hamiltonian (1). In addition our
theory allows calculation of ensemble averages over
other parameters of the Hamiltonian, e.g., a distribu-
tion of exchange interactions J or energy splittings ¢
for the molecular dimer. In this case the terms in the
sums can be integrated over these distributions term by

term, perhaps analytically but numerically if necessary.

Although the system we have studied is extremely sim-
ple, the methodology which has emerged is nontrivial
and may be valuable in analyzing more complicated
problems. The essential feature of our approach is
that calculations are done in the excited eigenstate
representation; the matrix elements of the ground state
vibrational Hamiltonian k, are evaluated via perturba-
tion theory. All that is necessary to carry out this
procedure is an analytic representation of the excited
state eigenvalue spectrum and determination of the above
matrix elements.

This can be contrasted to the usual techniques in
which the ground state vibrational eigenvalues are used
as a basis set and the exciton-phonon coupling term is
treated via perturbation theory. The approximations
made in this approach are quite different from the ones
made here; in particular, our method is valid for strong
electronic and moderate excitation—-phonon coupling at
high temperatures. In this limit, the expansion in
powers of A (or in renormalized A after a small polaron
transformation) does not converge rapidly (see paper I
for a more concrete discussion), while our eigenstate
representation is quite accurate.

In forthcoming papers, this approach will be extended
to calculate the Green’s functions and density matrix
evolution of a two-level system coupled to an arbitrary
set of phonon modes. Application of these ideas to
generalized multilevel exciton systems would be quite
interesting but presents great difficulties.
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APPENDIX A: CUMULANT EXPANSIONS OF THE
ZEROTH-ORDER PHONON OPERATOR

We have to evaluate
F)=(%na | €xp (ho?) | Xna? 5

where i=aqa or b.

(A1)

The first order cumulant approximation is*
@) =exp(Rng |ihot | %na) »
while the second is
F 2 (t)=exp{(Rna | ihot | Rra) + 2 [{Fna | €01)* | Rra)
— (Rha |30t | Rna))?1} - (Aa3)

We first consider the y =0 case. The first order term
has been evaluated in paper III and yields

(A2)

(A4)

The second order term is more difficult; we make
here what is essentially a reasonable guess which is
justified by success in comparison with numerical re-
sults. Examination of paper I shows that the matrix
equation for x!, resembles that of a displaced oscillator
of frequency 2 with off-diagonal element

e+ D+ 2))/?
Mn,mz" 4T,

(Xbo|ithy|Rie)=itn  for alli, a .

(A5)

Now the second cumulant of 4, for a displaced oscil-
lator with linear displacement g@ is

L €085 ()?] 05y = ({8 | by | 95001 =&*/2(n + 3) a6)

which is approximately the square of the off-diagonal
matrix element

My pi= 5 V1. @7
This suggests that we can approximate
3 [Rha| G10)? |Rh) = € |10 [ R2))?]
= 2(M,, ,.0)°
=ttn+L)?/8T =02 ¢, (A8)

where the factor of 2 multiplying M, ,,, arises be-
cause the frequency separation of the diagonal elements
is 2w, and we have used (n+%)? so that in the limit as
n— = the second cumulant will be proportional to that of

2135

a displaced oscillator with displacement v.

Thus for J>v?(n+4), ¢? is small, while for n—,
¢~ = (v*/8) (n+%); this is qualitatively what one would
expect.

Substitution of Eqs. (A4) into (A2) yields

f(i)(t)z eint , (AQ)
while from Eqs. (A3) and (A8)
P =explint - ¢3¢ ,
where
142
¢i= %[———r—”“";i) |- (a10)

We can now derive expressions for the general case.
We replace v by 7, and %, (@) by %!, (@ +s5,).

Defining
Q=Q+s,, @a11)
we have
1o (@)=h @) - 5,@ -4 5%, (a12)
so that, for the first cumulant we have
(Rna @]t [ Q) - 5,Q + 5 57| %na @)
=itln+4sk). (A13)

If Ls2 < n we can neglect this term in Eq. (A13). This
is done in the text; however, if %s,z, is large, this term
should be included.

For the second cumulant, a similar analysis yields
H(Rha @ +9) | 1) | e @+ 8)) = [(R1a (@ +5) | g | Rna @ + )T}
=pn+ons) (A14)
where

pi(s) =s2/2(n+%) .
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