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This  t r e a t m e n t  is i n t e n d e d  for  c o m p l e x  s t r u c t u r e s  w h e r e  c o n v e n t i o n a l  r e f i n e m e n t  is imposs ib le .  
A m e t h o d  is de sc r i bed  for  assess ing  t h e  e r rors  w h i c h  ar ise  in a p p l y i n g  t h e  i s o m o r p h o u s  r e p l a c e m e n t  
m e t h o d .  B o t h  e r rors  d u e  to  n o n - i s o m o r p h i s m  a n d  o b s e r v a t i o n a l  e r rors  a re  cons ide red .  P r o b a b i l i t y  
f u n c t i o n s  are  d e r i v e d  w h i c h  give,  in t h e  c e n t r o s y m r n e t r i c  case,  t h e  p r o b a b i l i t y  of a co r r ec t  s ign 
d e t e r m i n a t i o n ,  a n d  in t h e  n o n - c e n t r o s y m m e t r i c  case t h e  r e l a t i ve  p robab i l i t i e s  of d i f f e r e n t  phases .  
T h e s e  p robab i l i t i e s  m a y  be  u s e d  to  ca l cu l a t e  a ' bes t '  F o u r i e r ,  in w h i c h  t h e  e r rors  in e l ec t ron  d e n s i t y  
a re  m i n i m i z e d ,  a n d  also to  e s t i m a t e  t h e  r .m.s ,  e r ro r  in th i s  ' bes t '  F o u r i e r .  

There are two steps in the application of the isomor- 
phous replacement method. The first is the determina- 
tion of the position of the outstanding features 
(usually a small number of heavy atoms) which dif- 
ferentiate a pair of isomorphous structures. The contri- 
bution fc of this part of the structure to the structure 
factors may then be calculated. The second step is 
the use of these calculated contributions to determine 
the phases of the reflex'ions. This is done by c0mpuring 
them with the observed intensity differences. In this 
way the structure may be determined. 

This paper is concerned with the second step. There 
will be many reflexions for which fc is very small. 
The determination of phase will be correspondingly 
poor. How should these reflexions be treated? In 
non-centrosymmetric structures, as is well known, 
unambiguous phase determinations are possible only 
if at least three isomorphous compounds are available. 
How should the results from the two pairs be com- 
bined? With simple structures where atoms are 
resolved, a trial structure can be obtained, and refine- 
ment made, for instance by the least-squares method. 
With a large protein, there is no immediate prospect 
of resolving the individual atoms and therefore no 
way of refinement from a trial structure. The accuracy 
of the final Fourier is dependent on the best choice 
of weights and phases during the second step of the 
calculation. There will be cases of intermediate com- 
plexity where the right trial structure will be found 
only if the second step is done accurately enough. 

We will describe a method for treating this question 
as rigorously as possible. A structural study where the 
method has been put to practical use has been published 
elsewhere (Blow, 1958). 

Est imat ion  of e r ro r  

The errors with which we are concerned are those 
which arise in the use of the isomorphous replacement 
method. I t  will be assumed that  the 'true' structure 
would be the Fourier transform of accurately observed 
structure factors, given the proper phases. Errors 
which arise due to series termination and extinction 
are not considered. 

Let ~', FB be the structure lactors o~ two isomor- 
phous compounds, the latter containing additional 
heavy atoms. We will define 

fB-- F B - F .  (1) 

The basis of the isomorphous replacement method is 
to calculate an approximation to fH, which we will 
call fc, usually by assuming the differences are entirely 
due to heavy atoms whose coordinates have been 
determined. (1) then gives information about the 
phases. 

Centrosymmetric case 

If the structures are centrosymmetric, then F, Fn, 
fH, f~ are all real. Either 

or  
If~l = IFB- FI (2a) 

If~l = IF~+ FI (2b) 

the latter case arising only when the signs of Fn and 
F are different. If we exclude all cases where 
FH+F<fc(000),  the maximum possible value of fc, 
we can approach certainty that  (2a) applies. In these 
cases, a direct assessment of error may be made. 
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We  will use the  symbols F/z and  F to represent  the  
observed ampli tudes  of Fn  and  F, and  define AFob~.= 
F ~ z - F .  I f  there were no error, whenever  (2a) applies 
IAFob~.l and Ifc[ would a lways be equal• The quan t i t y  
E =  IZlFob~.[-Ifcl is a measure  of the  to ta l  error. 

The dis tr ibut ion of IE] has been examined for the  
hogs of horse haemoglobin (Cullis, Dintzis & Perutz ,  
1957). The dis t r ibut ion closely follows the  Gaussian 
dis t r ibut ion of r andom errors;  the  mean  value usual ly  
varies with sin 0 (Figs. 1 and  2). 
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Fig. 1. The mean value of IIAFobs.I- Ifcl[ plotted as a function 
of sin 0 for various isomorphous derivatives of horse 
haemoglobin. 

× x mercury  acetate:  
× haemoglobin compound 

O O dimercury acetic acid: 
0 haemoglobin compound 

[] [] 

[] 
p-chloro-mercuribenzoate : 
haemoglobin compound 

(Taken from the data of Cullis, Dintzis & Perutz (1957). 
We are grateful to Miss A. F. Cullis for preparing this figure.) 
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Fig. 2. Histogram showing the frequency distribution of 
[1AFobs.] -- If ell for dimereury acetic acid haemoglobin. The 
full line is a Gaussian curve with the same mean square 
value. (Taken from the data of Cullis, Dintzis & Perutz 
(1957).) 

