JOURNAL OF CHEMICAL PHYSICS VOLUME 110, NUMBER 1 1 JANUARY 1999

Efficient memory equation algorithm for reduced dynamics
in spin-boson models

Andrei A. Golosov, Richard A. Friesner, and Philip Pechukas
Department of Chemistry, Columbia University, New York, New York 10027

(Received 6 July 1998; accepted 16 September 1998

The dynamics of a one-dimensional quantum system coupled to a harmonic bath can be expressed
through Feynman’s path integral expression for the reduced density matrix. In this expression the
influence of the environment is seen in correlations between positions of the system that are
nonlocal in time. Makri and Makarofd. Chem. Phys102 4600 (1995] showed that for many
practical problems correlations over only a few time steys,.,, heed to be taken into account,
which led to an efficient iterative scheme. However, this algorithm scales as the size of the system
to the power of 2Akat 1), Which restricts the size of the system that can be studied with this
method. In this work we present an efficient algorithm which scales linearly &dith,,. In our
method the reduced density matrix is written as a convolution of its past values with an integral
equation kernel. The calculation of that kernel is based on a perturbative expansion of the
discretized quasiadiabatic path integral expression for the reduced density matrix. The expansion
ignores certain types of correlations. 99 American Institute of Physics.

[S0021-960608)50848-3

I. INTRODUCTION nonadiabatic regime, where the bath dynamics is much faster
than that of the system.
The dynamical simulation of quantum dissipative sys-  In that regime, theories of a perturbative type work very

tems is a challenging problem in condensed matter physiogell. These include Redfield theofy,the noninteracting
and chemistry. Such systems consist of a few relevant de-cluster approximatioriNICA)?! and its specific case for a
grees of freedom coupled to a huge environment, thewo-level system, the celebrated noninteracting blip approxi-
“bath,” and serve as a model to describe condensed phassation (NIBA).*??> For example, Redfield theory has been
dynamical processes such as charge-transfer readtioins, successfully applied to a variety of problems including ESR
brational relaxatiori, macroscopic tunnelingetc. and NMR?° vibrational relaxation?® and electron transfef.

The most commonly used microscopic model of dissipaSuch theories fail in the adiabatic to intermediate region,
tive systems is of the spin-boson tybee., a few-level sys-  where the bath dynamics is slower than or as fast as that of
tem bilinearly coupled to an infinite set of harmonic oscilla-the system.
tors. Within the path integral approathihe harmonic bath Several recent methods such as centroid molecular
can be integrated out giving rise to an influence functidnal dynamics?® the discretized integral equation appro¥cind
with time correlations between different path segments. Thisechniques based on the semiclassical approxim&tiook
is the basis of quantum Monte Carl@MC),”™® the only  very promising. However, further tests are necessary to re-
feasible exact method available so far. Since the number ofeal all of the benefits of these methods.
paths to be included in QMC increases exponentially with  Several years ago Makarov and M&kr® developed a
the number of time slices, this approach becomes problemmethod based on an approximation which is the truncation of
atic for long propagation times. time correlations in the influence functional. They observed

