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We present a new algorithm for performiadp initio solution phase geometry optimizations. The
procedure is based on the self consistent-reaction-field method developed in our laboratory which
combines electronic structure calculations with a finite element formulation of the continuum
electrostatics problem. A gradient for the total solution phase free energy is obtained by combining
different contributions from the gradient of the classical polarization free energy and the derivatives
of the quantum mechanical energy. The method used in obtaining the classical gradient is based on
exact linear algebra relations and a Green function formalism due to Handy and Schaefer. Both the
classical and quantum mechanical gradients are validated by comparison with energy finite
differences. The result of applications to a number of small organic compounds are discussed.
Comparisons between the predicted location and depth of the various solution phase minima of the
Ramachandran map for the alanine dipeptide and those reported by &alldre also presented.

© 1996 American Institute of Physid$0021-960606)01533-4

I. INTRODUCTION develop a gradient methodology for solution phase geometry
optimization of SCRF calculations.

In recent years, there has been a great deal of effort A number of methods have been presented in the litera-
devoted to the development of self-consistent-reaction-fieldure for carrying out quantum chemical solution phase geom-
(SCRA methods for the calculation of molecular solvation etry optimization. Some of these are based upon simplified
free energies. We and othérs, have employedab initio  models for the dielectric cavity of the solutepherical, el-
correlated wave functions, in ConjUnCtion with solvent di- ||pso|dab sometimes combined with drastic approximations
electric continuum models, to Carl’y out these Calculationsto the solute Charge density, such as a mu'tipo|e series trun-
With appropriate optimization of the atomic radii in the con- cated at low ordef-® Our investigations indicate that these
tinuum model, reasonable agreement with experiment hagorts of approximations are inadequate to yield an accuracy
been achievedin our most recent calculations, using a testof 1 kcal/mol or better, which our current parameterization
suite of 120 small molecules, an average difference of 0-75ppears to be capable of achieving. Consequently, we focus

kcal/mol with experimental results is observed. Also, wegn approaches which treat the full solute charge distribution
have investigated systematic errors in dielectric continuumy, 5 realistic molecular cavity.

solvation models and developed a correction scheme based \york on a model of this type has been carried out by
upon first shell hydroger! bonding correctidhgducing the Tomasi and co-worker®!! and has been implemented in
average error by approximately a factor of 2. the GAUSSIAN 94 suite of ab initio electronic structure pro-

In typical SCRF calculations reported to date, the mO-grams However, at present there are no results of this meth-
lecular geometry has either been obtained from moleculagysiogy available for large molecules, where solution phase
mechanics force fields or gas phase energy minimization. FQfoometry optimization is critical to obtaining accurate re-
small, relatively rigid molecules, this is a good approxima-g,;ts The presentation of a novel algorithmic formalism for
tion to the solution phase geometry. However, as one studieg, |, sion phase SCRF geometry optimization in the context of
larger and more flexible molecular structures, S|gn|f|cantthe PS-GVB suite of electronic structure programs, followed

changes in the geometry due to solvation effects can be e)b'y a significant number of nontrivial molecular applications,

pected. Consequently, it is essential for such applications t% the objective of the present paper
The paper is organized as follows. In Sec. I, we give a
Present address: Department of Biochemistry and Molecular Biophysicshrief description of the SCRF methodology implemented in

Columbia University, New York, NY 10032; tel: 212-305-6884; electronic ; ; ; ;
: ' ) ’ ; ’ ' PS-GVB including the hydrogen bonding corrections pre-
address: chris@boreale.bioc.columbia.edu B 9 y 9 9 P

bCorresponding author. tel: 212-854-7006, sented by Marteret al® We then discuss in Sec. Ill, our
electronic address: rich@cucbs.chem.columbia.edu novel finite element numerical methodology for solving the
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Poisson—Boltzman(PB) equation: this will be described in convergence. In this framework, the solvation free energy is
detail in another publicatiotf so what is presented here is a then given by the sum of electrostatic, nonpolar, and hydro-
relatively brief outline. In Sec. IV, a method for calculating gen bonding terms:
the analytlca_l gr_a<_j|ent_ of the PB energy is dlscussgd gnd AGI= AGESH AG™L AGSE 2.2
compared with finite difference calculations to establish its
accuracy. Section V then describes the full SCRF gradientn our calculations, the model used to evaluate the nonpolar
methodology and a variety test cases, including a merocyasontribution AG™ is based on experimentally determined
nine dye molecule. Results for the alanine dipeptide are prevacuum to water solvation energies of linear and branched
sented in Sec. VI(Finally, in the conclusion, we discuss alkaned® and is linear in the solvent accessible surface
future directions of this researgh. areaA.
The need for a correction term to account for hydrogen

bonding effects has recently been established in our

Il. OVERVIEW OF SCRF METHODOLOGY laboratory? The evidence is based on the observation that

As a mean-field theory of solvent response to the solutéhe discrepancy between experimental and predicted solva-
electrostatic field, the dielectric continuum model eliminatedlion free energies usingG**+AG™ instead of Eq(2.2), for
the need for averaging over solvent configurations in solvacertain compounds is correlated with the strength of hydro-
tion calculations. Because of this powerful feature, the mode@en bonds between some functional groups and the solvent.
has proven to be especially useful in biophysical applicationd Particular, for the ammonia, methylamine, dimethylamine,
and molecular modeling, even when applied to parametrizegimethylamine series, the errors in the theory were found to
representations of the molecular charge distributigiite ~ Pe correlated with the strength of the NHD hydrogen
reader is referred to a review by Sharp and Honig for Zonds in separate, gas phase calculations carried out on the
detailed discussion of the features of the model and itd120-solute system. A “solvent accessible” correction term
applications® Another review by Tomasi and Perstépro- ~ has been proposed to account for these effects. Dengfing
vides additional details regarding applicationsab initic  the gas phase wave function, and wahgiven in A% the
calculations. To assess the model’s limitations however, it S€parate contributions are given by
has b(_aen necessary to couple it to thg most accurate repre- A Ges= (5 HO| %) — (9| HO| %) + Y (yS|H'| %) + H"],
sentation available of solute charge distributions. This has
been the central principle behind the development of all AG"™=1.09+0.005 A, (2.3
SCRF methods currently in use. These methods in general )
allow a quantum mechanical representation of a solute to be AGS2= Y, a,e™ .
coupled to a dielectric continuum model of the solvent, thus ‘
enablingab initio solution phase calculations to be carried Hereb is an empirically adjusted parameter with value 10 A
out. The effect of the solvent continuum is represented by aand r; is the distance between the point on the molecular
induced surface charge distribution located at the solute-surface closest to the atom associated with functional group
solvent dielectric boundary. The total quantum mechanicaind its dielectric sphere, as defined by the assigned radius.
energy of the system can be written as The parametes; is the solvent accessible correction factor
ESM:<¢S|H0|¢,S>+%[<¢S|H/|¢S>+H//]’ 2.1) for functional groupi. The .hydrogen bonding correction
term for an entire molecule is assumed to be the sum of the
where H is the gas phase Hamiltoniahi’ is the one- solvent accessible correction terms for the different func-
electron interaction with the reaction field," is the nuclear tional groups on the molecule. Also, for the choice of param-
interaction with the reaction field, ang® is the solution eters used in Eq2.3, AG™ s given in kcal/mol.
phase wave function.

