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We present a new algorithm for performingab initio solution phase geometry optimizations. The
procedure is based on the self consistent-reaction-field method developed in our laboratory which
combines electronic structure calculations with a finite element formulation of the continuum
electrostatics problem. A gradient for the total solution phase free energy is obtained by combining
different contributions from the gradient of the classical polarization free energy and the derivatives
of the quantum mechanical energy. The method used in obtaining the classical gradient is based on
exact linear algebra relations and a Green function formalism due to Handy and Schaefer. Both the
classical and quantum mechanical gradients are validated by comparison with energy finite
differences. The result of applications to a number of small organic compounds are discussed.
Comparisons between the predicted location and depth of the various solution phase minima of the
Ramachandran map for the alanine dipeptide and those reported by Gouldet al.are also presented.
© 1996 American Institute of Physics.@S0021-9606~96!01533-4#

I. INTRODUCTION

In recent years, there has been a great deal of effort
devoted to the development of self-consistent-reaction-field
~SCRF! methods for the calculation of molecular solvation
free energies. We and others,2–4 have employedab initio
correlated wave functions, in conjunction with solvent di-
electric continuum models, to carry out these calculations.
With appropriate optimization of the atomic radii in the con-
tinuum model, reasonable agreement with experiment has
been achieved.5 In our most recent calculations, using a test
suite of 120 small molecules, an average difference of 0.75
kcal/mol with experimental results is observed. Also, we
have investigated systematic errors in dielectric continuum
solvation models and developed a correction scheme based
upon first shell hydrogen bonding corrections,6 reducing the
average error by approximately a factor of 2.

In typical SCRF calculations reported to date, the mo-
lecular geometry has either been obtained from molecular
mechanics force fields or gas phase energy minimization. For
small, relatively rigid molecules, this is a good approxima-
tion to the solution phase geometry. However, as one studies
larger and more flexible molecular structures, significant
changes in the geometry due to solvation effects can be ex-
pected. Consequently, it is essential for such applications to

develop a gradient methodology for solution phase geometry
optimization of SCRF calculations.

A number of methods have been presented in the litera-
ture for carrying out quantum chemical solution phase geom-
etry optimization. Some of these are based upon simplified
models for the dielectric cavity of the solute~spherical, el-
lipsoidal! sometimes combined with drastic approximations
to the solute charge density, such as a multipole series trun-
cated at low order.7–9 Our investigations indicate that these
sorts of approximations are inadequate to yield an accuracy
of 1 kcal/mol or better, which our current parameterization
appears to be capable of achieving. Consequently, we focus
on approaches which treat the full solute charge distribution
in a realistic molecular cavity.

Work on a model of this type has been carried out by
Tomasi and co-workers,10,11 and has been implemented in
the GAUSSIAN 94 suite of ab initio electronic structure pro-
grams. However, at present there are no results of this meth-
odology available for large molecules, where solution phase
geometry optimization is critical to obtaining accurate re-
sults. The presentation of a novel algorithmic formalism for
solution phase SCRF geometry optimization in the context of
the PS-GVB suite of electronic structure programs, followed
by a significant number of nontrivial molecular applications,
is the objective of the present paper.

The paper is organized as follows. In Sec. II, we give a
brief description of the SCRF methodology implemented in
PS-GVB, including the hydrogen bonding corrections pre-
sented by Martenet al.6 We then discuss in Sec. III, our
novel finite element numerical methodology for solving the
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Poisson–Boltzmann~PB! equation: this will be described in
detail in another publication,12 so what is presented here is a
relatively brief outline. In Sec. IV, a method for calculating
the analytical gradient of the PB energy is discussed and
compared with finite difference calculations to establish its
accuracy. Section V then describes the full SCRF gradient
methodology and a variety test cases, including a merocya-
nine dye molecule. Results for the alanine dipeptide are pre-
sented in Sec. VI.~Finally, in the conclusion, we discuss
future directions of this research.!

II. OVERVIEW OF SCRF METHODOLOGY

As a mean-field theory of solvent response to the solute
electrostatic field, the dielectric continuum model eliminates
the need for averaging over solvent configurations in solva-
tion calculations. Because of this powerful feature, the model
has proven to be especially useful in biophysical applications
and molecular modeling, even when applied to parametrized
representations of the molecular charge distributions.~The
reader is referred to a review by Sharp and Honig for a
detailed discussion of the features of the model and its
applications.13 Another review by Tomasi and Persico14 pro-
vides additional details regarding applications toab initio
calculations.! To assess the model’s limitations however, it
has been necessary to couple it to the most accurate repre-
sentation available of solute charge distributions. This has
been the central principle behind the development of all
SCRF methods currently in use. These methods in general
allow a quantum mechanical representation of a solute to be
coupled to a dielectric continuum model of the solvent, thus
enablingab initio solution phase calculations to be carried
out. The effect of the solvent continuum is represented by an
induced surface charge distribution located at the solute–
solvent dielectric boundary. The total quantum mechanical
energy of the system can be written as

Es
QM5^csuH0ucs&1 1

2@^c
suH8ucs&1H9#, ~2.1!

where H0 is the gas phase Hamiltonian,H8 is the one-
electron interaction with the reaction field,H9 is the nuclear
interaction with the reaction field, andcs is the solution
phase wave function.

In the specific implementation discussed by Tannor
et al.5 and Martenet al.6 the quantum mechanical charge
density obtained from a solution to the gas phase or ‘‘free
molecule’’ problem (H85H950) is represented by a set of
point charges centered on the atoms. The magnitude of the
charges is calculated by fitting the Coulomb potential they
produce on a grid some finite distance from the molecule, to
the full molecular electrostatic potential. This process is usu-
ally referred to as electrostatic potential~ESP! fitting.

The point charges are then used to solve the dielectric
continuum problem, which will be discussed below. The
source of the reaction field is represented as an induced sur-
face polarization charge and is used to generate a first itera-
tion of theH8, H9 terms in the Hamiltonian. The modified
quantum mechanical problem is solved to produce a new
molecular charge density and the process is repeated until

convergence. In this framework, the solvation free energy is
then given by the sum of electrostatic, nonpolar, and hydro-
gen bonding terms:

DGt5DGes1DGnp1DGsa. ~2.2!

In our calculations, the model used to evaluate the nonpolar
contribution DGnp is based on experimentally determined
vacuum to water solvation energies of linear and branched
alkanes15 and is linear in the solvent accessible surface
areaA.