This difficulty prompted the development of approxi- that the broad spectrum of the environment to which the
mate methods. Classical path meth&4s2 surface-hopping  system is coupled leads to a finite range of correlations be-
technique¥'~"and the recent mixed semiclassical—classicatween different path segments. They showed that for many
approacl® all assume that the system is described quantumpractical purposes correlations over only a few time steps,
mechanically, while the bath is described classically. ThisAk,,.,, need to be taken into account. This led to a reason-
kind of approximation is valid when the temperature of theably efficient iterative procedure which scales as
bath is higher than its characteristic frequency. By samplingd(n?*kma<* 1)) for an n-level system. However, the expo-
initial positions and momenta of the bath particles from thenential scaling limits the size of the system that can be stud-
Wigner instead of the Maxwell-Boltzman distribution func- ied to very few levels. In this paper we present an efficient
tion, Stock® showed using the example of the spin-bosonnumerical scheme which overcomes this bottleneck without
system that mixed quantum-classical methedparticular  substantial loss of accuracy. It has linear scaling \ikhy, ...
version derived using a semiclassical self-consistent field ap- The rest of the paper is organized in the following way.
proach may give qualitatively correct results even at low In Sec. Il, a model system coupled to a harmonic bath is
temperatures. These mixed techniques have problems in thitscussed. For this model, the quasiadiabatic path integral
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expression and the tensor multiplication algorithm are brieflyand integrating over the bath coordinates, Makri obtained the
reviewed in Secs. Il and IV, respectively. These sectiongjuasi-adiabatic propagator path integil@UAPI) expression
introduce the main notations and equations which will befor the reduced density matrix. For a factorized initial den-
used in Sec. V, which describes the memory equation algasity matrix
rithm, the essential result of this paper. Numerical results are —pH

. . . e bath
presented in Secs. VI, and Sec. VII contains concluding re- p(0)=ps(0)® , 9
marks and sketches some directions for a possible improve- z

ment of the method. which corresponds to switching on interactions between a
system and a bath which is in equilibrium at the initial time
(here Hpap is the bath Hamiltonian and is its partition
function), the reduced density matrix can be writteri’as

Il. MODEL

A commonly used model for quantum dissipation is a . .
one-dimensional(1D) system bilinearly coupled to an infi- o(Q",Q’; t=NAt)=f dQuQ; ...Qn-1
nite set of harmonic oscillators that mimic the environment

(bath within the regime of validity of linear response theory. Xf 40-0- _
Its Hamiltonian can be written as Qo Q1 - Qn-s
P2 1Mmodes gQ 2 X<Q”|e*iHrefAt|Q§_l>_ .
H:m+V(Q)+§Z (pj2+wj2(qj—J_2 , (D s
! @j X(Qy |e Mt Qq)
whereQ is the system coordinate with conjugate momentum X(Qg|p(0)|Qg
) - . . . olps )|Q0>
P, andg; is the position of thgth bath mode with conjugate
momentump; , frequencyw; and coupling strengtl; . All ><<Q5|eiHrefA‘|Ql‘>. ..
information about the bath that is essential for the dynamics B oAt 7
of the system can be captured in the compact form of the X(Qn-1/e"=Q")
spectral density function X1({Q7,Q N At) (10)
i i fi=0> '
2
Jw)= 22 g_ig(w_wj)_ 2) where the influence function&({Q;" ,Qi‘}iNZO;At) captures
j W

the effect of the environment on the system by the introduc-
tion of nonlocal correlations between positions of the system

I1l. DISCRETIZED QUASI-ADIABATIC PATH at different times. It can be written as
INTEGRAL
Nk
. . . . . + — + * —
The quantity of interest is the reduced density mairjx I=exp{ —kZ > (A= Q) (mw Qe — ﬂkerkr)l,
the trace of the total system-bath density matrix over bath “0k'=0

coordinates, (12)
t)=Trap(t)=Tra(e Htp(0)eH), 3 where 7, IS an integral expression which depends only on
o(t) sP(t) 8l p(0)e™) ® the spectral functiod(w), temperaturd’, and discretization
wheref; is assumed to be 1 throughout the paper. It fullytime stepAt (7, depends only ofk—k’| for 0<k,k’

describes the dynamics of the system. <N). This expression for the influence functional is just a
Introducing a reference Hamiltonian discretized version of that of Feynman and Verhéor the
p2 Mmodesgz continuous forwardQ* (t) and backward ~(t) paths of the
- - 2l 52 system
Hier =5 T V(Q+ 5 2 2 @
t ¢ e
the system-bath Hamiltonian can be split into two parts I=ex;{ - fo dt'fo dt"(Q*(t")—Q ("))
H=Her+Heny, 5
where X(a(t'—t")Q"(t") —a*(t’ —t")Q(t"))}, (12
M modes M modes )
Hen=g 2 (PF+ofad)t 3 giaQ (6) ~With
. . 1(= B .
Rewriting et as 'H2YN, inserting the identity a(t)= ;fo de(w)(COI%T]) cogwt) —i Sln(wt)),
M modes (13)
f dQIQXQ ,1:[1 f daj;)(a| ™ which gives meaning t®, andQ, as forward and back-