In the specific implementation discussed by Tannor,
et al® and Martenet al® the quantum mechanical charge lll. 3D FINITE ELEMENT FORMULATION OF THE

. . - DIELECTRIC CONTINUUM PROBLEM
density obtained from a solution to the gas phase or “free

molecule” problem H'=H"=0) is represented by a set of A number of different numerical methods have been pro-
point charges centered on the atoms. The magnitude of thgosed over the years for solving the Poisson—Boltzmann
charges is calculated by fitting the Coulomb potential theyequation in molecular geometries. Three-dimensional meth-
produce on a grid some finite distance from the molecule, t@ds have been based on the use of cubic grids and finite
the full molecular electrostatic potential. This process is usudifference (FD) representations of the partial differential
ally referred to as electrostatic potent{&8SP fitting. equation® Two-dimensional boundary element methods
The point charges are then used to solve the dielectriCBEM) on the other hand use a discretization of the molecu-
continuum problem, which will be discussed below. Thelar surface and have been combined with three-dimensional
source of the reaction field is represented as an induced suinite elements to include the effects of the ionic atmosphere
face polarization charge and is used to generate a first iterén calculations:’ By using a highly nonuniform adaptive fi-
tion of theH’, H” terms in the Hamiltonian. The modified nite element mesh, we have retained the low connectivity
guantum mechanical problem is solved to produce a newroperty characteristic of three-dimensional methods which
molecular charge density and the process is repeated untdads to a sparse matrix representation of the discretized
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problem. The adaptivity allows us to concentrate the gridThe finite size of the computational space is handled through

point distribution near the internal boundary in the problem the use of the Debye—l¢kel potential at the outer boundary

so that the computational cost of the method scales with thef the grid. The system of equations is then solved iteratively

complexity of the molecular surface rather than with the mo-using a Jacobi conjugate gradient iteration scheme.

lecular size. Within the dielectric continuum model, the polarization
The grid point distribution is generated using a combi-contribution to the free energy of solvatidfGP® is simply

nation of Lebedev quadrature grids centered on the atonthe cost of inserting an object of dielectric constarnh an

and an exact construction of the reentrant sections of thexternal fieldE,. This is written:

molecular surface as defined in the Rich&tdmnstruction.

An adaptive finite element mesh is then obtained using a 1

constrained Delaunay triangulation/marching-front algorithm ~ AG'= _EJ'V(P' Eo)dr, (3.9

developed specifically for the problem of rapidly calculating

the induced surface charge distribution. The reader is e here P=y.E is the polarization field in the solvent con
. . . . =Xe -
ferred to the fluid dynamics and numerical methods I|teratur(%.nuum andE, is the electric field produced by the fixed

for a detailed discussion of the general mesh generatioﬂ T X .
problem, for example see the work of BaRer. f:irgaeni'igéb?;;gpng E)rl)euzggjrte.cg:gi]tgi]ot:s? divergence theo-
We turn to the discretization problem. Consider the lin- ' y '
ear Poisson—Boltzmann case - -
€oE'-n=€E°-n, (3.7

47p
. = - — 2 ~ . H
V- (V) kT texte, 3D wheren is the outwards directed normal to the molecular
surface,E' andE° are the interior and exterior electric fields

where ¢(r) 'is given in units of KTl and . 4,0 surfaceAGP can be written:

x?>=(8me?l)/(ekT) is the inverse Debye length squared.
We will focus on the linear form of the equation hereafter, as 1

the finite element method is directly applicable to it. We — AgPol=_ _— J' (n-E'—n-E°) ¢, d°r
wish to discretize the problem using a finite computational 87 Js

space. Given a complete set of basis functiohg}

i=1---N, one can expand the electrostatic potential +Ef (V-P) g dr. (3.9
N 2Jv
"5(”:;1 Cigi(r). 3.2 Also, we have use,=—Vd, in the last equation. The ex-

pression forAGP® can be rewritten in terms of a surface

polarization charge density and the density of free charges

Pion- The chargesr are distributed on the molecular surface

while the densityp;,, is nonzero only beyond the ion acces-

Gi(r)=1 if i=j, sible surface in the solvent and is linear in thg potengifdr
3.3 the case of the linear PB equation. We obtain

We choose the set of functiodg;} to be a finite element
basis. This means eaaft is nonzero only in some finite
region around; and satisfies the following conditions:

For_practical purposes, we also (_:hoose th_e basis fu_nction; to AGpo|:£j oo d3r+lf piondbo d3r. (3.9
be linear functions of the Cartesian coordinates. This choice 2)s 2)v
is not necessary in principle.

In Eq. (3.2, the coefficientsc; are the values of the Evaluation of the first term in Eq3.9) requires calculating
potential at the grid vertices. The expansion is substitutethe surface polarization charge:
into Eq.(3.1). Multiplying by ¢;, integrating over all space,
using Green'’s identity and the divergence theorem as well as 1 _
the vanishing condition for the potential at infinity, we obtain ~ o(r)=z—n- (Vo'=V¢°). (3.10
a set of linear equations