The need for a correction term to account for hydrogen
bonding effects has recently been established in our
laboratory.6 The evidence is based on the observation that
the discrepancy between experimental and predicted solva-
tion free energies usingDGes1DGnp instead of Eq.~2.2!, for
certain compounds is correlated with the strength of hydro-
gen bonds between some functional groups and the solvent.
In particular, for the ammonia, methylamine, dimethylamine,
trimethylamine series, the errors in the theory were found to
be correlated with the strength of the NH•••O hydrogen
bonds in separate, gas phase calculations carried out on the
H2O-solute system. A ‘‘solvent accessible’’ correction term
has been proposed to account for these effects. Denotingcg

the gas phase wave function, and withA given in Å2, the
separate contributions are given by

DGes5^csuH0ucs&2^cguH0ucg&1 1
2@^c

suH8ucs&1H9#,

DGnp51.0910.005 A, ~2.3!

DGsa5(
i
aie

2bri
2
.

Hereb is an empirically adjusted parameter with value 10 Å2

and r i is the distance between the point on the molecular
surface closest to the atom associated with functional groupi
and its dielectric sphere, as defined by the assigned radius.
The parameterai is the solvent accessible correction factor
for functional group i . The hydrogen bonding correction
term for an entire molecule is assumed to be the sum of the
solvent accessible correction terms for the different func-
tional groups on the molecule. Also, for the choice of param-
eters used in Eq.~2.3!, DGnp is given in kcal/mol.

III. 3D FINITE ELEMENT FORMULATION OF THE
DIELECTRIC CONTINUUM PROBLEM

A number of different numerical methods have been pro-
posed over the years for solving the Poisson–Boltzmann
equation in molecular geometries. Three-dimensional meth-
ods have been based on the use of cubic grids and finite
difference ~FD! representations of the partial differential
equation.16 Two-dimensional boundary element methods
~BEM! on the other hand use a discretization of the molecu-
lar surface and have been combined with three-dimensional
finite elements to include the effects of the ionic atmosphere
in calculations.17 By using a highly nonuniform adaptive fi-
nite element mesh, we have retained the low connectivity
property characteristic of three-dimensional methods which
leads to a sparse matrix representation of the discretized
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problem. The adaptivity allows us to concentrate the grid
point distribution near the internal boundary in the problem,
so that the computational cost of the method scales with the
complexity of the molecular surface rather than with the mo-
lecular size.

The grid point distribution is generated using a combi-
nation of Lebedev quadrature grids centered on the atoms
and an exact construction of the reentrant sections of the
molecular surface as defined in the Richards18 construction.
An adaptive finite element mesh is then obtained using a
constrained Delaunay triangulation/marching-front algorithm
developed specifically for the problem of rapidly calculating
the induced surface charge distribution. The reader is re-
ferred to the fluid dynamics and numerical methods literature
for a detailed discussion of the general mesh generation
problem, for example see the work of Baker.19

We turn to the discretization problem. Consider the lin-
ear Poisson–Boltzmann case

¹•~e¹f!52
4pr

kT
1ek2f, ~3.1!

where f~r ! is given in units of [kT], and
k25(8pe2I )/(ekT) is the inverse Debye length squared.
We will focus on the linear form of the equation hereafter, as
the finite element method is directly applicable to it. We
wish to discretize the problem using a finite computational
space. Given a complete set of basis functions$c i%
i51•••N, one can expand the electrostatic potential

f~r !5(
i51

N

cic i~r !. ~3.2!

We choose the set of functions$c i% to be a finite element
basis. This means eachc i is nonzero only in some finite
region aroundr i and satisfies the following conditions:

c i~r j !51 if i5 j ,
~3.3!

c i~r j !50 if iÞ j .

For practical purposes, we also choose the basis functions to
be linear functions of the Cartesian coordinates. This choice
is not necessary in principle.

In Eq. ~3.2!, the coefficientsci are the values of the
potential at the grid vertices. The expansion is substituted
into Eq. ~3.1!. Multiplying by c j , integrating over all space,
using Green’s identity and the divergence theorem as well as
the vanishing condition for the potential at infinity, we obtain
a set of linear equations

(
i

N

Ai j ci5bj , ~3.4!

where

Ai j52E
V
¹~ec i !•¹c jd

3r2E
V
ek2c ic j d

3r ,

~3.5!

bj52E
V

4pr

kT
c j d

3r .

The finite size of the computational space is handled through
the use of the Debye–Hu¨ckel potential at the outer boundary
of the grid. The system of equations is then solved iteratively
using a Jacobi conjugate gradient iteration scheme.

Within the dielectric continuum model, the polarization
contribution to the free energy of solvationDGpol is simply
the cost of inserting an object of dielectric constante in an
external fieldE0. This is written:

DGpol52
1

2EV~P•E0!d
3r , ~3.6!

whereP5xeE is the polarization field in the solvent con-
tinuum andE0 is the electric field produced by the fixed
charge distribution of the solute. Using the divergence theo-
rem, and the internal boundary conditions:

e0E
i
•n̂5eEo

•n̂, ~3.7!

where n̂ is the outwards directed normal to the molecular
surface,Ei andEo are the interior and exterior electric fields
at the surface,DGpol can be written:

DGpol52
1

8p E
S
~n•Ei2n•Eo!f0 d

3r

1
1

2EV~¹•P!f0 d
3r . ~3.8!

Also, we have usedE052¹f0 in the last equation. The ex-
pression forDGpol can be rewritten in terms of a surface
polarization charge densitys and the density of free charges
rion . The chargess are distributed on the molecular surface
while the densityrion is nonzero only beyond the ion acces-
sible surface in the solvent and is linear in the potentialf for
the case of the linear PB equation. We obtain

DGpol5
1

2ESsf0 d
3r1

1

2EVr ionf0 d
3r . ~3.9!

Evaluation of the first term in Eq.~3.9! requires calculating
the surface polarization charge:

s~r !5
1

4p
n•~¹f i2¹fo!. ~3.10!

The method has been implemented in our Poisson–
Boltzmann finite element solver~PBF!. As will be detailed in
a separate publication, the results obtained for electrostatic
contributions to solvation free energies are in good agree-
ment with those from other programs such asDELPHI.16 Also,
the robustness of the mesh generation algorithm, a frequent
obstacle in the large-scale use of unstructured three-
dimensional meshes, has been tested on a database of 550
different compounds and succeeded in producing usable tri-
angulations for each one.

