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Efficient pseudospectral methods for density functional calculations
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Novel improvements of the pseudospectral method for assembling the Coulomb operator are

discussed. These improvements consist of a fast atom centered multipole method and a variation of
the Head—Gordan J-engine analytic integral evaluation. The details of the methodology are

discussed and performance evaluations presented for larger molecules within the context of DFT
energy and gradient calculations. @00 American Institute of Physics.
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I. INTRODUCTION specialized system&@nd low level basis setgpresented in
Density functional(DFT) methods have, over the past previous papefs on this subject. We also present a novel

. . . : . variant of the J-engine algorithffl, proposed by Head-
decade become increasingly used in solving a wide range %ti)rdon and co-workers, specialized to three center two-
chemical problems. While the methods are still far from pro- :

- . . electron integrals, which are required in pseudospectral
viding a truly quantitative description of all aspects of elec- .
evaluation the Coulomb operator.

tronic structurgfor example, van der Waals energies are not We shall discuss algorithms and performance for both

properly evaluated by any current functionahe develop- adient corrected methodfor which the nonlocal HF ex-

ment of gradient corrected and adiabatic connection methocg;rr]an e operator is not requijednd adiabatic connection
by Becké2 and the subsequent assembly of a family of use~ 2"9¢ OP g

ful functionals by the Pople grodphas dramatically en- methods(for which the HF exchange operator is requited

hanced the accuracy of DFT energetics and structures. The\s/\ée choose the B-LYE method as an example of the former

developments, combined with the relatively low computa—approaCh and the B3-LY¥ method as an example of the

tional cost of DFT calculations, have rendered the approact?tter' Results are presented for a wide range of basis sets and

of the method of choice for a significant number of applica- or gra@ent as well as smgle.-po!nt energy timings; th.'s IS
. . - N essential as geometry optimization and/or large basis set
tions, particularly for large systems, where traditioablini-

tio correlated approaches have long been intractable. single-point calculations clearly consumes the great majority

In this paper, we describe the application of pseudospe of CPU time is calculations that aim for high quality results.

. : . SP€Sve have also completed the development of second deriva-
tral numerical methods to the solution of the major variants, . : S .

. 7 tive methodgincluding second derivatives for effective core
of DFT. Our previous work’ has been focused upon

Hartree—Fock calculations and on wave function-based Iopotentials, or ECPsbut this will be reported in a separate
ublication.

calized correlation methods such as local MP2 and generaf2 : . .
The paper is organized as follows. In Sec. Il we provide

ized valence bondGVB) approaches. There has been no brief overview of the now-standardized elements of PS

barrier n prmmplg o the extension of PS. method's. tO.DFTglectronic structure methods, detailed descriptions of which
calculations and, indeed, we have had this capability in our

. - can be found in other publications. In Sec. Il we provide an
Jaguar suite ofb initio programs for several years now. . . ; )
o . o in depth discussion of the evaluation of the Coulomb opera-
However, the initial implementations were sufficiently far

. . o tor, including our new fast multipole methods and the three
from optimal that we viewed the publication of them as po- . . o
. . S . . center J-engine algorithm. In Sec. IV we present timing re-
tentially misleading in terms of the underlying viability of . .
. sults for a range of chemical systems, focusing on large mol-
the methodology. Over the past two years, we have reﬁneéCules
the relevant numerical techniques, and can now report per- '
formance that we believe to be consistent with the inherent
merits (and limitation$ of pseudospectral approaches to thisll. OVERVIEW OF PSEUDOSPECTRAL NUMERICAL

problem. The implementation includes a newly developedMETHODS FOR AB INITIO SELF-CONSISTENT
fast multipole methodology that differs considerably in its FIELD ELECTRONIC STRUCTURE CALCULATIONS

details from algorithms proposed by others in the context of .51 an architectural point of view, PS self-consisent
conventional quantum chemical technology. This algorithmgg g (SCH calculations, whether of the DFT or Hartree—
will be described below and its performance explicated for g variety, proceed in analogy to conventional quantum
range of realistic chemical problems, as opposed to the rathef,amical programs that expand molecular orbitatdensity

orbitals, in the case of DHTin a set of atom-centered Gauss-
dElectronic mail: rich@chem.columbia.edu ian basis functions. The key step in the process, from the
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standpoint of computational effotand all that we shall be ductions to (asymptotically linear scaling* In practice,
concerned with in this papeis assembly of the components however, much of the computational effort for molecules of
of the Fock matrix. The one-electron Hamiltonidg is con-  chemical interest does not fall into the asymptotic regime,
structed and added into the Fock matrix via the usual anaand the underlying scaling behavior has a significant quanti-
lytical one electron integrals of the kinetic energy andtative effect on performance. With proper optimization, PS
electron—nuclear interaction terms. The demanding part ofmethods can be made to substantially outperform conven-
the calculation is the construction of the Coulomb and extional two-electron methods assuming that the basis set is
change operators. The Coulomb matrix elemigtbetween  sufficiently large. For small basis sets, such as STO-3G, ana-

two atomic basis functiona andb is given by lytical methods are to be preferred, as here the ratio of grid
points to basis functions is big enough to make the prefactor
Jap=2, (ablcd)peg, (1)  in PS methods unfavorable.
cd

To achieve the high precision needed &b initio quan-
where p is the density matrix andap|cd) is a standard tum chemical calculations, modifications of the above PS

two-electron repulsion integral over the Gaussian basis fundormulation are required. The most important of these is that
tionsabcd In conventional quantum chemical programs, theSOme classes of two-electron integratiose making the
two-electron integrals are evaluated analytically and the surlargest numerical contribution to the energye performed
in Eq. (1) carried out. In the pseudospectral formulatfoa, analytically. These include most one- and two-center inte-
numerical grid is introduced and the Coulomb operd(ay) grals and a subset of three-center integrals of the form

is first assembled on the numerical grid (aa’|bc); the number of these last integrals depends upon
the SCF iteration in questiofthe computational scheme var-

I(g) = A , 2 ies on each iteration due to the use of Fock matrix updating

@ % PurPu9) @ and a cutoff threshold for the size of the integrals. The

(aa’|bc) terms are required only in the Coulomb operator.
A detailed analysis of these analytical correction terms in
terms of the technology for implementing them and the ra-
tionalization in terms of relative amplitudes is presented in
Ref. 13.