N The method has been implemented in our Poisson—
> Ajci=h, (3.4 Boltzmann finite element solvéPBF). As will be detailed in
! a separate publication, the results obtained for electrostatic
where contributions to solvation free energies are in good agree-
ment with those from other programs suctoaspH1.1® Also,
Ajj=— fVV(ElJ/i)'Vlijdsf— fVEKZl’//i v, d3r, ghbestgnggstﬂ]es?hgf tlgtre mesh generation algorithm, a frequent
ge-scale use of unstructured three-
(3.5 dimensional meshes, has been tested on a database of 550
b =— Aﬂ o ddr. different compounds and succeeded in producing usable tri-
) v kT ™ angulations for each one.
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IV. POLARIZATION ENERGY GRADIENT JAGPY 5z ay ~, ~ L
= — ¢+ — P2+[z+ DJA™
CALCULATION 7q 70 ¢ aq ¢ +[z+24(y -1)]A
A. Choice of method
b IA ~
Recently, Gilsonet al?® have reported preliminary re- X FrRT] P (4.5

sults for an analytical gradient methodology for classical PB

applications. In their calculations, there are some problemﬁ1 principle, constructing the inverse operatr® would
attaining _high precision gradient _components although th‘?equire a direct solution of the system of E@.4). This
computational cost of the method is quite low. In the presenf, 14 e prohibitively expensive as even for small mol-

chapter, we describe a very different formalism which cany o5 the grids are composed of several thousand vertices.

produce results of high accuracy at a CPU cost comparablﬁ,]stead, using the symmetry of the operaoone can itera-
to that of a single point energy calculation. The gradient istively solve the linear system:

obtained from exact linear algebra relations by using a
Green’s function formulation due to Handy and Schaéfer
which they implemented in the context of electronic struc-
ture _theo_ry. Thg methodology devel_oped fo_r calculatlng t.heEquation(4.18) then becomes
gradient is outlined below. Comparisons with energy finite
d_|fferences are p_erformed for the stand-alone dielectric con- JAGP gz gy ~ b IA
tinuum problem in order to assess both the accuracy and =— ¢+ — p>+gl — — & |.
efficiency of the method. Additional comparisons between 9q 9q 9q Jq 99

our implementation of Gilson’s formalism and the method

described here have also been carried out and will be detailel'€ @daptive grid structure now makes it possible to numeri-
in another publication. It should be noted that we have foundally evaluate the various derivative terms appearing in Eq.
it possible to obtain gradients extremely rapidly using Gil-(4-7- The coordinates of every vertex in the grid are func-

son’s formalism, though the method appears to be less acc '

A-g=z+25(y"-1). (4.6)

(4.7)

tjons of the nuclear coordinates of one, two, or three atoms at
rate than the algorithm described below. most. It is therefore possible, to compute the derivatives by
finite differencing the termg, y, b, and A with respect to
small atomic displacements. Since only a subset of the com-
ponents of these terms need to be updated for a given atomic
As has been outlined above, in the linear PB equatiordisplacement, this approach is relatively inexpensive. In fact,
framework the electrostatic contribution to the solvation freemost of the time is spent in compressing the information

B. Mesh operator derivative method (MOD)

energy is given by needed to update the operatirin order to minimize the
storage requirements of the meth@hly the nonzero ele-
AGPO= %f o) d3r+§f Piond dr. (4.1  ments ofA are storefl An alternate approach, involving a
s v

single compression loop for the mesh operator, can be ob-

Where p,o,, the density of free ions is linear ith, and is  tained by decomposing the derivatives as follows:
nonzero only beyond the ion-accessible surface. The dis-

cretized form of this equation arising from the finite element Wi _ < Wi Pk 4.9
representation of the problem we have developed can be dq < dpx 99’ '
written as

AGP=z-$+y- 47, 4.2 %8 5 2% TP 4.9

. . . . 1% px 99’
wherez, y are vectors of integration weights depending on g K Pk o

the coordinates of grid vertices an] ¢ are vectors con- wherew: is anv component of. v. b. a.. is anv element of
taining the first and second powers of the grid potential val- : y P Y, D &j y

. . . .~ A andp, is a Cartesian coordinate of any vertex in the grid.
ues. Letq be any nuclear Cartesian coordinate. Differentiat-, , . . o .
. ) With this approach, the derivatives of the matrix elements
ing Eq. (4.2 with respect togq we have

B _ with respect to vertex coordinateé®;;/Jdp, can be prepro-
ip ~ L 9 cessed so that only the derivativéys,/dgq need to be recom-
£+2¢(y 1) 2" (4.3 puted for every nuclear displacement. This eliminates the
data compression cost at each step but requires the calcula-
wherel is the identity matrix. Similarly, differentiating the on of a large number of terms as a preprocessing stage. As
system of linear equations obtained from the discretization ofan pe seen from E3.5), each matrix elemer;; depends

JAGP? gz ~ Wy
7q g g

the Dirichlet problem(3.4) we obtain on 10 inner products of the linear basis functions. Since the
IA — a’(;) b 12 possible derivatives of each inner product with respect to
>0 0" 7a (4.9  the Cartesian coordinatdp,} of the different vertices in a
q q q~ given tetrahedron must be computed, a total of 120 different
Solving Eq.(4.4) for d¢/q then substituting in Eq4.3) we  expressions for each matrix element must be coded. These
have are evaluated during the preprocessing step.
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TABLE I. Gradient components in units ok[]/A at 298 K for water. Results from the MOD method are shown at various grid densities determined by the
parametet;. The sum of gradient components in each direction is listed in the last three columns. The results from energy finite differences are given in the
last two rows. The atomic displacemeht; is given in A.

e (o} o, o, H1, H1, H1, H2, H2, H2, Sy Sy s,

8 —-0.02 0.20 35.45 027 —6.42 —-17.72 -0.25 6.22  —17.73 0.00 0.00 0.00
11 0.78  —0.19 3573 047 —5.88 —-17.84 -0.31 6.07 —17.89 0.00 0.00 0.00
14 0.06 0.15 37.63 —0.02 —3.99 —18.80 —0.04 3.84 —18.83 0.00 0.00 0.00
16 025  —0.18 3501 -0.16 -5.17 -17.51 -0.09 535  —17.50 0.00 0.00 0.00
19 —0.02 0.01 35.19 —0.02 —4.72 —17.60 0.04 471 —-17.59 0.00 0.00 0.00
Ag

0.05 -0.02 0.06 35.15 0.01 —485 —-17.87 0.02 486  -18.02 0.01 0.07 -0.74
0.10 -0.01 0.08 35.03 0.01 —4.29 —-17.62 0.01 417  —17.57 0.01  -0.04 —-0.16

C. Numerical results for the classical polarization V. GEOMETRY OPTIMIZATION IN THE CONTEXT OF
energy gradient SCRF METHODS