5474 Cortis et al.: Quantum mechanical geometry optimization

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded¬15¬Sep¬2006¬to¬171.64.133.179.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



IV. POLARIZATION ENERGY GRADIENT
CALCULATION

A. Choice of method

Recently, Gilsonet al.20 have reported preliminary re-
sults for an analytical gradient methodology for classical PB
applications. In their calculations, there are some problems
attaining high precision gradient components although the
computational cost of the method is quite low. In the present
chapter, we describe a very different formalism which can
produce results of high accuracy at a CPU cost comparable
to that of a single point energy calculation. The gradient is
obtained from exact linear algebra relations by using a
Green’s function formulation due to Handy and Schaefer21

which they implemented in the context of electronic struc-
ture theory. The methodology developed for calculating the
gradient is outlined below. Comparisons with energy finite
differences are performed for the stand-alone dielectric con-
tinuum problem in order to assess both the accuracy and
efficiency of the method. Additional comparisons between
our implementation of Gilson’s formalism and the method
described here have also been carried out and will be detailed
in another publication. It should be noted that we have found
it possible to obtain gradients extremely rapidly using Gil-
son’s formalism, though the method appears to be less accu-
rate than the algorithm described below.

B. Mesh operator derivative method (MOD)

As has been outlined above, in the linear PB equation
framework the electrostatic contribution to the solvation free
energy is given by

DGpol5 1
2E

S
sf d3r1 1

2E
V
r ionf d3r . ~4.1!

Where rion , the density of free ions is linear inf, and is
nonzero only beyond the ion-accessible surface. The dis-
cretized form of this equation arising from the finite element
representation of the problem we have developed can be
written as

DGpol5z•f̃1y•f̃2, ~4.2!

wherez, y are vectors of integration weights depending on
the coordinates of grid vertices andf̃, f̃2 are vectors con-
taining the first and second powers of the grid potential val-
ues. Letq be any nuclear Cartesian coordinate. Differentiat-
ing Eq. ~4.2! with respect toq we have

]DGpol

]q
5

]z

]q
f̃1

]y

]q
f̃21z

]f̃

]q
12f̃~yT•I !

]f̃

]q
, ~4.3!

where I is the identity matrix. Similarly, differentiating the
system of linear equations obtained from the discretization of
the Dirichlet problem~3.4! we obtain

]A

]q
f̃1A

]f̃

]q
5

]b

]q
. ~4.4!

Solving Eq.~4.4! for ]f̃/]q then substituting in Eq.~4.3! we
have

]DGpol

]q
5

]z

]q
f̃1

]y

]q
f̃21@z12f̃~yT•I !#A21

3S ]b

]q
2

]A

]q
f̃ D . ~4.5!

In principle, constructing the inverse operatorA21 would
require a direct solution of the system of Eq.~3.4!. This
would be prohibitively expensive as even for small mol-
ecules, the grids are composed of several thousand vertices.
Instead, using the symmetry of the operatorA one can itera-
tively solve the linear system:

A•g5z12f̃~yT•I !. ~4.6!

Equation~4.18! then becomes

]DGpol

]q
5

]z

]q
f̃1

]y

]q
f̃21gS ]b

]q
2

]A

]q
f̃ D . ~4.7!

The adaptive grid structure now makes it possible to numeri-
cally evaluate the various derivative terms appearing in Eq.
~4.7!. The coordinates of every vertex in the grid are func-
tions of the nuclear coordinates of one, two, or three atoms at
most. It is therefore possible, to compute the derivatives by
finite differencing the termsz, y, b, andA with respect to
small atomic displacements. Since only a subset of the com-
ponents of these terms need to be updated for a given atomic
displacement, this approach is relatively inexpensive. In fact,
most of the time is spent in compressing the information
needed to update the operatorA in order to minimize the
storage requirements of the method~only the nonzero ele-
ments ofA are stored!. An alternate approach, involving a
single compression loop for the mesh operator, can be ob-
tained by decomposing the derivatives as follows:

]wi

]q
5(

k

]wi

]pk

]pk
]q

, ~4.8!

]ai j
]q

5(
k

]ai j
]pk

]pk
]q

, ~4.9!

wherewi is any component ofz, y, b, ai j is any element of
A andpk is a Cartesian coordinate of any vertex in the grid.
With this approach, the derivatives of the matrix elements
with respect to vertex coordinates]ai j /]pk can be prepro-
cessed so that only the derivatives]pk/]q need to be recom-
puted for every nuclear displacement. This eliminates the
data compression cost at each step but requires the calcula-
tion of a large number of terms as a preprocessing stage. As
can be seen from Eq.~3.5!, each matrix elementai j depends
on 10 inner products of the linear basis functions. Since the
12 possible derivatives of each inner product with respect to
the Cartesian coordinates$pk% of the different vertices in a
given tetrahedron must be computed, a total of 120 different
expressions for each matrix element must be coded. These
are evaluated during the preprocessing step.
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C. Numerical results for the classical polarization
energy gradient

Some numerical experiments have been performed to as-
sess the accuracy of the gradient methodology we have de-
veloped for the isolated dielectric continuum problem. Re-
sults of accuracy tests for the full quantum mechanical
solution phase energy gradient will be discussed below. We
compare gradient components for water obtained by energy
finite differences, and the MOD method. The results ob-
tained are listed in Table I. The parameterl s f refers to the
Lebedev grid index controlling the resolution used in the
Richards surface and 3D molecular grid generation. Larger
values ofl s f indicate a higher grid point density.

The results indicate that the gradient components ob-
tained with the MOD method are in good agreement with
those computed by energy finite differences. Furthermore, a
necessary property of any energy gradient method is that the
net force acting on the system coming from accumulation of
error, and which must be zero formally, be as small as pos-
sible. Though it is possible to remove any net translation or
rotation of the system by rescaling the forces at the end of
the calculation, this tends to introduce some noise in the
minimization procedure so that it is desirable to reduce this
effect. In this respect, it is apparent that the MOD calcula-
tions present a very attractive feature. With the grids em-
ployed above, the cancellation of error systematically results
in net gradient components inferior to 5•1023[kT]/Å. For
the simple case considered here, the CPU time necessary to
obtain gradients from the MOD method was 2.7 s on an
IBM370 workstation for thel s f519 case, about the same
time required for the single point energy finite element cal-
culation itself. In the context of SCRF methods, where the
continuum electrostatic part of the calculation represents less
than 10% of the CPU time of the complete calculation, this
performance is quite acceptable. As we have remarked
above, because of its greater efficiency, our implementation
of Gilson’s formalism should nevertheless be the algorithm
of choice for use in applications involving molecular me-
chanics force fields where the accuracy requirements are not
as stringent as in the context of SCRF applications.