Jab:% Qa(9)J(9)Ry(9), 3 For DFT calculations, evaluation of the exchange-

correlation(XC) operator is required, in addition to the Cou-

whereRy(g) is the atomic basis functiob expressed on the |omb term. Gradient-corrected DFT methods such as
grid andQ,(9) is a least squares operator, designed to tak@|YP!! do not use Hartree—Fock exchangee K operator
the product)*R and project it onto atomic basis functian  presented aboyeand necessitate only numerical integration
The use of least squares is necessary to filter the aliasingf the XC functional on a grid. As was indicated above, our
error arising from the fact that in typical electronic structuremethods for evaluation of the gradient-corrected XC func-
calculations, the atomic basis sets employed are far frorfonal are similar to those of othets® For hybrid functionals
being Complete in the relevant basis set space. We have d|§uch as B3LYP, a Component of the exchange Operator is
cussed in detail methods used to construct an accurate a'ﬂﬂ:orporated into the XC functional. In this case, Hd)
efficient representation o® in previous publications and apove is used to evaluakeas in Hartree—Fock calculations.
shall not repeat that work here; the reader is referred to Refs.  our focus in this paper is on the refinement of the basic
4,5, and 13 for extensive discussions of this topic. PS methodology described above to increase the efficiency

The Hartree—Fock exchange operakoy, can be ana-  of DFT calculations of both the gradient-corrected and hy-
lyzed in a similar fashion. The final result for the PS repre-pid form. We accomplish this in two ways. In this paper we

where A ,,(g) is a three-center, one-electron integral over
atomic basis functiong andv, evaluated at grid poirg. The
matrix form of the Coulomb operator is then obtained as

sentation ofK is focus mainly on the reduction in computational effort for
assembly of the Coulomb operator. For gradient-corrected
Kab= 2 Qa(9)Tap(9)Ru(9), (4)  DFT, this is a very substantial part of the calculation, par-
9

ticularly for large systems. Our concern in this paper is not
the ultralarge systems that others have made a central con-
Tan(9)= 2 Aac(Q) P (5 cern in formulating “linear scaling” DFT method5 (these
e papers also have a strong emphasis on molecules that are
where the various symbols have the meanings defined abovinear chains, whereas our emphasis instead is on globular,
A formal scaling analysfsof the two-electron and PS three-dimensional systemnbut rather systems at the upper
formulations for assembling the Coulomb and exchange opend (~50-150 atomsof what are run in academic and in-
erators leads to a scaling Nf* for conventional two-electron  dustrial laboratories that utilize quantum chemistry at a pro-
methods andN® for PS methods, wherl is the number of  duction level, i.e., to study a large number of different mol-
atomic basis functions used in the calculatigtiee number ecules. Our atom-center multipole methods are capable of
of grid points, which enters into the PS calculations, is pro{providing significant reductions in CPU time for gradient-
portional toN). For large systems, integral cutoffs reduce thecorrected calculations, even for systems at the lower end of
scaling of both methods td2, and other techniqugsuch as  this range. A second improvement in Coulomb operator
fast multipoles, discussed belpwan yield even further re- evaluation is the use of a modified version of the J-engine
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algorithm of Head-Gordon and co-workéfsThis reduces matrix elements directly. Once the multipole part of the
computational effort for both gradient-corrected and hybridphysical space Coulomb field is constructed, the additional
DFT calculations. Finally, our implementation of the XC op- cost to incorporate it into the final evaluation of the Coulomb
erator, combining efficient sparse matrix multiply techniquesmatrix element$Eq. (3) abovd is negligible.

with a multigrid approach that has been implemented though

is not detailed in this work, yields very large reductions in
computational effort for XC energy and gradient evaluation.
The efficiency of both the combined Coulomb and XC algo-  The Coulomb field at a given grid poigtJ(g), is rep-

2. Coulomb field for pseudospectral integration

rithms are presented in CPU timings below. resented pseudospectrally by a sum over three-center one-
electron integral#\,,, multiplied by the AO density matrix,

I1l. ACCELERATION OF PSEUDOSPECTRAL Puv

EVALUATION OF THE COULOMB MATRIX: ATOM-

CENTERED MULTIPOLES AND J-ENGINE Jg)=> PurAL(9). (6)

FORMALISM v

TheA,,, integral is the Coulomb field at grid poigtcreated
by the contracted basis function paiv

p(r)v(r)dr
A number of methods have now been described in the AM(Q):f — (7)

literature for acceleration of the evaluation of the Coulomb Ir=ryl

operator in electronic structure calculations via the use offhe uv basis pair is composed of products of primitive
fast multipole method$%2In general, these methods follow Gaussian pairgy3 with fixed contraction coefficient®,,,
the protocols developed for classical simulations of charge® s, leading to the expansion &,

particles® in that space is divided into cells, and integral a(r)B(rydr

product centers falling within these cells are grouped to- AW(g):Z DaDﬁf W

gether in multipole terms. This approach makes sense when «p 9

there are a large number of particles spread out more or less

uniformly in the volume of interest. In an electronic structure =2 D,DgA.409). (8)
calculation, however, this is generally not the case. The rea- “p