ward constant path segments at mak(@3)At<t<min(k
+1,N)At, respectively. Herex(t), a so-called memory ker-
nel, is a measure of nonlocality of the influence functional.
g'HAt< gHenAl2giH e tgiHen A2 (8)  In the memoryless, or Markovian, limit Re(t)] is propor-

between each pair &4, utilizing an adiabatic partitioning
of each exponential operator
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tional to a delta functional and [r(t) ] is proportional to its
derivative, and thereforg,,, = 0,|k—k’|>1. In the opposite, oSy t= NAt):S . Es

or adiabatic, limita(t) is a constant, indicating infinite time o
range correlations between positions of the system at differ- XAo(SN-1,SN-2) - -

ent time steps. In many practical situations the width of the N .
memory kernel(the memory lengthis between those two X Ao(S1,80) Tol(So) X ({Si}i=1: AD).
extreme limits, i.e., it is finite. Employing a cutdff,,, on the (19
memory length 7, in Eq. (11) is set to zero foik—k’|
> AKmax: AKmadt=tnad, Makri and Makarov implemented

Ao(SnSn-1)

The influence functional can be decomposed into pairwise

jax Lo 12708 products
an efficient tensor multiplication algorithfi: )
N
(sl A =TT TT 1a(scsc-an), (20
k=0 Ak=0
IV. TENSOR MULTIPLICATION ALGORITHM where
Since our algorithm is closely related to the tensor mul- ~ ~_ ~ * =
g Y ) (SkoSi) =X = (QF = Qi) (70 Qpp = 70 Q) 1.

tiplication scheme, this section is essential for understandindk""

further material. However, it should be considered as a brief

introduction; details?ggg be found in the original papers byAfter defining

Makarov and Makrf.“® We have changed some of their

notation and order of summation for cor?venience. Aa(Sic:3i-1) = Ao(SsSk- 1) oSS (S Si-0), (22
In the discrete variable representation, i.e., in the basig(t) can be expressed as

set formed by eigenvalug$abeleds) of a system position

(21)

operator o(sy;t=NAD)
N
<Sa|Q|Sﬁ>:ba5aﬁ! (14 = X As(sn,Sn-1) 1 1ak(Sn Sn-ak)
S0+S1---SN—1 Ak=2

expressiorn(10) for the reduced density matrix can be rewrit- N-1
ten as XAl(SN—l,SN—z)AEZ I ak(SN—1:SN—1-aK)
a(s”,s";t=NAt)

= > > (s"]e Mrefs_y). .. X10(Sp,S0) T0(Sop)- (23

sg,sf...s,\Fl SgSp - -SN_1 . . . . .
The first, the second and following lines of the right side

X (sy]|e et s V(s | ps(0)]sg ) expression contain correlations between, respectiv&ly,
L _ _ . Sn—1, - - - configurations and all configurations at the previ-
iH oAt iH ofAt] o7 N—11 ™
X (s |eresy ) . . (s €Tre]s") ous time steps up to the initial momes.
X1({s",s 1N | At), (15) Expressmn(?:ﬂ) is the.baS|s of Makrl and' Makarov's
algorithm. Consider the simplest case, in whitR,,,= 2.
where The result after rearrangement of the summation indices is
+ <N .
l{dsi s hi=1: AD o(syit=NAD= X Ay(sy,Sn-1) 2 la(Sn.Su-2)
N K SN-1 SN-2
=exp — > (QF Q) (mww Q@ — 70 Q)
P( k=0 k' =0 KTk XAl(SN—leN—Z)SE [2(Sn-1:SN-3)
N—-3
(16)
with @f being eigenvalues corresponding to eigenstates
|s, >. Labeling pairs of indicess ,s;) assy, (s”,s') as xAl(sz,sl)Z 15(S5,Sp)
sy and introducing short-hand notations for a free system S0
propagator X As1(81,50)10(S0,S0) T0(Sp) - (24)
<s,i+|e—iHrefAt|s,j+><sj‘|eiHrefAt|s,i‘>:Ao(si S, 17 From here we can see that summation in each successive line