V. GEOMETRY OPTIMIZATION IN THE CONTEXT OF
SCRF METHODS

A. Solution phase energy gradient

The methodology for performing geometry optimization
calculations using electronic structure methods has now been
in place for many years and the algorithm used for the quan-
tum mechanical part of our calculations has been described
in a paper by Wonet al..22 In principle, similar algorithms
can be used to carry out simulations in solution provided a
gradient of the interaction between the molecule and solvent
reaction field with respect to the nuclear coordinates is avail-
able. Here, the solvent reaction field is taken to be the Cou-
lomb potential of the induced surface polarization charge
distributions. The molecular configuration sought is the one
which minimizes the total solution phase energyEs

T of the
system. The latter is the sum of the quantum mechanical
solution phase energyEs

QM and the nonpolar hydrophobic
term DGnp ~for the moment we will assume no hydrogen
bonding term is used in the calculation of the solvation free
energy!:

Es
T5Es

QM1DGnp. ~5.1!

The geometry of the molecule is updated using the gradient
of Eq. ~5.1!, with respect to the nuclear coordinates and the
procedure is then iterated until the change in solution phase
energies between successive configurations lies below some
predetermined value.

The method used to combine the classical and quantum
mechanical gradients, to obtain derivatives of the quantum
mechanical solution phase energy functional, can now be
summarized in a few steps. Differentiating Eq.~5.1! with
respect to a nuclear Cartesian coordinateq we obtain

]Es
T

]q
5

]

]q
~^csuH0ucs&!1

1

2

]

]q
~^csuH8ucs&1H9!

1
]DGnp

]q
. ~5.2!

The first term involves differentiation of the kinetic energy
and solute–solute interaction part of the Hamiltonian, and
will not be discussed further in this article. A detailed de-

TABLE I. Gradient components in units of [kT]/Å at 298 K for water. Results from the MOD method are shown at various grid densities determined by the
parameterl s f . The sum of gradient components in each direction is listed in the last three columns. The results from energy finite differences are given in the
last two rows. The atomic displacementDq is given in Å.

l s f Ox Oy Oz H1x H1y H1z H2x H2y H2z Sx Sy Sz

8 20.02 0.20 35.45 0.27 26.42 217.72 20.25 6.22 217.73 0.00 0.00 0.00
11 0.78 20.19 35.73 20.47 25.88 217.84 20.31 6.07 217.89 0.00 0.00 0.00
14 0.06 0.15 37.63 20.02 23.99 218.80 20.04 3.84 218.83 0.00 0.00 0.00
16 0.25 20.18 35.01 20.16 25.17 217.51 20.09 5.35 217.50 0.00 0.00 0.00
19 20.02 0.01 35.19 20.02 24.72 217.60 0.04 4.71 217.59 0.00 0.00 0.00

Dq
0.05 20.02 0.06 35.15 0.01 24.85 217.87 0.02 4.86 218.02 0.01 0.07 20.74
0.10 20.01 0.08 35.03 0.01 24.29 217.62 0.01 4.17 217.57 0.01 20.04 20.16
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scription of this term for HF level calculations is given by
Won et al.22 The methodology for GVB and MP2 level gra-
dients will be described in upcoming articles. The second
term is just the derivative of the polarization contribution to
the free energy of solvation. As written above, it is different
from Eq. ~4.3! since the reaction field here is assumed to
correspond to the solvent response to a continuous charge
distribution. The source term used in our continuum model
calculations, however, corresponds to a point charge repre-
sentation obtained by ESP fitting of molecular charge distri-
bution.

Provided the solution to the classical electrostatics prob-
lem for the discrete sources is a good approximation to the
solution for the continuous ones in the neighborhood of the
dielectric interface, the reaction field obtained from our finite
element calculations can be used to approximateH81H9.
This assumption seems reasonable as it has been verified that
near the dielectric interface the Coulomb field from the ESP
fitted charges differs from the Coulomb field of the molecu-
lar charge distribution by less than 5%.

The quantum mechanical expression for the gradient
with respect to an atomic coordinate given by Eq.~5.2!, can
be viewed as the sum of two terms. The first arises from the
interaction between the reaction field due to the induced
charge and the quantum mechanical molecular charge distri-
bution at afixedmolecular surface configuration. We expect
this term, which includes information from the complete mo-
lecular charge distribution, to be a better representation of
the force due to interactions between the molecule and the
induced surface charge than the corresponding term in the
classical force expression. The second term accounts for the
dependence of the molecular surface~which is updated dur-
ing the minimization procedure! on the atomic coordinates.
To avoid double counting, if the full expression~5.2! is used
in the gradient calculation, the corresponding classical term
must be subtracted from the total gradient. The remaining
term, which accounts for the pressure exerted by the solvent
dielectric continuum on the Richards surface of the mol-
ecule, is just the second term mentioned above. More pre-
cisely, we replace the classical reaction field Coulomb term
given by

]DGr
pol

]q
5
1

2

]

]q S (
i
E
S

s~r 8!

ir i2r 8i Qi d
2r 8D

S

, ~5.3!

with its quantum mechanical counterpart:

]DGr
pol,QM

]q
5
1

2

]

]q S E
S
c* ~r 8!

s~r 8!

ir2r 8i c~r 8!d2r 8

1(
i
E
S

s~r 8!

ir i2r 8i Zi d
2r 8D

S

. ~5.4!

The subscriptS indicates that the derivatives are to be taken
at a fixed configuration of the Richards surface. This con-
trasts with the meaning of the derivative in Eq.~5.2!, where
the differentiation takes into account the dependence of the
molecular surface on the atomic coordinates. In the latter
equations,Qi designates the ESP fitted charge on atomi , Zi

the nuclear charge. Finally, in the case of zero ionic concen-
tration, the second term on the right-hand side in Eq.~5.2!,
which will be used in geometry optimizations, is explicitly
given by

]DGpol,QM

]q
5

]DGr
pol,QM

]q
2

]DGr
pol

]q
1

]z

]q
f

1gS ]b

]q
2

]A

]q
f̃ D . ~5.5!

We use the SCRF method, developed by Tannor and
co-workers,5 as implemented in thePS-GVB system of
programs23 for the quantum mechanical part of the calcula-
tion and the optimization procedure.