son that multipole methods are even feasible in an electroni€he a8 primitive Gaussian pair is typically written in terms
structure calculation for molecules of the sizes typicallyof the “product center’r,, defined by the primitive Gaussian
studied(30—-200 atomysis that there are a large number of centersA, B and exponentyd
product centers associated with the different primitive basis YA+ 5B

functions pairs. However, these product centers are very ir- ="

regularly distributed. In particular, they are disproportion- y+o

ately concentrated around the atoms of the molecule. Th&he o product has the following form:
reason for this is easy to understand. If the exponents of the

primitives are both large compared to their separation, then 4 (r)g(r)=| ][ (xj—Aj)“j(xj—Bj)mj
the overlap of the basis functions is nearly zero and the j=xyz

primitive can simply be discarded. Cases where the expo- _ @2
nents are both small compared to the product center separa- xexd —2yo0(A=B)]
tion are relatively infrequentthis, in essence, requires two xXexd —(y+ 5)(r—rp)2], (10
long range functions, whereas most contracted basis func-
tions are short range in basis sets of decent quaktfhen o= 1

one exponent is large and the other is sntdie dominant 2(y+9)’

case in practice then the product center will be located very wheren; andm, denote the Cartesian angular powers of the
close to the atom on which the large exponent is situatedyimitive (e.g.,d,,).

Our atom-centered multipole method exploits this fact by |, the classical limit, namely from a distance far enough

locating the multipole expansion centers directly on atomsg,qy, rp, the aB product function simply becomes a point
This dramatically reduces the number of terms in the muIti-Charge located at,

pole series needed for convergence. The efficiency of the
method is documented below. nj mj
r r Xpi =AM (Xpj— B;)™

Additionally, the implementation of multipoles with PS a(rp) Al p)_>j£<[yz( P AT %= By)

methods is different in its details than what is required for 5

conventional electronic structure calculations. The difference X[exp(—2yd0)(A=B)7]. (1D

arises from the use of three-center one-electron integrals as this classical limit theA,, ; integral is simply

the primitive integrals in the theory rather than the two-

electron integrals that appear in conventional approaches. A“ﬁ(g)_)a(rp)ﬂ(rp)”rp rol- (12

Our multipole method involves an approximation to the Cou-  Although this classical limit is relatively simple, the

lomb field in physical space rather than approximating Fockcomputational cost of evaluating theRlL/denominator at

A. Atom center multipole methods

1. Overview

C)
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each grid point is a nontrivial cost to be avoided if possible.form to more complicated non-Cartesian coordinate systems,
Our purpose in this research is to present a computationallgs typically done in conventional multipole expansibhs.

fast multipole expansion of,; and assembly of the final

Coulo_mb field [Eq. (6)] within this multipole expansion. _The 4. Multipole assembly

techniques to be presented perform optimally within the o o ]
pseudospectral integration scheme and are not directly re- 1he objective is to formulate an efficient algorithm for

lated to more common multipole expansions of four-cente@Ssembling the part of the Coulomb figlq. (6)], which
integralst® can be approximated by the multipole expansion. To clarify

the algorithm we first outline the structure of the Coulomb
field assembly code without multipoles. The outer loop of
3. Atom-centered multipole expansion the J(g) constructor is over grid blockg} containing~128

Obtaining high accuracy with a low-order multipole ex- grid points that are relatively well localized. The inner loops
pansion requires a judicious choice for the center of the mul@'€ OVer contracted basis paigsy) that are then further de-

tipole expansion. Within the Gaussian product frameworkc®Mposed into primitive pairgx/3). For each primitive pair
discussed above we have chosen the multipole center to B&#(9) iS computed and its contribution ti(g) including
the atom nearest theg product center,. Although more theD,p pre_factors_ of Egs(6), (8) are calculateo_l. L
optimal choices can be constructed, the nearest-atom cen- FOF @ given grid block, any contracted basis fir) in

tered method has been found to perform adequately within 9. (7) will have some subset_ of primit_iveﬂ pairs, which
multipole expansion to the sixth order and with minimal can be treated by the classical multipole expandigg.

complications of the formalism. Since many primitive (1] To make an efficient algorithm it is necessary to sim-
Gaussians have relatively high exponents, a large fraction i’y the logic for determining this subset of classical pairs.
the product centers are close to the atomic centers, thus makiiS €an be achieved by referencing the classical ciRgff

ing a low-order atom-centered expansion feasible. The ex-=d- (16)] of a primitive pair to the whole grid block rather to

pansion parameter of a given multipole expansion is therei_ndividual grid points. Thus, if the closest approach of the

fore the product center to multipole center,() distance, gr?d _b_|°Ck to the multipole center is gr_eater thRg,, the
|Fy—Fumo. The denominator in Eq2) can be rewritten to primitive a3 pair can be evaluated classically over the whole
expemgIFi)W this expansion grid block. The localized nature of the grid blocks makes this

block-based cutoff approach practical. Since the actual grid
1 1 1 points are not needed to make this classical/multipole assign-
Irg=rol  [(rg=rmp) +(rmp=Tp)|  [Rg— 4" ment, the calculation of most of the multipole expansion data
The multipole expansion is feasible when, relative to the(t:)an be doqe as a preprocessing §tep b_efor_e.loopmg. over_gnd
. . . ; . locks. This aspect of the algorithm is critical to its effi-
multipole center, the distance to the grid poiRj is much
larger than the distance to the product ceriggr For a par-

ciency. We presently discuss the bulk of the multipole algo-
ticular 3 primitive pair, the minimal distancgR,| for use rithm that assembles components of the multipole terms that
of the classical approximatidieq. (7)] is Rgjass

are independent of the grid points.
Reiass= 0+ VIn(pf/tol)/(y+ 6), 19 5 preassembly

wherepf denotes the constants multiplying thg pair (e.g., The preassembly phase contains a loop over contracted