performed in the direction from the bottom to the top line of

and for the density matrix of the system at the initial momenteq. (24) gives the expression which depends only on two
. B indices which can be used in the calculation of the above
(sglps(0)sg )= o(So) (18 lines. In other words, if we denote the result of the first line

the above expression for the reduced density matrix can b(érom the bottom as

written as p(S1,S0) =A1(S1,S0) 1 0(S0,S0) T0(S0), (25
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then the second line gives
a(2: t=2A1)=2 Ay(s;,51)
S1

p(S2,51)=A1(S2,51) 2 12(S2,50)p(S1,50), (26)
So

X 2, 15(52,80)A1(S:,S So; 0). 30
and so on until the last line where 520 2(S2:50)A1(81.50) 701 0) 30

This can be rewritten as
o(sy; t=NA= > p(sy,Su-1)- 27)
SN-1
. , . t=2At
In the actual calculation it was taken into account thata(s2 )

I ak(Sk,Sk—ak) depends only otk—k'| for k# N,Ak. In this

calculationp, a so-called augmented density tensor, depend: ~ ~ 521 AI(SZ’Sl)sEO (I2(s2,80)~1+1)
only on its value from the previous time step, thereby the
nonMarkovian dynamics for the reduced density matrix is XA ($1.50)0(s030)
mapped into the Markovian dynamics of an augmented re: K1(s5.57) o(sq3t=A41)
duced density tensor. ——— ~
In general, for a givemM\ k., the augmented reduced => A1(S2,51)SZ Ai(s1,50)0(s050)
s1 0

density tensor depends akk,,, indices. The cost of its
propagation isO(n?@kmaxt1)y in CPU and O(n?*kmay in

storage. Heren is the number of DVR states. In the next +52 SE A(52,51)A1(51,50)(I2(52,50) — 1) o(s0; 0)
section we will introduce a method with propagation cost of L, -~ _
O(n4Akmax). K(s2,59)

= K1(52’51)0'(S12t=At)+2 Ky(s57,80)0(s9; 0),

Sl SO
V. MEMORY EQUATION ALGORITHM (31)
Our ansatz is to present the reduced density matrix as

fiherek,=A, andK,=AZ.*(I,—1s). Here “.*" stands for
convolution of its previous values in time with an operafor 1 2=A1* (12~ 19)

the element-by-element product and i$ a n?xn? matrix

min(AKmayx: N) with all elements equal to one. Thus we obtain
o(t=NAt)= > KulAbo(t—AkAt), (28
Ak=1 o(2At)=K 0(At)+K,o(0), (32

where o is_reprzeserzlted as a vector of length, Kakis @ which is an exact expression. Kk..=2, we truncate the
matrix of sizen“Xn<, andn is the number of DVR states memory equatior28) to the first two terms:

(which for a discrete system is the total number of spates
This expression is just a discretized version of a generalized o(NAt)=~K;o((N—1)At)+K,o((N—2)At), N>2.
master equatiof? In this section, we will develop an ap- (33
proximate scheme of the construction of the kernels in Eq.
(28), the heart of thanemory equation algorithm

Suppose we knowK,,, then the CPU cost of propaga-
tion by this convolution expression scales@@*Ak,,) in
comparison to that of the tensor multiplication algorithm
which scales a®(n?“kmaxt1)) " Since for most of the cases — _ .
studied in the literatured k. is at least of order of 10, this second, An(S,So), include correla_tlons up tOAkm?X

=max(N—1,1) andAk,,=N, respectively. We would like

would mean enormous savings both in CPU time and stor-_ build th vely. i d
age, especially fon>2 [although even fom=2 and Ak to build these propagators recursively, i.e., to expfggan

= 10 the saving is of order?/(210)~2.6x 10/]. In factfor ~ An in terms of Ay, andAy,, whereN’<N.