B. Solution phase geometry optimization: HF level
test calculations

Having established the validity of our gradient for the
classical electrostatic solvation energy function, we now turn
to the verification of the combined SCRF-PBF method. The
numerical reliability of Eq.~5.5! needs to be assessed before
considering applications of the method to molecular model-
ing problems. In all SCRF calculations discussed in the cur-
rent and following sections, the solvent dielectric continuum
is assigned a dielectric constant of 78.3 and the probe radius
r p is set to 1.4 Å to represent an aqueous environment. The
quantum mechanical parts of the calculation were done at
HF/6-31G** level. A converged geometry is defined by
maximum values of less than 2.2531023, 1.531023

@Hr/bohr# for the gradient components and r.m.s of gradient
elements, maximum values of less than 5.031022 @bohr# or
@rad# for both the maximum and r.m.s of nuclear displace-
ment elements and total free energy differences of less than
2.531024 @Hr# between previous and current geometry opti-
mization iterations.

It is well known that Hartree–Fock level calculations on
salts fail to predict dissociation in solution. Instead, the mini-
mum ground-state energy for the solvated system is found at
a finite bond length. A line search along the bond-length
coordinate, consisting of a series of single point energy cal-
culations, reveals that the equilibrium bond length for Li–F
lies between 1.665 and 1.670 Å corresponding to the mini-
mum of the solution phase energy~Fig. 1!. Accordingly, at
that bond length the system has moved away from the gas
phase equilibrium~Fig. 2!. A first test of the energy gradient
function is done by comparing the energy derivatives ob-
tained by finite differencing the solution phase energy at the
gas phase equilibrium point and comparing with the pre-
dicted value. The results for central differencing along the
bond direction are shown in Table II.

In test ~b!, the solvation calculations were performed
using a mesh approximately eight times as dense as in cases
~a!. In both cases, there is good agreement between the gra-
dient and the finite difference calculations for the smaller
value of the nuclear displacement. Also, using our SCRF-
PBF energy gradient to drive an internal coordinate geom-
etry optimization calculation, we find an equilibrium bond
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length of 1.6653 Å for the system. The implication is that the
use of Eq.~5.5! results is a valid approximation in the con-
text of assembling a gradient of the total SCRF-PBF energy
at the HF level, and can be used to determine local energy
and geometry changes between gas phase and solution phase
equilibrium configurations.

C. Solvation effects on the molecular structure of
organic compounds

We now present the results obtained in a series of five
solution phase geometry optimizations of small organic com-
pounds. The molecules studied are shown in Fig. 3. These
are in order, acetamide,N-methylacetamide, acrolein, mesi-
tyl oxide, and one example of a merocyanine dye. Two reso-
nance structures are shown for each compound. The mol-
ecule in the gas phase can be represented as a hybrid of these
two resonance structures resembling more the one on the
left. In the solvated molecule the equilibrium is shifted to-
wards the right, therefore the contribution of the zwitterionic
structure is increased. In this section, we examine only the
magnitude of the structural and energetic changes introduced

in the solution phase optimization process. The issue of com-
parison with other methods or experiments will be briefly
addressed in the following section and is the topic of ongo-
ing work. All the changes discussed below are measured
between the solvated gas phase optimized geometries and the
solution phase optimized geometries.

Tables III and IV list the structural changes observed
between the gas phase and solution phase minima of the
SCRF-PBF energies at the HF/6-31G** level. With regards
to bond length, or ‘‘stretch’’ degrees of freedom, it is appar-
ent that, where nontrivial changes are observed, the solvation
process results in a lengthening of double bonds and a short-
ening of single bonds suggesting that the picture described
by the interconversion between the structures shown in Fig.
3 is at least qualitatively correct. More precisely, for com-
pounds~A!–~D! we observe the largest bond-length changes
for CvO and C–N bonds in a direction which suggests evo-
lution to C–O and CvN like structures. The changes in the
ESP fitted partial charges listed in Table V are consistent
with this charge separation mechanism. For compounds~A!–
~D!, no other significant structural modifications are ob-
served as the largest angle changes take place in ‘‘bend’’
degrees of freedom and do not exceed 1.2 deg~see Tables III
and IV!. Correspondingly, only small changes in the free
energy of solvation are observed. These are listed in Table
VI.

The case of the merocyanine dye~E! appears more in-
teresting in the light of the 6.4 kcal/mol change in solvation
energy observed. The large energy change can be understood
by noting first, that the structural changes for~E! are about
2–4 times larger than those observed for~A!–~D! ~see Table
IV !. Also, the coupled changes in bond lengths observed
along the longest axis of the molecule, appear to induce a
significant charge separation effect over a distance of several
bond lengths. This is manifest in the changes in the ESP
fitted partial charges located on the O, C7, and C14 atoms, as
shown in Table V. The effect can be visualized, by examin-
ing identical contour lines of the electrostatic potential of the
molecule within the dielectric continuum model for the dif-
ferent conformations and ESP fitted charges. These are dis-
played in Figs. 4 and 5 for the initial and final configurations,
respectively. The line of zero electrostatic potential shifts
away from the N side of the structure in the minimization
process and appears to relocate in the region of the C7 car-

FIG. 1. Location of geometry optimization steps along the Li–F bond dur-
ing the solution phase energy minimization process. The solid line, obtained
from a series of single point energy calculations, indicates the dependence
of the change in solution phase energy on the bond length.E–E0 is the
change in solution phase energy from the value at the gas phase equilibrium
geometry.

FIG. 2. Notation as in Fig. 1. Here gas phase energy change is shown at
each geometry optimization step. The solid line is the result of a line search.

TABLE II. Comparison of total solution phase free energy gradient obtained
using the MOD method]Esol/]q with gradient from energy finite differ-
ences~DEsol!/(2Dq). The total atomic displacement used is 2Dq. Results
are shown for two different grid resolutions differing by a factor of 8 in grid
point density, with~b! the densest grid.

Mesh type Dq @Å#

DEsol
2Dq

@Hr/Å#

]Esol

]q
@Hr/Å#

a 0.05 3.481e202 3.209e202
a 0.025 3.722e202 3.209e202
b 0.05 3.400e202 3.228e202
b 0.025 3.386e202 3.228e202
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bon, reflecting the large change in electrostatic charge in this
region. The smaller scale structure in the potential also ap-
pears to be attenuated in solution and the tighter spacing of
the contour lines on either ends indicate that an accumulation
of negative charge has taken place in the O region and of
positive charge in the N region. In this respect, the changes
are qualitatively similar to those observed for the smaller
compounds, however, the alternation of single and double
bonds along the entire structure allows for greater charge
delocalization and response to the solvent environment. It is
likely that the conclusions drawn from this example are rel-
evant to the general problem of modeling solvated com-
pounds containing aromatic rings, or more generally several
conjugated double bonds, regardless of their apparent flex-
ibility ~rotational freedom about torsion angles!.