DaDgp,,) tolis a tolerance for the accura¢y.0e-07, and  ,;, pasis pairs on all atoms, which is followed by loops on

7.6 are the Gaussian exponents. The minimal distd®g¢@  the corresponding primitivey3 pairs. Once a batch of3

for the multipole expansion of ordéty,, to be accurate is  pajrs of specific angular momentum is accumulated, multi-

to . pole data for this batch is accumulated as follows.
Rmm:a(zf‘;)(“”ot Nmb, (15 Density matrix/Contraction coefficients/Cutoff dafane
prefactors pfeeB8) multiplying the primitive integral are first
with Itot the total angular momentum of thes pair. The net  calculated with the inclusion of the contracted density matrix
cutoff R, for both classical and multipole approximations is p,.» and the exponential factor of E¢L1)

13

simply
- - s pf(@B)=D oD gp ., eXH ~2y50(A~B)?]. (18)
°“t_.ma)( mult: ‘f'asg' _ _ (16 The folding of the density matrix into the initial preprocess-
The multipole expansion takes the form in Cartesian coordiing is essential to the efficiency of the algorithm. For this
nates reason the multipole method described herein is of no prac-
1 A tical value for assembling the analogous exchange operators.
Y- > > > Cladhs) If the prefactor is small enough the entitgs integral is
IRg= 8 =T j= 1T (1) ignored. The atom closest to thes product center , is
om0’ ol ol sl +1 assigned as the multipole center of #y@ pair. The classical/
X ORgxRgyRgz0 /Ry, (17 multipole cutoff in Eq.(16) can then be calculated and stored

where the expansion is up to ordep,, with f(N.,,) terms  either in memory or on disk. This storage is necessary to
at a given order. FON,,=6 there are a total of 130 multi- ascertain on each grid block if the3 pair can be done clas-
pole terms. There is no advantage in this formalism to transsically using the grid-block-based cutoff scheme described in
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TABLE I. Timings (SGI R 10k secondsfor a pseudospectral portion of Coulomb assembly. Timings for
multipole terms are T-pre: time to do the precomputation of multipole coefficients; T-assem: total time spent in
grid assembly of multipole terms; T-Aij: time to evaluate nonmultipole three-center integrals; T-Jij: total time
to construct the pseudospectral Coulomb matrix over the grid; T-Jij: total time for Coulomb mattnout

using multipoles.

Molecule/basis Npasis T-pre T-assem. T-Aij T-Jjj T-Jij no multipoles
CyoHgs 6-31G 550 2 22 79 180 368
Porphine 678 5 4 190 288 619
cc-pVTZ(-f)

Taxol 6-31G* 1185 4 28 264 495 1092

subsequent sections. The 1/O associated with reading the cut: the final assembly over grid blocks discussed further be-
off data is minimal compared to other parts of the calculadow, each grid block will be within some cutofR, of each
tion. The aB cutoff values are “binned” by the nearest in- multipole center. The multipole weight that contributes to
teger to the real cutofR., in Eq. (16). This binning of this grid block is a sum over integer cutoff bins from 0 up to
cutoffs facilitates the summing of multipole coefficients into int(R;). Therefore it is expedient to sum T,gt) over bins
integer cutoff classes discussed below.

Totygmuliaicuy= >,

ic=0,icut

Tot(mul,ia,ic). (22
6. Multipole coefficients

In this preprocessing phase of the algorithm the concer )
is to obtain the parts of the multipole coefficients that can bé}  Coulomb assembly over grid blocks

assembled and accumulated using product center data and no With the Tot,() array completed in preprocessing, the
grid point input. The contributions of eaekB primitive pair ~ remaining assembly of the multipole part &fg) over the

to all possible multipoles N,,,) are accumulated and 9rid is relatively simple. However, because of the large num-
summed into an array Tgj() indexed by multipole number, ber of grid points, this final assembly is the most costly op-
expansion center, and the integer representation of the cuto#fation overall. Timings presented in Table | illustrate the
parameter discussed above. The first task is to calculaté&lative times for the preassembly and the grid-based assem-
terms that are common to several individual multipole termsbly.

One such class of terms are factors in Efjl) involving Each grid block is passed to a routine that assembles the

powers of coordinates weighted by the prefactors of(E§. ~ multipole portion ofJ(g) on this block as follows. The outer
loop of the assembly is over multipole centers, in this case

S(ap)=pf(ap)| 1 (Xp;— ADM(xp—Bp™|. (19  Over all atoms. The minimal distance from the multipole
j=xyz atom centeria to the grid blockRq is calculated and the

corresponding integer based cutoff, icut. Next, all multipole

h terms are looped over in a recursive fashion followed by a
loop over grid points. The multipole powers for multipate
involving the grid coordinates in Eq17) are calculated and

A second term of this class are the powerssah Eg. (17)
for each primitive pair. The binomial coefficients for eac
multipole are computed as well. Finally, the terms for the
individual multipole moments involving powers 6K, 8y, 6z T . =0
of Eq. (17) are computed using standard recursion relationd (9) iS incremented using Tqg(mul,ia,icud
to minimiz.e t_h(_e number .of muItipIications_involved. These J(g)zJ(g)+Totmp(mul,ia,icubRg“X'Rg;Rg
terms for individual multipoles are multiplied by the outer

’

AR (29

factor Sin the above equation to produce the quantity If the size of Tof,, times the maximum of the grid coordi-
i amand nate powers is less than a cutoff the assembly in the equation
Smp( @B, mul) = S(aB) Cpym 5 0y 5 (200 above is skipped.