Some numerical experiments have been performed to ag. Solution phase energy gradient
sess the accuracy of the gradient methodology we have de- The methodology for performing geometry optimization
veloped for the isolated dielectric continuum problem. Re-cajculations using electronic structure methods has now been
sults of accuracy tests for the full quantum mechanicaln place for many years and the algorithm used for the quan-
solution phase energy gradient will be discussed below. Weym mechanical part of our calculations has been described
compare gradient components for water obtained by energy, a paper by Woret al.?? In principle, similar algorithms
finite differences, and the MOD method. The results ob-can be used to carry out simulations in solution provided a
tained are listed in Table I. The parametgy refers to the gradient of the interaction between the molecule and solvent
Lebedev grid index controlling the resolution used in thereaction field with respect to the nuclear coordinates is avail-
Richards surface and 3D molecular grid generation. Largeable. Here, the solvent reaction field is taken to be the Cou-
values oflg; indicate a higher grid point density. lomb potential of the induced surface polarization charge

The results indicate that the gradient components obdistributiong. The molecular configuration sought is the one
tained with the MOD method are in good agreement withwhich minimizes the total solution phase eneigy of the
those computed by energy finite differences. Furthermore, &ystem. The latter is the sum of the quantum mechanical
necessary property of any energy gradient method is that theolution phase energfge" and the nonpolar hydrophobic
net force acting on the system coming from accumulation of€'m AG™ (for the moment we will assume no hydrogen
error, and which must be zero formally, be as small as IOOSbondmg term is used in the calculation of the solvation free
sible. Though it is possible to remove any net translation ofN€"9Y:
rotation of the system by rescaling the forces at the end of E]=EQM+AG™. (5.1
the calculation, this tends to introduce some noise in the

minimization procedure so that it is desirable to reduce thisThe geometry of the molecule is updated using the gradient

effect. In this respect, it is apparent that the MOD caIcuIa—Of Eq. (5.1), with respect to the nuclear coordinates and the

tions present a very attractive feature. With the grids em_procedure is then iterated until the change in solution phase
. ' ) energies between successive configurations lies below some
ployed above, the cancellation of error systematically result

: . s ~ f)redetermined value.
in net gradient components inferior to® “[kT)/A. For The method used to combine the classical and quantum

the gimple case considered here, the CPU time necessary . -hanica gradients, to obtain derivatives of the quantum
obtain gradients from the MOD method was 2.7 s 0N @Nyhechanical solution phase energy functional, can now be
IBM370 workstation for thel ;=19 case, about the same gymmarized in a few steps. Differentiating E&.1) with

culation itself. In the context of SCRF methods, where the

continuum electrostatic part of the calculation represents less ‘9El
than 10% of the CPU time of the complete calculation, this aq
performance is quite acceptable. As we have remarked
above, because of its greater efficiency, our implementation

of Gilson’s formalism should nevertheless be the algorithm q

of choice for use in applications involving molecular me- The first term involves differentiation of the kinetic energy
chanics force fields where the accuracy requirements are nahd solute—solute interaction part of the Hamiltonian, and
as stringent as in the context of SCRF applications. will not be discussed further in this article. A detailed de-

19
249

J
=5<<¢SIH°IwS>>+ ((YSIH [g%)+H")

JAG™

(5.2
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scription of this term for HF level calculations is given by the nuclear charge. Finally, in the case of zero ionic concen-
Won et al?? The methodology for GVB and MP2 level gra- tration, the second term on the right-hand side in &),
dients will be described in upcoming articles. The secondvhich will be used in geometry optimizations, is explicitly
term is just the derivative of the polarization contribution to given by

the free energy of solvation. As written above, it is different

from Eq. (4.3 since the reaction field here is assumed to  jA GPol.QM aAGEO"QM ﬁAGPO' 9z

correspond to the solvent response to a continuous charge aq aq aq + %

distribution. The source term used in our continuum model

calculations, however, corresponds to a point charge repre- b A~

sentation obtained by ESP fitting of molecular charge distri- 9(%‘ E‘ﬁ ' (5.9
bution.

Provided the solution to the classical electrostatics prob-  \ye use the SCRF method developed by Tannor and
lem for the discrete sources is a good approximation to the ,\vorker$ as implemented i,n theps-GvB system of

solution for the continuous ones in the neighborhood of theprogram§3 for the quantum mechanical part of the calcula-
dielectric interface, the reaction field obtained from our finitetiOn and the optimization procedure.

element calculations can be used to approxintate-H".

This assumption seems reasonable as it has been verified tatSolution phase geometry optimization: HF level

near the dielectric interface the Coulomb field from the ESPeSt calculations

fitted charges differs from the Coulomb field of the molecu-  Having established the validity of our gradient for the

lar charge distribution by less than 5%. classical electrostatic solvation energy function, we now turn
The quantum mechanical expression for the gradien{o the verification of the combined SCRF-PBF method. The

with respect to an atomic coordinate given by Ej2), can  numerical reliability of Eq(5.5) needs to be assessed before

be viewed as the sum of two terms. The first arises from th@onsidering applications of the method to molecular model-

interaction between the reaction field due to the inducegng problems. In all SCRF calculations discussed in the cur-

charge and the quantum mechanical molecular charge distifent and following sections, the solvent dielectric continuum

bution at afixedmolecular surface configuration. We expect s assigned a dielectric constant of 78.3 and the probe radius

this term, which includes information from the complete mO-rp issetto 1.4 A to represent an aqueous environment. The

lecular charge distribution, to be a better representation ofjuantum mechanical parts of the calculation were done at
the force due to interactions between the molecule and theF/6-31G™ level. A converged geometry is defined by

induced surface charge than the corresponding term in th@aximum values of less than 2.280°% 1.5x107°
classical force expression. The second term accounts for their/bohr] for the gradient components and r.m.s of gradient
dependence of the molecular surfgeéiich is updated dur- elements, maximum values of less than>510 2 [bohr] or

ing the minimization proceduyeon the atomic coordinates. [rad] for both the maximum and r.m.s of nuclear displace-
To avoid double counting, if the full expressiéh.2) is used  ment elements and total free energy differences of less than

in the gradient calculation, the corresponding classical tern 5x10™# [Hr] between previous and current geometry opti-
must be subtracted from the total gradient. The remainingnization iterations.

term, which accounts for the pressure exerted by the solvent |t s well known that Hartree—Fock level calculations on
dielectric continuum on the Richards surface of the mol-salts fail to predict dissociation in solution. Instead, the mini-
ecule, is just the second term mentioned above. More premum ground-state energy for the solvated system is found at
cisely, we replace the classical reaction field Coulomb terny finite bond length. A line search along the bond-length

given by coordinate, consisting of a series of single point energy cal-

IJAGP 1 g o(r') culations, reveals that the equilibrium bond length for Li—F

L -2 — (2 f — Q; d2r’) , (5.3 lies between 1.665 and 1.670 A corresponding to the mini-
299\ Js|ri—r'| s mum of the solution phase ener¢fig. 1). Accordingly, at

that bond length the system has moved away from the gas

with its quantum mechanical counterpart phase equilibriunfFig. 2). A first test of the energy gradient

aAGf’O"QM 19 , (r") o function is done by comparing the energy derivatives ob-
T a9 249 ( Llﬂ*U ) Tr=r p(r’)der tained by finite differencing the solution phase energy at the
gas phase equilibrium point and comparing with the pre-
o(r’) 5, dicted value. The results for central differencing along the

+Z fs [Iri—=r"]l Zi d°r (54 pond direction are shown in Table II.