In a moment we will show that this approximation is of
a perturbative type, but right now let us consider the gener-
alization of EQq.(33) to Ak,,,>>2. We introduce two approxi-
mate propagators of the reduced density matrix from the ini-
tial momentt=0 tot=NAt. The first,Ay(sn,Sp), and the

n=3 andAKmy,,c>6, Sim and Makr® first had to select im- From Eq.(29) it is obvious thatA;=A,. To findA, and
portant paths by performing a random walk id*kmax di- A, we rewrite Eq.(31) as
mensional space in order to use their tensor multiplication
algorithm. o(Sy; t=2At)
The question remains how to calculdte,? Let us look .
at the dynamics for the first two time steps. Using Exfl), :2 2 K1(S2,51)A1(S1,Sp) |12(S2,50) 0(Sp; 0)
So S1

the reduced density matrix after the first time step is
o(s;; t=At)= 3 Ay(s1,50)0(So; 0), (29) =2 AalS2,50)7(501 0). 34
So
where we denotéy(Sy,Se) oo(So) as o(Sp;0) anda(sy;t  If Ak=2 correlation were not included in this expression,
=NAt) is the reduced density matrix for dlexcept 0. After  1,(s,,55) would be omitted, and therefors,=K;A;. The

the second time step; becomes inclusion of that correlation gives
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K2:A2.*|2, G(SI;A) = N

IS R

Ko=A,—A,=A,.*(1,—15). (35) G (5,:24)

The propagato”\; includes correlations only up tAkax
=2. Thus it can be calculated directly from E§3) or, more
strictly, its expanded form Eq31) G (s55;34)

O T OO

;0 As(S3,S0)0(Sp; 0) AV @

:2 K1(S3,8)0(Sy; t=2At) FIG. 1. A diagrammatic expansion of the reduced density matrix for
2 AKppa=2.

+ E Ky(S3,51)0(S1; t=At)
S1

o Now let us consider what the approximation given by
=E E K1(S3,52)Ax(S,,50) Eqg. (400 means. We will use a diagramatic representation.
S0 (% Let A, be a bondalso referred to as local bopdonnecting

adjacent time steps. Further, in our graph formalisip, (

+ 2 Ky(s3,51)A1(81,50) [ 0(Sg; 0). (36)  —1s), N>1, is a bond connecting poinkstime steps apart;
°1 an open circle is an opengdinsummed index; a closed
From the above expression it follows that circle is a closedsummed index; a straight line segment is
_ _ o(Sp; 0). Using this notation, the reduced density matrix of
As=KiAz+KaA; . 37 the first several steps fark,.,=2 is shown in Fig. 1. Here,

circled terms in corresponding expressions doiare those
which arenot generated by40) and(41). It is not hard to see
that the only diagrams which will be left out by the memory
equation algorithm are those containing overlaps of bonds.
The largest error will be due to terms containing only two

The inclusion of the correlation witlAk=3 gives K3
=A;.*l3. Furthermore, the expression for the reduced den
sity matrix after the third time step,

0(3At)=523 A3(S3:50)0(S03 0), (38) overlapping bonds, like the circled term fo3At).
o In cases where oAk, 2, the situation is even more
can be split into two parts complicated, since more diagrams are ignored, and therefore
the error will increase adk,,,increases. However, our goal
o(3At) = Ag(S3,50)0(Sp; 0)+ X A(S3,So) for a given spectral density functial{w), and therefore for
%3 %3 a given memory kernel, is to find the dynamics of the sys-
X(13(83,S0) — 1) (Sp; 0). (39 tem. a(t) usually has a finite width, say,... Therefore, for