Binning of the multipole coefficienté\t this point the
desired quantity Tqf,() describing the net multipole weight

L ) . B. J-engine algorithm for three-center two-electron
from primitive o pairs that have a common multipole cen-

ter and common classical/multipole cuté¥f,; can be simply integrals
formed by Summing ov@mpin the above equation using the In this section we describe in detail an efficient algo-
center and cutoff data of each primitive pair, rithm for the evaluation of three-center two-electron integrals
do af pairs of the form (@a’|bc), wherea,a’,b,c denote contracted ba-
) sis functions on distinct atomic centeasb,c Since these
la=mpcentefaf3) integrals are the most numerous and costly subset of analytic
icut=int{ R, aB) ] correction integrals, we have developed an algorithm explic-
itly designed to optimize the construction and post-
domuE1,M py (21)  processing of this type of integral. The algorithm we have

developed and implemented is broadly related to the “J-
engine” two-electron integral algorithm of Head-Gordon
+ S @B, mul). et al,'% since the method folds theaé’|bc) integral with

Tot,(mul, ia, icubh=Tot,,(mul,ia,icud
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the AO density matrix while calculating the integrals. How- the assembly of the classical portion represents a very small

ever, the algorithm described here differs in some importanfraction of the CPU time since the braket factorizes in the

respects since it was independently designed to optimize theassical limit. The contraction step for a given contracted

(aa’|bc) class of integrals for general basis sets. braket pair follows a two-step transformation, the first of
which is

1. Gill-Head-Gordon algorithm and notation

do
We follow the notation of the four-center AO integral i

work of Gill, Head-Gordonet al'® and refer to their method do|q|(|r|=|p+al)
as needed rather than rederive the parts of this algorithm that

are common to theirs. For this reason, and to compare to our dor
faster algorithm, it is appropriate to briefy review the Gill-
Head-Gordon method. Thea&’|bc) integral over con- T'(k)=2> rCurp, (28)
tracted basis functions is a sum over uncontracted primitive K’
integrals wherek is the pair contraction degrédgk. of Eq.(24) for the
, _ / ket and similarlyk’ for the ket. TheCy, is a scaling coef-
(aa'|be) = DDk aDioDid aicar [DieCicl- @4 ficient of the ket exponents and {if|. This transformation

The contractedda’|bc) integral is further contracted by the has a scaling of
AO density matrixp;; to form parts of thel,, and Jy¢s

matrix elements, e.g., %‘4 N M(|r]), (29
[pl.Jal
ch=2 (aa'|bc)paa - (25  whereM(r) is the number of vectors for|r| and Ny, the
aa number of nonclassical braket primitive pairs.
The Gill-Head-Gordon method assembles tha’(bc) in- The second contraction is ovkr

tegrals and then does the final assembly of the Coulomb
operator in Eq.(25) while the “J"-engine method and the
method presented here fold the AO density into the two-  qo|q|(|r|=|p+q|)
electron integral construction, thus producing the J matrix

do|p|

elements more directly. dor
The integrals are constructed as products of bra
(aa’|kefbc) pairs wherein the bra/kets contain primitive ﬂ(f)ZE I'(k,1)Cyq- (30)
K

pairs each with the same pair degree of angular momentum

denoted byllb andllk (e.g.,sppairs in the pra andd pairs.in The B(r) are subsequently mapped £gp,q) pairs that are
the key. The outermost loop of the code is owmrpairs with ;564 in the inexpensive recursion relations to produce the

a fixedllk. Each primitive pair product in the bra/ket has an o1 contracted AO integrals. The overall scaling of the
associated set of angular momentum vecpandq defined transformation is

by the Hermite representation of the pair prodyptandq
will be used to denotép| and |g]). The basic entity from

which the integrals are constructed is fiepprimitive braket, %Pq‘ Nige M([r[) + NM [r]). (3D
00 00 _
0 0 plo o q —(=1)9[p+q]© 2. Multipath (aa '|bc) Coulomb assembly
0 0 a+bl0 0 c+d The chief disadvantage of the formalism above is that it
—[r]© (26) follows a single path. Our purpose in this research is to il-

lustrate that for theda’|bc) class of integrals, the assembly

The [r]©© integrals are computed via recursion from thedescribed above can be written in terms of multiple paths

[0]™ integrals via (methods, including density folding. Each of these methods

m_ me1 me 1 of assembly has a different scaling as a function of

[ =R{r =3 ™= (= [r =210, @7 Ni,Nr ,Ni ,Np,Ng, etc. The least expensive path can be

The[0](™ are the elementary integrals among the primitivechosen as a function of these variables for a given class of

Gaussian pairs. Primitive pairs that are far enough apart dsraket pairs. This freedom to choose multiple paths neces-

that involve high exponents allop@]™ to be rapidly evalu-  sarily lowers the computation time.

ated by a classical expression. The basic method aims to construct the density folded
Given the[r](®, the Gill-Head-Gordon algorithm con- integrals denoted bya@'|BC) and (Bc|AA’), where

tracts these quantities over the primitive contraction coeffi-

cients and then transforms the contradtef® to real space (aa’|BC)=>. (aa'|bc)ppe;

integrals using recursion relations. The expensive parts of the be

algorithm are the construction of the primitiz@](™ and the (32
contraction of th¢r](®). We will mainly focus on the calcu- (bc|AA) = (aa'|bC)paa

lations involving the nonclassical braket primitive pairs as aa’
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is a contraction over thecAO density matrix elements with  transform from @a’p|BC) to the full AO integral @a’|BC)

a similar definition for pc|AA). The method presented here s a minor fraction of the total CPU time. The key consider-
focuses on an efficient construction of the contracted kehtion in the assembly of Eq36) is to decompose it into
IBC) and|AA), with the final transform of the AO bra to assemblies of intermediates that are independent of the
real space from thpg Hermite space being done cheaply, as(aa’p| bra. The multiple intermediates that can be as-
in the Gill-Head-Gordon algorithitand even more inexpen- sembled are tuned to the angular degree of the contracted
sively than in the Gill-Head-Gordon method since there ispair (i.e., the extent opq vectors as well as the contraction

only one ket and nob* ¢ of them. degrees K,k’). In addition, the extent to which quantities
are assembled independent of #e side depends upon the
3. Intermediates type of integral. For example, the AO density and recursion