In test (b), the solvation calculations were performed
The subscrip indicates that the derivatives are to be takenusing a mesh approximately eight times as dense as in cases
at afixed configuration of the Richards surface. This con-(a). In both cases, there is good agreement between the gra-
trasts with the meaning of the derivative in £§.2), where dient and the finite difference calculations for the smaller
the differentiation takes into account the dependence of thealue of the nuclear displacement. Also, using our SCRF-
molecular surface on the atomic coordinates. In the lattePBF energy gradient to drive an internal coordinate geom-
equationsQ; designates the ESP fitted charge on ato; etry optimization calculation, we find an equilibrium bond
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5478 Cortis et al.: Quantum mechanical geometry optimization

in the solution phase optimization process. The issue of com-

0.0 A . . . . .
) ——  Line search parison with other methods or experiments will be briefly
03 ° Geopt steps addressed in the following section and is the topic of ongo-
10 1 ing work. All the changes discussed below are measured
E-Eo . .
M between the solvated gas phase optimized geometries and the
20 solution phase optimized geometries.
s Tables Il and IV list the structural changes observed
3;} between the gas phase and solution phase minima of the

SCRF-PBF energies at the HF/6-3TGlevel. With regards
to bond length, or “stretch” degrees of freedom, it is appar-
ent that, where nontrivial changes are observed, the solvation
Li-F bond length [A] process results in a lengthening of double bonds and a short-
ening of single bonds suggesting that the picture described
FIG. 1. Location of geometry optimization steps along the Li—F bond dur-by the interconversion between the structures shown in Fig.
ing the solution phase energy minimization process. The solid line, obtaine® iS at least qualitatively correct. More precisely, for com-
from a series of single point energy calculations, indicates the dependenqggounds(A)—(D) we observe the largest bond-length changes
of the change in solution phase energy on the bond lerigiE, is the  {5r c——0 and C—N bonds in a direction which suggests evo-
;ggﬁgeetr? solution phase energy from the value at the gas phase equmbnumtion to C—O and E=N like structures. The changes in the
ESP fitted partial charges listed in Table V are consistent
with this charge separation mechanism. For compohgls
length of 1.6653 A for the system. The implication is that the(D), no other significant structural modifications are ob-
use of Eq.(5.9) results is a valid approximation in the con- served as the largest angle changes take place in “bend”
text of assembling a gradient of the total SCRF-PBF energylegrees of freedom and do not exceed 1.2(deg Tables IlI
at the HF level, and can be used to determine local energgnd 1V). Correspondingly, only small changes in the free
and geometry changes between gas phase and solution phaseergy of solvation are observed. These are listed in Table

1.55 1.60 1.65 1.70

equilibrium configurations. VI.

The case of the merocyanine d{) appears more in-
C. Solvation effects on the molecular structure of teresting in the ||ght of the 6.4 kcal/mol Change in solvation
organic compounds energy observed. The large energy change can be understood

by noting first, that the structural changes &) are about

We now present the res'ult.s O.b tained in a Series of f'V%—4 times larger than those observed({j—(D) (see Table
solution phase geometry optimizations of small organic comTV)_ Also, the coupled changes in bond lengths observed
pounds. The molecules studied are shown in Fig. 3. Thes '

are in order, acetamid®-methylacetamide, acrolein, mesi glong the longest axis of the molecule, appear to induce a
n ’ 106V y ae, In, mesi- significant charge separation effect over a distance of several
tyl oxide, and one example of a merocyanine dye. Two reso

fruct h ¢ h 4 Th bond lengths. This is manifest in the changes in the ESP
nance structures are shown for €ach compound. 'he MOg, partial charges located on the G,,@nd G, atoms, as
ecule in the gas phase can be represented as a hybrid of thessfleown in Table V. The effect can be visualized, by examin-

two resonance structures resembling more the one on tr]ﬁ
left. In the solvated molecule the equilibrium is shifted to- molecule within the dielectric continuum model for the dif-

wards the. rlght, therefore th? contr!but|on of the ?W'ttenomcferent conformations and ESP fitted charges. These are dis-
structure is increased. In this section, we examine only the%i

g identical contour lines of the electrostatic potential of the

itude of the structural and tic ch ntrod ayed in Figs. 4 and 5 for the initial and final configurations,
magnitude ot the structural and energetic changes introduc spectively. The line of zero electrostatic potential shifts

away from the N side of the structure in the minimization
process and appears to relocate in the region of thea@

——— Line search

o Geopt steps TABLE Il. Comparison of total solution phase free energy gradient obtained
6 1 using the MOD methodEy/dq with gradient from energy finite differ-
Eg-Ego ences(AEg,)/(2Aq). The total atomic displacement used iA@ Results
[mHr] are shown for two different grid resolutions differing by a factor of 8 in grid

point density, with(b) the densest grid.

o AEsy s
2Aq Jaq
1.55 1.60 1.65 170 Mesh type Aq[A] [Hr/A] [Hr/A]
a 0.05 3.488-02 3.20@-02
Li-F bond length [A] a 0.025 3.722-02 3.20®-02
b 0.05 3.40e-02 3.22&-02
FIG. 2. Notation as in Fig. 1. Here gas phase energy change is shown at b 0.025 3.386—02 3.22&-02

each geometry optimization step. The solid line is the result of a line search
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FIG. 3. Resonance structures of compounds used in solution phase geometry optimizatigA teststamide(B) N-methylacetamide(C) acrolein, (D)
mesityl oxide,(E) merocyanine(F) 1-(acetylaming-N-methylpropanamidéAD).