VI. APPLICATION TO THE STUDY OF THE ALANINE
DIPEPTIDE

The alanine dipeptide~compound F in Fig. 3! or
1-~acetylamino!-N-methylpropanamide, has been the subject

of a number of studies using both molecular mechanics force
fields andab initio methods. Several references to these nu-
merical experiments are provided by Gould and co-workers.1

Because of its basic structural similarity to larger peptides,
quantum mechanical calculations performed on this system
should prove useful in assessing the validity of classical
force field methods in the context of applications to proteins.
The increase in efficiency ofab initio methods observed in
the last few years has already allowed systematic studies of
the potential energy surface of this system and related ones
to be carried out. In particular, Head-Gordonet al.24 have
reported high resolution studies of the Ramachandran map
for glycine and alanine peptide analogs in the gas phase~the
compound used in the Head-Gordon study differs somewhat
from ~F! in that the terminal methyl groups C1, C10 are re-
placed by hydrogens.! Until recently however, only gas
phaseab initio studies were available and a more rigorous
treatment of solvation effects has been lacking. Gouldet al.1

have carried out solvatedab initio calculations at the
HF/6-31G** level, using both an SCRF method developed

FIG. 3. Resonance structures of compounds used in solution phase geometry optimization tests.~A! acetamide,~B! N-methylacetamide,~C! acrolein,~D!
mesityl oxide,~E! merocyanine,~F! 1-~acetylamino!-N-methylpropanamide~AD!.
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by Rivail et al.7–9 ~which will be referred to hereafter as
SCRF-R! and the polarizable continuum model~PCM! de-
veloped by Tomasi and co-workers25 on these two dipep-
tides. In the SCRF-R method, with which the reported sol-
vated geometry optimizations were carried out, the solute
cavity is represented simply as an elliptical cavity and the
solute charge distribution as a finite multipole expansion of
the molecular charge distribution. Our calculations outline
the effects of using a more realistic solvent model on the
location and heights of the minima in the potential energy
surface of the alanine dipeptide.

The conformations discussed refer to different values of
the ~F,C! internal angles for the structure. These correspond
to different rotational configurations of the backbone of the
structure and correspond to the~H19N4C5C7!, ~N4C5C7O8!
torsion angles for compound~F! shown in Fig. 3.

We have performedab initio solution phase geometry
optimizations at the HF/6-31G** level on the structures cor-

TABLE III. Structural changes for molecules~A!–~D!. Changes in bond
lengths are shown for all bonds not involving hydrogens. Bend angle
changes are shown when they are greater than 1°. No torsion angle changes
greater than 1° were observed for~A!–~D!.

Molecule Coordinateq Dq @Å#,@deg.#

Acetamide N–C1 20.018 35
C1–C4 20.004 79
C1–O 0.018 91

C4–C1–N 1.035 67
H6–N–C1 1.084 48

N-methylacetamide C1–C2 20.004 65
C2–O 0.019 67
N–C5 0.007 71
C2–N 20.019 95

H9–N–C2 1.158 69
N–C2–C1 1.063 92

Acrolein C1–C2 0.003 45
C2–C3 20.008 94
C3–O 0.011 74

Mesityl oxide C1–C2 0.004 10
C1–C7 20.000 14
C3–C5 20.004 83
C1–C6 20.000 51
C2–C3 20.007 67
C3–O 0.010 10

TABLE IV. Structural changes for molecule~E!. Changes in stretches are
shown for all bonds not involving hydrogens. Bend angle changes are
shown when they are greater than 1° and do not involve hydrogens. No
torsion angle changes greater than 1° were observed.

Molecule Coordinateq Dq @Å#,@deg.#

Merocyanine C1–C2 0.029 19
C3–C6 0.077 73
C8–C13 20.042 91
N–C16 0.021 78
C14–O 0.048 63
C1–C14 20.038 42
C2–C3 20.042 66
C3–C4 20.046 33
C4–C5 0.033 54
C5–C14 20.040 60
C6–C7 20.078 59
C7–C8 0.079 18
C8–C9 20.043 75
C9–C10 0.023 58
C10–N 20.023 09
N–C12 20.026 86
C12–C13 0.024 79

C13–C8–C7 21.614 24
C10–C9–C8 21.102 82
C12–N–C10 1.894 77
C12–C13–C8 21.265 20
C9–C8–C7 21.353 07
C13–C8–C9 2.967 31
N–C10–C9 21.340 16
C16–N–C10 21.154 23
C13–C12–N 21.154 02

TABLE V. Changes in ESP fitted charges for molecules~A!–~E!. For hy-
drogens only the total change in charge is shown.

Molecule Atom DQ[e]

Acetamide N 0.027
O 20.019
C 20.007

$H% 20.001
N-methylacetamide C1 0.003

C2 20.007
O 20.023
N 0.024
C5 20.021
$H% 0.024

Acrolein C1 0.006
C2 20.001
C3 20.007
O 20.008

$H% 0.010
Mesityl oxide C1 0.003

C2 20.001
C3 20.002
O 20.007
C5 0.001
C6 20.001
C7 20.002
$H% 0.009

Merocyanine C1 0.008
C2 20.062
C3 0.006
C4 20.028
C5 20.013
C6 20.047
C7 0.125
C8 20.047
C9 0.039
C10 0.057
N 0.019
C12 0.052
C13 0.055
C14 20.112
O 20.111
C16 0.006
$H% 0.053
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responding to the various local minima present on the gas
phase Ramachandran map. The starting geometries are la-
beledC5, C7ax, C7eq, aL , aP , b, andb2. TheC5 andC7
structures correspond to extended and cyclic structures of the
dipeptide respectively. Those labeleda andb correspond to
helical and strand conformations.

The various structures were initially optimized in the gas
phase using starting configurations obtained from the work
of Gould and co-workers,1 except foraP , which is not dis-
cussed in their study. They also report the presence of anaR

helical structure minimum in the gas phase diagram corre-
sponding to~F5260.7C5240.7!. We have found no cor-
responding gas-phase minimum at this location in our calcu-
lations both using thePS-GVB23 andGAUSSIAN9226 programs.
Initial geometries corresponding to theaR conformation
were found to minimize to theb2 conformation.