_ ) ) a given At, we haveAKma=[tmax/At]+1, where square
The first term contains all correlations excepk=3, and  ,.acyets stand for an integer part of an inside expression.
therefore accordl_ng to Eq(33), is equal to Kl‘T(,ZAt_) The bigger the time stefit, the smaller the number of cor-
+Kyo(At). Thus in Qrder to get the above expression in therelationsA kmax that need to be taken into account, and there-
form of (28), we assign the second term Kso(0), where  ¢40 the smaller the error by Eqetl) and(40). On the other
Kz=A3—A3=A3.*(I3—1s). Similarly, we can calculate hang, the error due to the adiabatic partitioni@y will be
the kernelX\, of the integral equatiot28) by the recurrence |grger. Therefore, there must be an optimal time step to mini-

relations mize the two types of errors simultaneously. To find it we
Kny=Ay.* (Iy—18), have used “a pripciple of minimal sen_sitivity” which was
successfully applied to recent calculations of energy levels
KN:AN-*INv (40) by the semiclassical quantization metiddUtilizing this
o o o principle to determine this optimal time step, we fingt)
A=K AN 1T KAy ot o+ Ky 1AL, N>1, for a differentAt (but so thatAk,At=tn=const) and
_ chooseAt at whicho(t) is the least sensitive to the change
Ki=A1, A=A in At.

These kernels are then used to calculate the reduced densjty | "€ knowledge of an optimal time step is also important
matrix for an efficient evaluation of the QUAPI expression by either

the QMC or tensor multiplication techniques or their combi-
a(NAt)=K1o((N=1)At) + Ko ((N=2)At)+ . .. nation, although the optimal time step in this context is the
largest one which still gives “reasonable” resulsgy within

+Kno(0). (1) 10% erroj. This makesAk,,,, as small as possible, which
Equations(40) and (41) constitute thememory equation al- cuts the computational cosD(n?(kmax*1)) substantially.
gorithm Hopefully, both of the above-mentioned optimal time steps
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are close to each other. In the next section we will try to 0.20 - v
estimate them from the properties of the memory kernel.

VI. NUMERICAL RESULTS 045 o |

The memory equation algorithm was tested on two dis-
sipative spin-boson models, a two-state syst@®S and a
three-state system bilinearly coupled to harmonic heat baths.
The two-state model has been extensibelged to describe
chemical reactions at very low temperatures when tunneling
between products and reactants is the major contribution to d
the rate of the reaction. Its Hamiltonian, introduced by Cal- 0.05 |
deira and Leggett,is « ©

sensitivity

M modes M modes

2 2.2
H=60'Z+Ka'x+§ 2 (pj+ojq)) + o, E giq; , 0.00 . ‘ . \
] ] 0.0 0.1 0.2 03 04 05

(42 At
whereo, ando, are Pauli matrices of the TS8,s a biasK FIG. 3. The sensitivity as a function of time step. The parameters are the
is a tunneling element between two sites, ands the posi- ~ 53M€ &S for Fig. 2.
tion of the jth bath mode with conjugate momentupn,
frequencyw; and coupling strengt; . The spectral density

function was chosen to be ohmic terest for the study of chemical reaction dynamics. For each
of the cases studied, we determined an optimal time step
_T At for the memory equation. It was obtained by looking at
J(w)= 7 awexp — wl/wg), 43 opt . .
(@) 2% A= wloc) “3 the dependence of the populations of each Bj{g) on At