The various definitions of intermediate functions used incoefficients are readily partially contracted over the possible

the multipath three-center integral method are presently di2ngular terms of @p contracted pair, e.gp.Py

cussed in order to define the various paths from these inter-

mediates. Ug= be gxz 2 PoeYbea: (37)
Using the Gill-Head-Gordon notation, the steps from o

B(p,q) contracted pairs of Eq30) to AO integrals are rep- In this manner the multiple pair angular indidesg.,pypy of

resented by the bra ket transformations from momentum t@ contractegp’bc pair) are immediately removed from the

real space. The first step transforming thepace tdccon-  scaling of consequent steps. Tbg of each contracted pair

tracted AO pair space can be written for a givemangular ~ can then be multiplied b, to form U, for each each ket
pair as contracted pair. A similar folded recursion coefficiehf can

be defined for thel{cq|AA) assembly.

0 0 00 00 At this point we have enough of the essential definitions
0 0 p|0O b ¢ to represent the various possible paths for assembly of
a a plo 0 0 (aa’p|BC) and (bcg|AA) along with their scalings.
0 0 0000 4. Definitions of paths and scalings
=> Yeql 0 O P[0 0 g . _
q : As outlined above, the general structure of the code is an
a a plb c q outer loop ovetbc contracted pairs with a common pair an-
gular momentumlk and pair contraction degrde In addi-
=2 Ybe,qf aa’ p,begs (33 tion, we have allowed for asp angular block to be pro-
4 cessed as a single angular type to avoid repetitive

wherey,¢ 4 denotes a recursion coefficient that is a functionreconstruction o[O]E'k, terms. At this point, before the one-
of the bc product pair distance angl To construct the den- center indexa appears, the density foldéd, recursion co-

sity contracted §a’|BC) integral, we first leave thea@'| efficients of Eq.(37) are formed. The set of contractéd
bra in momentum spacg) and density contract the trans- pairs is then combined with a set of atoms defining the one-
formedbc side, i.e., we form center parts on centea. The creation of(bc,a triplets is
made by choosing tha centers in groups such that for any
(aa'p|BC)=_2, pyc(aa’p|Obc). (34)  bcpair a subset of thk contracted pairs can be assigned to
be ky classical pairs relative to arga’ pair. That is, in each
To avoid the restriction of having to transform theuanti-  “batch” of (bc,a triplets k, of the kbc primitive pairs are
ties above, it is expedient to write an expansion [fof® classical with respect to any of the centars the batch.
using the recursion relation of E(R7) At this point all unscaled primitive[O]kmk, are con-
structed and stored in memory. These quantities do not in-
[r]f(ii—z [o]kk, P™(r,k,X,Y,Z), (35) volve the contraction indices. The construction of fo&™

integrals here is essential to avoid expensive redundant re-
where P™(r,k,X,Y,Z) are polynomials that depend on the generation in later stages. The polynomilfS(r k) of Eq.

coordinategXY2 between théac primitive pair product cen- (35 can also be made at this location. For the first assembly
ter and the one centéin |aa’)) distance. The®™(r,k) are ~ Method discussed below the intermediQt (a) of Eq.(38)

Using this expansion ofr]®,(aa’p|BC) of Eq. (34)  individual aa’ contracted pairs of a given pair angular mo-
can be expanded as mentumllb and contraction degrd€. Once a pair is chosen,
the set ofkjaa’ primitive pairs that can be done purely
(aa'p|BC 01™pPM(k, ) classically with thebck, pairs is computed.
PIBO)= 2 pbckkzq[ B P Given lIb,Ilk k,kg k.. it is now possible to choose

_ the optimal path for construction of th&/(BC),(bc|AA)
XCypCxq¥beq (r=p+a). (36 integrals for this batch. The various paths of assembling con-

The methods we present focus on an efficient assembly dfibutions to the final 4a’|bc) integral with this set of

the (@a’p|BC) [and similarly pcg|AA)]. As noted, the final primitive braket pairs can now be defined. The paths dis-
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cussed initially are concerned with the more computationally

demanding nonclassicik’ pairs. Some of the intermediate (a) Q(k,k’,r)=2 [01 % P™(k,),

guantities defined in Eq$4)—(13) will be referenced in the k

subsequent derivations. Unless otherwise noted, the scalings

below refer to scalings pdrc/aa’ primitive pair assembly. (b) Z(k/’r’p):; Q(k,k",r)Cyq
a. Path 1.For the assembly ofaa’p|BC), the path

follows the calculations of

(©) A(rp.a)=2 Z(k',r,p)Cyp (40
(@ Q(k.m.p)=<p§ pm<k,r>uqk>; r=p+a. k
(39) (d) (aa’pIBC)=<p‘§ B(r,p,q)Uq>

Notethat this quantity is precomputed before tha’ loops
have started: (e <bcq|AA'>=<q‘§ ﬁ(r,p,q>up>,

(b) Z(kmp)=3, (01 Cirps and scales as

(@) NiNpN+ () Ny NgN+(0) Nyt NgNpN,

(¢) (aa'p|BC)=2 Z(k,m,p)Q(k,m.p). £(d) NyNg+(8) NpNq.
An intermediateV for the (bcg|AA’) term is also incre- d. Path 4. This path has the most in common with the
mented; Gill-Head-Gordon(17) path discussed above

d) V(k,m,p)=V(k,m,p)+U,Z(k,m,p),
(@) Videmp=vikomp) +Upz(kom.p) (@ Z(kmp)=S [0]7Cirp,
and the increment ofulcg|AA’) from V is made; k'