The gas-phase minima were subsequently used as start-
ing points for the solution phase geometry optimizations.
The locations of the gas and solution phase minima for the
different structures are indicated in Fig. 6 and superimposed
on the contour lines obtained using the MM3 molecular me-
chanics potential.27 As expectedab initio minima are either
shifted from the molecular mechanics minima or do not have

any corresponding extremum in the classical potential. Table
VII list the C andF angle structural parameters for the dif-
ferent configurations reproduced from the article by Gould
et al.,1 and from our calculations. The gas phase minima for
structures C5 and aR disappear in the SCRF-R solution-
phase optimization process~aR collapses tob2, C5 collapses
to b!. The solvated optimizations performed using our
SCRF-PBF algorithm, by contrast reveal a stable solution
phase counterpart to the gas phase C5. As pointed out above,
theaR andaP correspond to stable structures appearing only
in either method so that little can be said about their relation-
ship. In addition, to these qualitative differences, it is appar-
ent that even when there exists a correspondence between the
structures, the two methods produce quantitatively different
geometries in the solvated optimization process. The large
difference in theC angle changes observed for theb confor-
mation between the two methods is remarkable.

Tables VIII and IX list the total solution phase and sol-
vation free energies of the various conformations relative to
theC7eq conformation. The corresponding changes in solu-
tion phase energies and dipole moments are shown in Table
X. A gradient is not yet available for theDGsa hydrogen-
bonding correction term described earlier in this article. The

TABLE VI. Initial and final solution phase energiesEs
i , Es

f from Eq.~5.1!, solvation energiesDGt and changes
in solvation energiesDDGt for compounds~A!–~E! resulting from the solution phase geometry optimization
calculations.

Molecule Es
i @Hr# Es

f @Hr# DG @kcal/mol# DDG @Hr#/@Kcal/mol#

Acetamide 2208.007 64 2208.008 74 29.79 20.001 10/20.69
N-methylacetamide 2247.031 27 2247.032 30 211.70 20.001 03/20.65
Acrolein 2190.779 59 2190.779 78 26.34 20.000 19/20.12
Mesityl oxide 2307.908 23 2307.908 40 25.15 20.000 17/20.11
Merocyanine 2667.030 86 2667.041 10 220.04 20.010 24/26.43

FIG. 4. Cross section of electrostatic potential contour surfaces and dielec-
tric interface for compound~E! in solution. Zero potential surface, positive/
negative potential regions, and O,N sites are indicated. Structure isgas-
phaseminimum.

FIG. 5. Cross section of electrostatic potential contour surfaces and dielec-
tric interface for compound~E! in solution. Zero potential surface, positive/
negative potential regions, and O,N sites are indicated. Structure issolution-
phaseminimum.
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energies listed in Tables VIII and IX however, include the
hydrogen bonding correction term even though its contribu-
tion to the total gradient was not included in the minimiza-
tion process. We have found the ordering of the relative en-
ergies to be generally unaffected by this term, since the
magnitude of the correction varies little from one conforma-
tion to another. There is also little change in the correction
between the gas and solution phase optimized structures for
each conformation with the exception of theaP conforma-
tion, where a20.40 kcal/mol change is observed. The devel-
opment of a gradient for this energy term is currently under
way and will be used to assess the effect of these interactions
on the location of the minima.

By comparing the ordering of the structures obtained
with our method with the one predicted by the SCRF-R
method reported by Gouldet al.1 we find, in contrast to
theiresults, that theb structure is most favored in solution,
instead ofb2 ~see Table VIII!. The PCM energies for the

SCRF-R geometries however are in slightly better agreement
with our calculations and also predict theb structure to be
the most stable. For all the structures except theb case, this
can probably be attributed to the fact that the PCM model
uses a more realistic cavity in the dielectric continuum cal-
culations than the SCRF-R model so that for similar geom-
etries, the energy calculations between the two methods
should be consistent. For theb confirmation the differences
between the SCRF-R and SCRF-PBF structures suggest that
the reasons for the improved agreement are not as clear. A
more precise comparison is difficult to make at this point
since the reference point used in Gould’s and our calcula-
tions ~C7eq! differ somewhat in the solution phase~F,C!
coordinates due to the use of very different cavity shapes in
the solvated optimization procedure.

Given that the gas phase optimized structures for all con-
formations appear to be structurally similar in Gould’s and
our calculations, the large energetic difference observed for
the solvatedb conformation remains unexplained. Since the
solvation free energies obtained with the PCM and SCRF-
PBF methods listed in Table IX are in better agreement than
the total free energies, the discrepancy probably lies in the
gas phase energy of the conformation.

It is unclear at present whether it is possible at all, using
NMR techniques, to identify with certainty which of the con-

FIG. 6. Contour lines for the MM3 molecular mechanics potential as a
function of the~C,F! torsional angles and location of minima found from
ab initio calculations at the HF6-31G** level. ~G!,~S! indicate the location
of gas and solution phase minima, respectively, for the seven local minima
discussed in text. The regions are~a! C5, ~b! C7ax , ~c! C7eq, ~d! aL , ~e!
aP , ~f! b, and~g! b2. Values of contour lines are indicated in [kT] at 298
K.

TABLE VII. Structural parameters for various gas (G) and solution phase (S) optimized conformations of the
alanine dipeptide.

Conformation F-Ga C-Ga F-Sa C-Sa F-Gb C-Gb F-Sb C-Sb

C7eq 285.8 79.0 273.4 75.1 285.80 78.49 287.48 82.07
C7ax 76.0 255.4 74.9 273.4 75.84 256.50 75.33 253.80
C5 2152.7 159.8 ••• ••• 2157.86 160.30 2154.48 154.60
aR 260.7 240.7 ••• ••• ••• ••• ••• •••
aP ••• ••• ••• ••• 2166.40 240.11 2157.84 246.71
aL 67.0 30.2 68.4 39.3 66.87 29.51 58.04 40.18
b 257.6 134.4 2118.2 133.1 258.90 133.30 265.83 149.51
b2 2130.9 22.3 2112.1 22.5 2128.59 23.24 2127.70 21.48

aResults from Gould and co-workers~Ref. 1!.
bResults of the SCRF-PBF calculations. A~•••! indicates that no corresponding structure was found. All angles
shown in degrees.

TABLE VIII. Total solution phase energies of the AD conformations. (G)
Indicates a value for the solvated gas phase optimized geometry, (S) a value
for the solution phase optimized geometry. All energies are relative to the
C7eq conformation. Results are shown for~A! SCRF-R,~B! PCM, and~C!
SCRF-PBF methods. The PCM calculations are for the SCRF-R solvated
optimized geometries. For SCRF-PBF energies the hydrogen bonding cor-
rection factor discussed in text is included in the tabulated energies but not
in the optimization process. All energies are in@kcal/mol#.