wherea is a Kondo parameter angl, is a cutoff frequency. (so- that A, At=tmay, which was kept consta)n_t_At an
This type ofJ(w) has been used most frequently in the lit- optimal §tep we exped_P!(F) t.o be .the least sensitive to a
erature, because a compact analytical solution given b hange inAt. The sensmwty. is estimated as the ropt of the
NIBA can be obtained, and in addition, the spin-boson sys= um of the mean-square displacementyft) over i b?'
tem with this type of the spectral density shows a set of Ween two successive yalgeg at, say Aty apd Atp, di-
interesting phenomerfawhich include a transition from co- vided bylAtl—Atzl. This is |Ilusf[rated by Figs. 2 and 3,
herent to incoherent dynamics, and symmetry breaking ave/herer= Kt. The time step was incremented by_ 0.‘05. start-
zero temperature. As for the last property, it has been sho g from 0.05 and rounded to the nearest value giving integer
that unbiased §=0) TSS coupled to a harmonic heat bathAkmaX' Note, atAt near 0.2 o,(t)) depends the least on the

with the ohmic spectral density exhibits the localization of glime step lancli pr"?‘c“ca"% comc&des v¥|th tr?e calculation by
tunneling particle on one of the sites far=1. tensor multiplication scheme done for the same memory

For the two-state system we have calculated the popul ength cutoff. The width of the memory kernel was chosen

tion dynamics, Y= Tr(o(t _which is of most in- arge enough to make sure that,, does not depend on it.
y (ot) (o(t)o) For example, in the case presented on Figs. 2 atdk3,,At

was set to 1.8. In this way we have determined the optimal
time step for all but one examples given hdfghe exception
was the case presented on Fig. Fere the time step was
incremented by 0.005 starting from 0.005. We also estimated
whether at this optimal time step the tensor multiplication
scheme, whenever it was used for a comparison, still gives
reasonable results. To do this we compared the calculation at
the current time step with that akt/2 and Ak, (i.e.,
keeping the memory length constarinfortunately, this is
only an estimate, because we could make a comparison only
at a smaller memory lengtikk,,..=>9 would take enormous
numerical effort.

We have tested our method for several sets of param-
eters: the transition from a coherdaamped oscillationsto
an incoherenta simple exponential decayegime at low
and high temperature$igs. 4 and 5§ T=0 anda=3 (the
00 7o 20 20 parameter at which NIBA predictions are exact for

T wc./K>1) (Figs. 6 and ¥, strong system-bath couplingy(

FIG. 2. The population dynamics calculated from the memory equation as a:2) at low and hlgh temperatures and at different values of

function of a discretization time step. The parametersaar®.64,T=2.5,  the tunneling elemerk (Figs. 8 and § an adiabatiqslug-
w,=2.5K=1. gish) bath (Fig. 10.
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FIG. 6. Zero temperature dynamics compared to NIBA predictions for
a=1% K=1.0,w,=10.0; At=0.1636,AKya=9.

test is in the adiabatic regime. This is a regime where the
FIG. 4. The transition from the coherent to the incoherent regime atmixed quantum-classical methidds a good approximation.
As expected, the result of our method substantially deviates
from the calculation done by that technique. In that calcula-
tion the integration time step was 0.05. The bath was dis-
First of all, we notice that the high temperature dynamicscretized by M ,,ge= 400 harmonic modes with uniformly

is reproduced more accurately than the low temperature onéistributed frequencies between 0 andv10 The couplings
Obviously, the method cannot handle accurately enough thg; were obtained from integration of both sides of E2).by
dynamics with distinct nonmonoexponential decay and it bethe trapezoidal rule and the assignmentgpfto the term
comes unreliable wheftky,,,>10 (the top of Fig. 8. For the  containingJ(w;). We ran 2500 trajectories in order to obtain
rest of the plotsAkn.=9 was large enough to reach con- a converged result.

vergence. It can be also noticed that fAk,,,<10 the And finally, the result(Fig. 11) for a three-state system
method worked reasonably well in all cas@scluding the  coupled to the ohmic bath with parameter from Ref. 30 is in
top of Fig. 8 studied here. Suchk,,, means that the width very good agreement with the recent calculations by the fil-
of the memory kernel is not too large. It can be seen from theered propagator technique. This was the most time consum-

examples studied that this is the case in a range includingng calculation which took less than a second of CPU time
both the intermediate and nonadiabatic regimes. The hardesh PowerPQ604e/200MHx under AIX 4.1