bon, reflecting the large change in electrostatic charge in thief a number of studies using both molecular mechanics force
region. The smaller scale structure in the potential also apfields andab initio methods. Several references to these nu-
pears to be attenuated in solution and the tighter spacing @herical experiments are provided by Gould and co-workers.
the contour lines on either ends indicate that an accumulatioBecause of its basic structural similarity to larger peptides,
of negative charge has taken place in the O region and Qfuantum mechanical calculations performed on this system
positive charge in the N region. In this respect, the changeghould prove useful in assessing the validity of classical
are qualitatively similar to those observed for the smalleforce field methods in the context of applications to proteins.
compounds, however, the alternation of single and doublge increase in efficiency aib initio methods observed in
bonds along the entire structure allows for greater chargg,e |ast few years has already allowed systematic studies of

delocalization and response to the solvent environment. It i§, potential energy surface of this system and related ones
likely that the conclusions drawn from this example are rel-

. to be carried out. In particular, Head-Gordenal?* have
evant to the general problem of modeling solvated com- . . .

= o rleported high resolution studies of the Ramachandran map
pounds containing aromatic rings, or more generally severg : . . .

) ) or glycine and alanine peptide analogs in the gas plihse
conjugated double bonds, regardless of their apparent flex- d din the Head-Gord tudy diff hat
ibility (rotational freedom about torsion angles compound used In the Head-1ordon study differs somewha

from (F) in that the terminal methyl groups,;CC;, are re-
placed by hydrogens.Until recently however, only gas
phaseab initio studies were available and a more rigorous
treatment of solvation effects has been lacking. Gauldl !
The alanine dipeptide(compound F in Fig. B or have carried out solvate@db initio calculations at the

1-(acetylaming-N-methylpropanamide, has been the subjectHF/6-31G™ level, using both an SCRF method developed

VI. APPLICATION TO THE STUDY OF THE ALANINE
DIPEPTIDE
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TABLE IlI. Structural changes for moleculgg\)—(D). Changes in bond TABLE V. Changes in ESP fitted charges for moleculas—(E). For hy-
lengths are shown for all bonds not involving hydrogens. Bend angledrogens only the total change in charge is shown.

changes are shown when they are greater than 1°. No torsion angle change:

greater than 1° were observed 1@r)—(D). Molecule Atom Aglel
Molecule Coordinat Aq [A][deg] Acetamide N 0.027
@ d [A][deg] o 0019
Acetamide N-G —-0.018 35 c -0.007
C-C, —0.004 79 {H} —0.001
C,-0 0.018 91 N-methylacetamide c 0.003
C,~C—N 1.035 67 C, —0.007
He—N-C, 1.084 48 o -0.023
N 0.024
N-methylacetamide jel o —0.004 65 Cs —0.021
Cc,—0 0.019 67 H) 0.024
N-Gs 0.007 71 Acrolein C 0.006
C,—N —0.019 95 c, 0,001
Hg—N-C, 1.158 69 Cs 0007
N-C,—-C, 1.063 92 o 0,008
Acrolein c-C, 0.003 45 o {H} 0.010
C,-C, —0.008 94 Mesityl oxide G 0.003
C,-O 0.011 74 G, —0.001
Cs -0.002
Mesityl oxide G-C, 0.004 10 ¢} —-0.007
C,-C, —0.000 14 Cs 0.001
Cs-Gs —0.004 83 Cs —0.001
C—Gs —0.000 51 c, —0.002
C—GC, —0.007 67 {H} 0.009
C;-0 0.010 10 Merocyanine G 0.008
C, —0.062
G, 0.006
C, —-0.028
Cs -0.013
Cs —-0.047
c, 0.125
Cs -0.047
. Co 0.039
TABLE IV. Structural changes for molecul&). Changes in stretches are c 0.057
shown for all bonds not involving hydrogens. Bend angle changes are '\10 0'019
shown when they are greater than 1° and do not involve hydrogens. No c 0'052
torsion angle changes greater than 1° were observed. 12 '
9 ges 9 Cis 0.055
- Cua -0.112
Molecule Coordinate Aq [A][deg] o _0411
Merocyanine G-C, 0.029 19 Cis 0.006
C—GCs 0.077 73 {H} 0.053
Cs—Cis —-0.04291
N-Cyg 0.02178
Ci—O 0.048 63
%__%“ :8'822 gé by Rivail et al’=® (which will be referred to hereafter as
Cz—C4 —0.046 33 SCRF-R and the polarizable continuum modé&CM) de-
C—Cs 0.033 54 veloped by Tomasi and co-workéPson these two dipep-
Cs—Cuy —0.04060 tides. In the SCRF-R method, with which the reported sol-
8;—07 ‘8-832 ig vated geometry optimizations were carried out, the solute
C7_g'; 0,043 75 cavity is represented simply as an elliptical cavity and the
8™ . . . . .. . .
Co—Cro 0.023 58 solute charge distribution as a finite multipole expansion of
Cy—N -0.023 09 the molecular charge distribution. Our calculations outline
N-Cy, —0.026 86 the effects of using a more realistic solvent model on the
Ciz=Cis 0.02479 location and heights of the minima in the potential energy
Cis-G—C; —-1.614 24 . . .
Cr-CoCy 110282 surface of the alanine dipeptide.
C-N=Cyg 1.894 77 The conformations discussed refer to different values of
Ci1—Cis—GCs -1.265 20 the (®,V) internal angles for the structure. These correspond
Co—G-C; —1.35307 to different rotational configurations of the backbone of the
<'3\|13—CB—C9 i-g% ié structure and correspond to thel;gN,CsC,), (N,CsC;0g)
C_Cll\l"_gf 115423 torsion angles for compoun@d) shown in Fig. 3.
16— 'NT ™10 . .l .
Ci=CirN —1.154 02 We have performedhb initio solution phase geometry

optimizations at the HF/6-31'G level on the structures cor-
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TABLE VI. Initial and final solution phase energi&, Ef from Eq.(5.1), solvation energieA G' and changes
in solvation energiea AG' for compounds/A)—(E) resulting from the solution phase geometry optimization

calculations.