Conformation
DEs2G
A ~rel!

DEs2S
A ~rel!

DEs2G
B ~rel!

DEs2S
B ~rel!

DEs2G
C ~rel!

DEs2S
C ~rel!

C7eq 0.00 0.00 0.00 0.00 0.00 0.00
C7ax 1.69 0.07 2.97 20.66 2.40 2.59
C5 20.11 ••• 20.73 ••• 20.81 20.97
aR 0.10 ••• 1.59 ••• ••• •••
aP ••• ••• ••• ••• 5.06 3.18
aL 3.52 1.89 2.55 0.69 1.67 1.07
b 5.68 24.27 4.82 23.59 0.75 21.25
b2 22.98 25.44 0.65 21.47 0.27 20.41
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formations is favored in solution. Indeed, it is necessary to
construct a model for the experimental data in order to ex-
tract a possible ordering for the structures. To this extent, the
identification of theb structure as the most stable is in agree-
ment with the model proposed by Madison and Kopple28

based on their experimental measurements. The raw data it-
self, however, does not appear unambiguous so that the cor-
relation between the result of theab initio calculations and
the model could be fortuitous. It should be also noted, that
both Gould’s and our calculations fail to predict the exist-
ence of theaR conformation in solution which Madison and
Kopple claim to have identified.

Not surprisingly, we observe that for most conforma-
tions, the changes in the total free energy in the optimization
process, correlate with the change in the solvated dipole mo-
ment of the molecule. The dipole moments listed were ob-
tained from the ESP fitted partial charge representation of the
molecule, and formally differ from the dipole moments ob-
tained from the complete quantum mechanical charge distri-
bution. Calculations done in our laboratory however indicate
that in practice the two dipole moments differ negligibly~;
a few percent! when the RMS error in the ESP fitting process
is small. TheC7eq structure appears to be an exception
though as the dipole moment decreases as a result of the
optimization process.

While for theb andb2 structures the large changes in
energies and dipole moments appear to correlate with the
structural changes listed in Table VII, this does not seem to
hold for theaL structure in the light of large torsion angle
changes resulting in only moderate energy changes and no
change in the molecular dipole moment. This unusual situa-
tion does not appear to be connected to the relative measure-
ment since the value ofDDEs (DDG) indicates that there is
a net stabilization of 1.31 kcal/mol due to the solvent.

Finally, the total CPU time and number of solution phase
geometry optimization iterations required to obtain the con-
verged geometries, starting from the gas phase optimized
structures, is shown in Table XI. Calculations were per-
formed on the IBM390 workstations available at the Colum-
bia SP2 parallel computing facility. The average CPU time
per optimization iteration step required was approximately
1250 CPU seconds, making the solution phase optimization
procedure about 1.4 times more expensive than its gas phase
counterpart.

VII. CONCLUSION

We have presented a formalism and method for comput-
ing solvation free energy gradients and carrying out solution
phase geometry optimizations within the SCRF method. The
algorithm is based on our existing three-dimensional finite
element formulation of the continuum electrostatics problem
which will be detailed in an upcoming publication. Several
tests have indicated the accuracy of the gradient components
obtained from the method and have validated the proposed
strategy for extending the SCRF method developed in our
laboratory5 to carry out solution phase geometry optimiza-
tions. Applications of the method to a number of test mol-
ecules indicate that, for rigid compounds the primary effect
of the solvent on the structure is to amplify the charge sepa-
ration process, which can be observed even if identical struc-
tures are placed in different media, by altering the bonding
nature of the molecule. For more flexible systems, such as
the alanine dipeptide molecule discussed above, the struc-
tural changes observed are correlated with the change in the
total dipole moment of the molecule. A more extensive study
of the performance of the method, as well as of the effects of
higher level electron correlations using polyalanine systems,
is currently under way. Preliminary results using LMP2 en-

TABLE IX. Solvation free energies of the AD conformations. (G) Indicates
a value for the solvated gas phase optimized geometry, (S) a value for the
solution phase optimized geometry. All energies are relative to theC7eq
conformation. Results are shown for~A! SCRF-R,~B! PCM, and~C! SCRF-
PBF methods. The PCM calculations are for the SCRF-R solvated optimized
geometries. For SCRF-PBF energies the hydrogen bonding correction factor
discussed in text is included in the tabulated energies but not in the optimi-
zation process. All energies are in@kcal/mol#.

Conformation
DG2G
A ~rel!

DG2S
A ~rel!

DG2G
B ~rel!

DG2S
B ~rel!

DG2G
C ~rel!

DG2S
C ~rel!

C7eq 0.00 0.00 0.00 0.00 0.00 0.00
C7ax 21.33 0.07 20.05 20.66 20.51 20.32
C5 0.24 ••• 20.38 ••• 21.15 21.30
aR 24.40 ••• 22.91 ••• ••• •••
aP ••• ••• ••• ••• 20.68 22.56
aL 21.63 21.17 22.60 22.37 23.09 23.70
b 0.32 23.49 20.54 22.99 21.08 23.08
b2 24.86 25.79 21.23 21.82 22.23 22.91

TABLE X. Changes in total solution phase energies of the AD conforma-
tions and dipole moments from ESP fitted charges resulting from geometry
optimization using the SCRF-PBF method. All energies are in@kcal/mol#
and dipoles in@D# units.

Conformation DDEs mG mS

C7eq 20.71 3.4 3.1
C7ax 20.52 6.7 7.0
C5 20.86 3.9 4.2
aP 22.59 3.7 4.0
aL 21.31 6.2 6.2
b 22.71 3.2 5.6
b2 21.39 7.0 7.6

TABLE XI. Number of geometry optimization steps and total CPU time
required to obtain solution phase optimized geometries for the different
alanine dipeptide conformations. Calculations were performed on IBM390
workstations.

Conformation Niter
s T @hr:min#

C7eq 26 9:04
C7ax 9 3:13
C5 21 7:19
aP 12 4:16
aL 27 9:31
b 22 7:47
b2 24 8:22
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ergy corrections on this system indicate that the total free
energy of the conformations at the solution phase minima is
systematically decreased by the addition of the perturbation
term. Work is also under way to integrate a different gradient
algorithm based on Gilson’s formalism with molecular me-
chanics methods to investigate solvation effects within the
dielectric continuum model on larger structures.
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