And now let us address the question of the estimate of
the optimal time step; in other words, where we should look
for it. If A, is a bare propagatdi.e., Ak,,,=1 for the re-
duced density matrjx then the inverse of the fastest rate
obtained forA; would be the shortest time scaf@‘l"’ (one of
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FIG. 7. Zero temperature dynamics compared to NIBA predictions for
a=3% K=1.0,w,=100.0; At=0.01636,AKyu=9.

FIG. 5. The transition from the coherent to the incoherent reginfe=a2.5,
w.=2.5,K=1 (parameters from Ref.)7
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v o4r N o < . Oy ) FIG. 10. Memory equation result\¢ = 0.2 andAK,,,= 80) compared to the
ozl TR | mixed quantum-classical calculation in the near adiabatic regime200,
’ T=0.2,K=1, v.,=0.01).
0.0 : ‘
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O VIl. CONCLUSION
FIG. 8. Simulations for strong _system-bath coupling, where=2, We have developed an efficient algorithm for the calcu-
T/w:=0.4,At=0.36. QMC calculations are from Ref. 9. lation of the quantum dynamics of a one-dimensional system
bilinearly coupled to a harmonic bath. The algorithm is
based on an approximation of Makri and Makarov's tensor
multiplication scheme which, in its turn, is based on their
a?bservation that the broad spectrum of the environment to
which the system is coupled leads to a finite range of corre-
tions among positions of the system at different tifies,
kEe finite width of the memory kernel in the influence func-
tional which is equal ta\k,,,At). Our method presents the
tion of the system. Therefore, we can expect thiaat which rgduced .density matrix. as the convolytion of its past values
|At—r',‘§W(At)| has a minimum is close to an optimal time W|th_an integral equation kerngl, which is constructed ap-
e . proximately. Thus the propagation cost of the reduced den-
step (if there_ are several crossings we choose the smallegtity matrix scales a®©(n*Ak,,,,) in CPU and storage. The
At). According to Table I this is, indeed, the case. cost of the operator construction scales @ENPAK ).
Since for the most interesting cases studied in the literature
Ak~ 10, this means huge savings in computer resources

the eigenvalues of; will be 1; the others can be written in
the form exp{TiAt+iQ;At), wherel’; andQ; are real, and

I'; stands for the decay rate of either diagonal or off-diagon
elements Since we are expanding correlations of the influ-
ence functional in a perturbative series and taking longer an
longer range correlations less and less accurately, at an op
mal time stepA; determines the time scales for the evolu-

N K/ o ‘ compared to Makri and Makarov’'s tensor multiplication
sl N ®=
k +----+ MemEq At=.26 o
A6 —— aMcC 1 ‘
9“ o0d | ] +-t MemEq Ak =5
0.8t — TensMult Ak =5
02 4 o FilteredPropag
_~ P a----a MemEq Ak, =7
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1.0 o ‘ P P
= 04 | s # ,
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06 N | MemEq At=.2 - R e
é 6 QmC 7 02 S~ Pa 1
9 04
\\"“»~‘»‘\‘ 0.0 L L
02 T 1 0.0 200.0 ¢ 400.0
0% 0 20 3.0 FIG. 11. The site population dynamics for the three-state system coupled to
ot an ohmic bath with parameters from Ref. 30. The time step for memory

equation calculations and tensor multiplication scheme was chosen to be
FIG. 9. Simulations for strong system-bath coupling=2, T/w.=4.0, 0.72. The circles are the final converged resit€0.3, Ak,.,=16) ob-
AKpa=9. QMC calculations are from Ref. 9. tained by the filtered propagator technigisee Table 5 of the Ref. 30
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