Molecule EL [Hr] E! [Hr] AG [kcal/mol] AAG [Hr]/[Kcal/mol]
Acetamide —208.007 64 —208.008 74 -9.79 —0.001 10/-0.69
N-methylacetamide —247.031 27 —247.032 30 —-11.70 —0.001 03+-0.65
Acrolein —190.779 59 —190.779 78 -6.34 —0.000 19/-0.12
Mesityl oxide —307.908 23 —307.908 40 -5.15 —0.000 17+0.11
Merocyanine —667.030 86 —667.041 10 —20.04 —0.010 24+-6.43

responding to the various local minima present on the gaany corresponding extremum in the classical potential. Table
phase Ramachandran map. The starting geometries are MH list the ¥ and® angle structural parameters for the dif-
beledC5, C7 4y, C7¢q, @, @p, B, andB,. TheC5 andC7  ferent configurations reproduced from the article by Gould
structures correspond to extended and cyclic structures of thet al,* and from our calculations. The gas phase minima for
dipeptide respectively. Those labeladand 8 correspond to  structures € and ay disappear in the SCRF-R solution-
helical and strand conformations. phase optimization procegag collapses t@3,, C; collapses

The various structures were initially optimized in the gasto B). The solvated optimizations performed using our
phase using starting configurations obtained from the worlSCRF-PBF algorithm, by contrast reveal a stable solution
of Gould and co-worker$ except forap, which is not dis-  phase counterpart to the gas phage/ pointed out above,
cussed in their study. They also report the presence ofzan the ag andap correspond to stable structures appearing only
helical structure minimum in the gas phase diagram correin either method so that little can be said about their relation-
sponding to(®=—60.7 ¥=-40.7. We have found no cor- ship. In addition, to these qualitative differences, it is appar-
responding gas-phase minimum at this location in our calcuent that even when there exists a correspondence between the
lations both using thes-GvE™ and GAUSSIAN9Z® programs.  structures, the two methods produce quantitatively different
Initial geometries corresponding to thegz conformation geometries in the solvated optimization process. The large
were found to minimize to th@, conformation. difference in thel' angle changes observed for tBeonfor-

The gas-phase minima were subsequently used as startation between the two methods is remarkable.
ing points for the solution phase geometry optimizations.  Tables VIII and IX list the total solution phase and sol-
The locations of the gas and solution phase minima for theation free energies of the various conformations relative to
different structures are indicated in Fig. 6 and superimposethe C7, conformation. The corresponding changes in solu-
on the contour lines obtained using the MM3 molecular me+tion phase energies and dipole moments are shown in Table
chanics potentiad’ As expectedab initio minima are either X. A gradient is not yet available for thAG*? hydrogen-
shifted from the molecular mechanics minima or do not havébonding correction term described earlier in this article. The

FIG. 4. Cross section of electrostatic potential contour surfaces and dieled-IG. 5. Cross section of electrostatic potential contour surfaces and dielec-
tric interface for compoun¢E) in solution. Zero potential surface, positive/ tric interface for compoundE) in solution. Zero potential surface, positive/
negative potential regions, and O,N sites are indicated. Structugasis negative potential regions, and O,N sites are indicated. Structadugon-
phaseminimum. phaseminimum.
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5482 Cortis et al.: Quantum mechanical geometry optimization

TABLE VIII. Total solution phase energies of the AD conformationS.) (

Indicates a value for the solvated gas phase optimized geom8jrg, \(alue
for the solution phase optimized geometry. All energies are relative to the
C7¢4 conformation. Results are shown @) SCRF-R,(B) PCM, and(C)
SCRF-PBF methods. The PCM calculations are for the SCRF-R solvated
g - optimized geometries. For SCRF-PBF energies the hydrogen bonding cor-
i rection factor discussed in text is included in the tabulated energies but not
in the optimization process. All energies arefktal/mol].
5 o AE~G AE~S AE.~G AE.~S AE~G AE~S
& Conformation A (rel) A(rel) B(rel) B(rell C(rel) C (rel
C7¢q 0.00 0.00 0.00 0.00 0.00 0.00
C7x 1.69 0.07 2.97 -0.66 2.40 2.59
g 4 C5 -0.11 —-0.73 -0.81 -0.97
' ar 0.10 1.59
ap 5.06 3.18
! a, 3.52 1.89 2.55 0.69 1.67 1.07
— . . B 568 —4.27 482 -3.59 075 -1.25
Bo —-298 —544 0.65 -—1.47 0.27 -0.41
100 0 100
PHI

FIG. 6. Contour lines for the MM3 molecular mechanics . SCRF-R geometries however are in slightly better agreement
. 6. potential as a™ . . .
function of the(W,®) torsional angles and location of minima found from With our calculations and also predict tigestructure to be
ab initio calculations at the HF6-31% level. (G),(S) indicate the location  the most stable. For all the structures exceptghmase, this
gf gas ar&diic’t'(‘;)t(itO”Tﬁgarze Ig’r']';'r;’(; gsp(et;tig'y' f‘()cf)tgise"(zf; 'OCa'(e';"”im%an probably be attributed to the fact that the PCM model
a':?lzfs)sz,’ and(@) 6,. Talne of contou s s indicatcy W ai208 Uses a more realistic cavity in the dielectric continuum cal-
K. culations than the SCRF-R model so that for similar geom-
etries, the energy calculations between the two methods
energies listed in Tables VIII and IX however, include the should be consistent. For thigconfirmation the differences
hydrogen bonding correction term even though its contribubetween the SCRF-R and SCRF-PBF structures suggest that
tion to the total gradient was not included in the minimiza-the reasons for the improved agreement are not as clear. A
tion process. We have found the ordering of the relative enmore precise comparison is difficult to make at this point
ergies to be generally unaffected by this term, since theince the reference point used in Gould’'s and our calcula-
magnitude of the correction varies little from one conforma-tions (C7,,) differ somewhat in the solution phagé, V)
tion to another. There is also little change in the correctiorcoordinates due to the use of very different cavity shapes in
between the gas and solution phase optimized structures ftine solvated optimization procedure.
each conformation with the exception of the conforma- Given that the gas phase optimized structures for all con-
tion, where a-0.40 kcal/mol change is observed. The devel-formations appear to be structurally similar in Gould’s and
opment of a gradient for this energy term is currently underour calculations, the large energetic difference observed for
way and will be used to assess the effect of these interactiorthe solvated3 conformation remains unexplained. Since the
on the location of the minima. solvation free energies obtained with the PCM and SCRF-
By comparing the ordering of the structures obtainedPBF methods listed in Table IX are in better agreement than
with our method with the one predicted by the SCRF-Rthe total free energies, the discrepancy probably lies in the
method reported by Goulét all we find, in contrast to gas phase energy of the conformation.
theiresults, that thes structure is most favored in solution, It is unclear at present whether it is possible at all, using
instead of 3, (see Table VIIJ. The PCM energies for the NMR techniques, to identify with certainty which of the con-

TABLE VII. Structural parameters for various ga8) and solution phaseS) optimized conformations of the
alanine dipeptide.