(e) (bcq|AA’)=<qp%m Pm(k,r)V(k,m,p)>. (b) Q(k,r,p)=§m‘, P™(k,r)Z(k,m,p),
The scalings for the steps of path 1 are
(@) NpNpNgNg+ (D) Ny NoNp+ () NeNpN,,
(@) NigeNoNm + () NpNoNeN, (d) <aa'p|BC>=<p‘2 ﬁ(r,p,q>uq>,
where it must be remembered that the scaling fof@/L# a

(c) B(r,p,q)=2k Q(k,",p)Cq. (41)

independent of thea’ loops. Path 1 is advantageous for
high Ik low k, bcterms(e.g.,dd polarization coupled with (e (bcq|AA’)=<q‘2 ,B(r,p,q)Up>,
highk’, e.g., 6s'|DD’) integrals. P

b. Path 2. and scales as

(@ NpNyeNp+(b) NpNgNoN+(€) NNGNpN,
(@) Q(k,k',r)=>, [0]\WP™(k,r),
K +(d) NpNg+(e) NpNg.

(b) Z(k,r,p)=2 Q(k,K',r)Cyrp, 5. Classical assembly
k/

The integral assembly in the classical limit derives its
speed from the independence of the bra and ket or multipli-
cative nature of the integral expression. In the following’
denote classical braket pairs.

(c) ﬂ(r,p,q>=; Z(k,r,p)Cyq.

, _ These two terms are preassembled beforetieoop is
d BC)= P, DUq ),
(d) (aa’p|BC) <p§ A(r.p.Q) q> enterod
(e) (bcq|AA’)=<q2 ,B(r,p,q)Up>, (39 7(k,f)=% P™(k,r)[0]™, (42
P
with scalings
QP ={p| X ¥kNUg), (43
(@ Ny NpNe+(b) NigrNpN,+ () NeNgNpN; ka
+(d) NgNg+(e) NoNg. and inside theaa’ loop
c. Path 3. Path 3 resembles path 2 with preference given (aa’p|BC)= 2 Q(p)Cyrp, (44)
to earlyk’ sums rather thak K’
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TABLE II. Scalings of Coulomb matrix construction. Times as defined in Table | and with T-Jana, the time for
analytic correction terms. T-Jij-tot is the total Coulomb matrix assembly time. The scaling derived from these
timings are seen to be in the linear to quadratic regimé{°) for a two- to three-dimensional molecule.

Molecule/basis Npasis T-pre T-assem. T-Aij T-Jjj T-Jana T-Jij-tot
Taxol 6-31G 660 2 23 189 373 173 546
Taxol 6-31G* 1032 2 26 264 500 559 1059
Taxol 6-311G* 1422 7 34 433 829 980 1809

Net scaling-N'*®

with increments of the function guasi-one-dimensional versus quasi-three-dimensional
Both single point and gradient timings are included for the

B(P)=B(P)+ > CypUp, (45)  6-31G" basis set, which is the level at which one typically

K’ carries out geometry optimization. For the cc-pVTFD) ba-

following the aa’ loop sis set of Dunning® we present single-point timings; again,
that is what this basis set is typically used for. For gradient
8(r,q)= z ¥(K,1)Ciq» (46) timings, we report the average C_PU time _for an entire gradi-
3 ent cycle in a geometry optimization. The issue of how many

geometry steps are required to achieve convergence is an

(bcg|AA’)= < q’ > B(p) 6(r,q)>. (47)  important one, dependent upon both the quality of the opti-

p mizer and how much noise there is in the gradiéntis

possible to reduce gradient times by “cheating” on the nu-

6. Gradient evaluation merical precision in any type of calculation, however, this
The assembly of analogous gradient terms such as ~ has the effect of increasing the number of geometry steps

required for convergengeOur observation of Jaguar geom-

aia’ and (bic’ AA’) (48) etry optimization with the current implementation of the pro-

IX X gram is that the number of cycles required for convergence

follows paths analogous to those discussed for the energy /€ comparable to those reported in the literature for ather
simply accounting for the raising and lowering of angular'”'t'o codes, indicating that the gradients are being computed

momenta that occurs upon differentiation. As seen in Tabl@t @n acceptable level of accuragyote that for DFT all

lll, the scaling advantages of this multipath method for gra-C0des have this issue since the XC operator must be evalu-

dients are more substantial than for the energy because of tiied numerically In a future publication we will examine in

strength of the multipath method in efficiently assemblingd€tail the specific performance of the Jaguar optimizer.
the higher angular momentum terms. We begin by assessing the reductions in CPU time ob-

tained using the atom centered multiple and J-engine algo-
rithms. Table | presents timings for assembling the multiple
portion of the Coulomb field on one of the more expensive
We have implemented the above methods in the Jagudanonupdating SCF iterations. The total time spent by the
suite ofab initio electronic structure programs. We use stan-multipole code (T-pre T-assem) is seen to be a relatively
dard basis sets an@vhen relevanteffective core potentials small fraction of the total time for J matrix assembly over the
in the data reported below. The grids used for the DFT calgrid (T-Jij). Comparing against timings without the multi-
culations use a geometric progression for the radial spacingole method, it is apparent that the multipole method is sav-
and Lebedev angular distributions on each radial shell. Théng from a factor of 2—3 in the J matrix evaluation over the
grid weights are produced using a method similar to that ofyrid with the largest savings occurring in the largest semi-
Becke!! In converging SCF iterations, Jaguar utilizes Fockthree-dimensional case, taxol. We note that we have not con-
matrix updating, which allows some iterations to be evalu-sidered here ultralarge systems, such as have been investi-
ated on coarse grids, thus saving considerable CPU timgated in Ref. 17 to assess multipole performance. Our
This and other details of SCF convergence have been dis-
cussed in detail in other publicatiofiscluding construction
of the initial guess for the wave functiprand we shall not TABLE Ill. CPU times(SGI R 10k seconddor calculating the three-center

repeat those discussions here. (aa’|bc) Coulomb matrix elements using the multipath metht{éa/BC),
Our principal purpose in the present paper is to preserdnd the Gill-Head-Gordo(Ref. 17, approach,J(aa|bc).