Conformation d-G*  P-G? P-S° Y- O-GP P-GP O-S PSP

CTeq —85.8 79.0 —73.4 75.1 —85.80 78.49 —87.48 82.07
C7 76.0 —55.4 749 —73.4 75.84 —56.50 75.33 —53.80
C5 —152.7 159.8 B —157.86 160.30 —154.48 154.60
og —-60.7 -407

ap —166.40 —40.11 —157.84 —46.71

ap 67.0 30.2 68.4 39.3 66.87 29.51 58.04 40.18
B —57.6 1344 —118.2 1331 —58.90 133.30 —65.83 14951
Bo —130.9 223 -1121 225 —128.59 23.24 -—127.70 21.48

@Results from Gould and co-worke(Ref. 1).
PResults of the SCRF-PBF calculations () indicates that no corresponding structure was found. All angles
shown in degrees.

J. Chem. Phys., Vol. 105, No. 13, 1 October 1996

Downloaded-15-Sep-2006-to-171.64.133.179.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://jcp.aip.org/jcp/copyright.jsp



Cortis et al.: Quantum mechanical geometry optimization 5483

TABLE IX. Solvation free energies of the AD conformation&)(Indicates TABLE Xl. Number of geometry optimization steps and total CPU time
a value for the solvated gas phase optimized geomeBlya(value for the  required to obtain solution phase optimized geometries for the different
solution phase optimized geometry. All energies are relative toCifig, alanine dipeptide conformations. Calculations were performed on IBM390
conformation. Results are shown @) SCRF-R,(B) PCM, and(C) SCRF- workstations.

PBF methods. The PCM calculations are for the SCRF-R solvated optimized

geometries. For SCRF-PBF energies the hydrogen bonding correction factorconformation NS, T [hr:min]
discussed in text is included in the tabulated energies but not in the optimi-
zation process. All energies are [ikcal/mol]. C7¢q 26 9:04
C7 9 3:13
AG-G AG-S AG-G AG-S AG-G AG-S C5 21 7:19
Conformation A (rel) A (rel) B(rel) B (re) C (rel) C (rel) ap 12 4:16
a 27 9:31
CTeq 0.00 0.00 0.00 0.00 0.00 0.00 B 22 7:47
C7 —1.33 0.07 -0.05 -0.66 -051 -0.32 .
B, 24 8:22
C5 0.24 —-0.38 -1.15 -1.30
ap —-068 —-2.56
ap -1.63 -117 -260 -—-237 -3.09 -3.70
B 032 -349 -054 -299 -108 -3.08 While for the 8 and 3, structures the large changes in
B2 -486 -579 -123 -182 -223 -291 energies and dipole moments appear to correlate with the

structural changes listed in Table VII, this does not seem to
hold for the ¢, structure in the light of large torsion angle
changes resulting in only moderate energy changes and no
formations is favored in solution. Indeed, it is necessary tQ®hange in the molecular dipole moment. This unusual situa-
construct a model for the experimental data in order to eXtjon does not appear to be connected to the relative measure-
tract a possible ordering for the structures. To this extent, thenent since the value & A E. (AAG) indicates that there is
identification of theB structure as the most stable is in agree-5 net stabilization of 1.31 kcal/mol due to the solvent.

ment with the model proposed by Madison and Kopple Finally, the total CPU time and number of solution phase
based on their experimental measurements. The raw data geometry optimization iterations required to obtain the con-
self, however, does not appear unambiguous so that the cojerged geometries, starting from the gas phase optimized
relation between the result of theb initio calculations and  structures, is shown in Table XI. Calculations were per-
the model could be fortuitous. It should be also noted, thatgrmed on the IBM390 workstations available at the Colum-
both Gould’s and our calculations fail to predict the exist-pig SpP2 parallel computing facility. The average CPU time
ence of th&lR conformation in solution which Madison and per Optimization iteration step required was approximately
Kopple claim to have identified. 1250 CPU seconds, making the solution phase optimization

~ Not surprisingly, we observe that for most conforma-procedure about 1.4 times more expensive than its gas phase
tions, the changes in the total free energy in the optimizatiogounterpart.

process, correlate with the change in the solvated dipole mo-
ment of the molecule. The dipole moments listed were ob-
tained from the ESP fitted partial charge representation of th¥!l. CONCLUSION

molecule, and formally differ from the dipole moments ob- We have presented a formalism and method for comput-
tained from the complete quantum mechanical charge distri-mg solvation free energy gradients and carrying out solution
bution. Calculations done in our laboratory however indicatepr1ase geometry optimizations within the SCRF method. The
that in practice the two dipole moments differ negligilty  aigorithm is based on our existing three-dimensional finite
a few percentwhen the RMS error in the ESP fitting process gjement formulation of the continuum electrostatics problem
is small. TheC7,, structure appears to be an exceptionyich will be detailed in an upcoming publication. Several
though as the dipole moment decreases as a result of thgsts have indicated the accuracy of the gradient components
optimization process. obtained from the method and have validated the proposed
strategy for extending the SCRF method developed in our
laboratory to carry out solution phase geometry optimiza-
TABLE X. Changes in total solution phase energies of the AD conforma—tions_ Applications of the method to a number of test mol-

tions and dipole moments from ESP fitted charges resulting from geomet% | indicate that. f iqid ds th . ffect
optimization using the SCRF-PBF method. All energies ar¢kial/moll Cufes Indicate that, Tor nigid compounds the primary efiec

and dipoles i D] units. of the solvent on the structure is to amplify the charge sepa-
ration process, which can be observed even if identical struc-

Conformation AAE uG uS tures are placed in different media, by altering the bonding
CTeq —071 3.4 31 nature of the molecule. For more flexible systems, such as
C7 oy -0.52 6.7 7.0 the alanine dipeptide molecule discussed above, the struc-
C5 —0.86 3.9 4.2 tural changes observed are correlated with the change in the

ap —2.59 3.7 4.0 total dipole moment of the molecule. A more extensive study

ZL :;:31 g:; S:é of the performance of the method, as well as of the effects of

B, 139 70 76 higher level electron correlations using polyalanine systems,

is currently under way. Preliminary results using LMP2 en-
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