performance data for the new algorithms discussed above, &s Time J(aalbo)
— . . Ime J(aa|bcC

weI.I as overal! timing date} for running DFT caIcuIauon_s of_ Time J(aa|BC) (Gill method
various types in Qaguar. First, we examine h_ow much time is  molecule/basis Ny (energy/gradient (energy/gradient
saved by employing the atom-centered multiple and J-engine ; /
algorithms for a set of test cases. Then, we present overalg“zH%. 6-31G 550 57/129 163/526

. . . orphine cc-pVTEZ) 678 243/736 683/4627
CPU t|me§ for DFT calculg'tlons for a series of mqlecules Porphine 6-316 430 59/180 95/560
that vary in size, composition, and overall topologye.,

BC

IV. IMPLEMENTATION AND RESULTS
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TABLE IV. Summary of improvements from multipole and J-engine algo- TABLE VI. A comparison of B-LYP SCF CPU times for Jaguar and

rithms. Porphine cc-pVTEf) BLYP timings (SGI R 10k minutes T-Jij: GAussiaN 92 All timings are in hours using a 125 MHz HP 735.
total time to evaluate the J matrix over the grid for 9 SCF iterations/one
gradient. T-jana: total time to evaluate analytic corrections to the J matrix Molecule Basis Npasis Jaguar GAUSSIAN 92
over nine SCF iterations/one gradient. T-SCF: total SCF time, T-grad: totaf : -
gradient time 9 9 Alanine tetrapeptide 6-31G 388 0.7 9.2
i Porphine 6-31G6 344 1.0 13.0
Method T-Jj T-Jana T-SCF T-grad ~POrPhine Co-pVTEf) 678 67 844
New 40/10 18/22 78 40
Oold 91/17 37/93 147 117

and gradient. There are factors of 1.6—2.9 improvements in
the energy integral evaluation speed and from 3.1-6.2 in the

o . ) . . gradient evaulations. The improvements are larger for the
expectation is that much larger gains will be realized in thes%radient and for the correlation-consistent basis sets.
cases due to the growth in the computational effort to evalu- The overall improvements in the J matrix assembly

ate the Coulomb operator as the system size increases. HOWs a5 are presented in Table IV for the case of a porphine

ever, we have chosen to focus in this paper on systems tha ypccpvTZ(-f )SCF+gradient calculation. In general, the

are in the range of typical academic and industrial applicaz,mpination of the multipole and J-engine methods results in

tions. Taxol, the largest system we consider, is an important ¢, .tor 2 improvement in the energy evaluations and a fac-
pharmaceutical compound; the new methods provide suby, of 3 i the gradient for this case, both for the components

stantial acceleration for this case. Even for the smaller sySg¢ yhe 3 matrix evaluation and in the total SCF/gradient tim-
tems on the order of 50 atoms, though, significant improve; ¢

ments are observed. This reflects the efficacy of the atom- bverall CPU times are presented in Table V. These re-

centered multipole approach, which has a negligible amount i< reflect a 5-26 speedup as compared GAUSSIAN 92
of overhead yet still is able to incorporate a considerable[immgs as we have demonstrated in detail elsewfiemed
number of product centers effectively due to the details of it§, 5\« pélrtially reproduced in Table VI. Some of the advan-
design. _ _ . tage is due to intrinsic efficiencies of PS methods while oth-
The net scaling of the Coulomb matrix CONSITUCion iS g5 can pe attributed to the new algorithms described above.
palculated from the timings in Table Il mgludmg all analytic 1o speedups are larger for gradient-corrected DFT due to
integral correction timings. For taxol, which faIIs. betyveen Athe advantages conferred by the atom-centered multipole
two- and three-dimensional class, the net scaling is calcUyehoq, These timings represent a major improvement as
lated to lie between the linear and quadratic reginés; compared to conventional electronic structure codes, and al-

The efficiency of the J-engine method for th@a(|bc) |, arger and more complex systems to be addressed with
analytic integrals is displayed in Table Il for both energy DET methods on a routine basis.

TABLE V. CPU times (minutes of single-point energy and average V. CONCLUSION

energy+gradient times for density functional calculations with Jaguar 3.5 :
on an SGI Irix 62-r10k work station. All molecules were run in C1 symme- We have presented pseudospectral methods for carrying

try except for G,H,g, which has Cs symmetry. The LACVP basis was out pOth gradient—cor.rected and hybrid functional DFT Fal'
used for Fe and the LACVPbasis for Ge. culations. New algorithms were introduced to substantially
reduce computational effort for assembly of the Coulomb

Molecule Nbas  SCF-ters  SCFtime S€gradtme  5arat0r; assembly of the exchange-correlation operator was
B3LYP 6-31G* also accelerated by multigrid techniques. Current perfor-
Porphine 388 10 23 27 mance levels allow calculations on 100—200 atom systems to
SMMO active site 623 19 217 167 be carried out routinely on workstations with a modest
CadHsd0sSiGe 653 10 95 100 amount of memory and disk storage
CuHas 802 8 46 61 u y ISk storage.
Taxol 1032 11 207 216
B3-LYP 6-31G* ACKNOWLEDGMENT
Porphine 388 10 39 43 i .
SMMO active site 623 17 337 259 This work was supported in part by a grant from the
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