These errors can be thought  of as arising f rom two 
dist inct  causes. They  arise pa r t l y  f rom the difference 
e between fR and  the  es t imate  ft. This is pa r t l y  due to 
errors in placing and  weighting the  heavy  atoms,  
wrongly  es t imated  t empera tu re  factors and  so on, 

bu t  also to the  differences which arise f rom incomplete 
isomorphism, in some cases caused by  slight shifts 
and  rota t ions  of the  molecules (Crick & Magdoff,  
1956), and  perhaps  by  the  int roduct ion of l ighter 
a toms into the  s t ruc ture  whose paramete rs  have  not  
been determined• 

A separate  source of error is exper imental  inaccm'acy 
in the  de terminat ion  of the s t ruc ture  ampli tudes,  
2', F m  We will call 

~ :  l/IFob~.l- [ IFzel- IFI[. (3) 

I t s  r .m.s,  value ( 5 )  is easily checked by  comparing 
values of F derived f rom different  crystals  of the  same 
compound.  (This me thod  of es t imat ion neglects some 
sys temat ic  errors, such as t h a t  due to absorpt ion.  
:But since isomorphous rep lacement  depends on the  
comparison of intensities f rom similar crystals,  these 
errors are u n i m p o r t a n t  in calculating the differences.) 
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Fig. 3. l~.m.s, difference between independent observations of 
_P from two similar haemoglobin crystals. Each symbol 
represents the average of about 10 reflexions of similar F. 
The results come from two different experiments. The data 
were taken from precession photographs and the intensities 
measured photometrically (Blow, 1958)• 

The result  of such a check with the  Okl's of horse 
haemoglobin is shown in Fig. 3. ( d )  was found to be 
a funct ion of F .  Since 

(E)'Z= ( 5)e 4-(e)e (4) 

the  est imates  of (dt) and  ( E )  permi t  (e)  to be est imated.  

2Von-centrosymmetric case 
In  the  non-cent rosymmetr ic  case F, FH, f/z have  

a rb i t r a ry  phase and  there  is no direct  means  of com- 
par ing observed and  calculated differences, though 
( d )  can be es t imated  in the  same way  as before. A 
reasonable es t imate  of ( s )  will have  to be made.  A n y  
non-cent rosymmetr ie  space groups whose s y m m e t r y  
includes dyads  or screw dyads  possess centrosym- 
metr ic  zones, and  in these cases it  is reasonable to use 
this zone to es t imate  ( s )  for the  whole s t ructure .  
fn need no longer be real, and  the  es t imate  of i t  m a y  
be though t  of as a circularly symmetr ica l  'cloud'  of 
unce r t a in ty  centred on fc. We shall now consider how 
the  b read th  of this cloud m a y  be est imated.  

Consider the  uni t  cell split up into two similar units  
re la ted by  a d y a d  or a screw dyad.  The h e a v y  a tom 
contr ibutions of these two units  are ft and  fg.. W h e n  
projected down the  dyad,  the  s t ruc ture  appears  
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centrosymmetric; thus in the zone corresponding to 
this projection the relation 

f ~ = f *  

will hold. Suppose an error E1 has been made in estim- 
ating f~. Then in this zone (see Fig. 4) 

, ~ - 

Fig. 4. 

f H =  (f~)~+e~+ (f~)~+e~ = f ~ + ~ + E * .  (5) 

The error in estimating fH is E where 

I~1 = I~ + ~*1 = 21Exl cos ~' (6a) 

and ~' is the phase of f~. We may assume q'  is random, 
so tha t  

The r.m.s, value <e> in this zone may  be assessed in 
just the same way as for a centrosymmetric structure. 

To apply this estimate to reflexion~ not in the 
centrosymmetric zone we have to assume tha t  l e~] 
and leg.I have the same distribution for these other 
reflexions as they do for the centrosymmetric re- 
flexions. The first equality in equation (5) applies, 
but  e~. can no longer be replaced by e*. (6) becomes 

lel = IEl+ ~21 = (e2+ e~--21ell le21 cos ~o")½ (65) 

where q)" is the angle between e~ and E~ and is assumed 
random, so we find <e> e = 2e~ as before. The circularly 
symmetrical cloud of uncertainty around fc in the 
non-centrosymmetric case has the same breadth as the 
linear probabili ty function representing the estimate 
of f~ in the centro-symmetric case, namely @>. In  
systems with only one axis of symmetry  there are 
uncertainties about the heavy atom co-ordinates 
parallel to this axis, which do not affect the centro- 
symmetric projection (Harker, 1956; Perutz, 1956). 
In  these cases a further allowance needs to be made 
for the corresponding uncertainty in the phase of f~. 

' T h e  b e s t  F o u r i e r '  

Let  us suppose we have some information about the 
value of a structure factor F(hkl). To include the non- 
centrosymmetric case, we will put  

F(hkl) = A (hkl) + iB(hkl) = Fe iq~ (8) 

though in the centrosymmetric case it will be known 
tha t  B is always zero. We can represent the informa- 

tion we have about F on an Argand diagram with 
A and B as coordinates. This can be done by plotting 
the probabili ty tha t  F lies at  any point on the diagram. 

If, for instance, the amplitude IF I had been mea- 
sured with perfect accuracy but  there was no informa- 
tion about the phase, the diagram would in the non- 
centrosymmetric case consist of a circle radius ]F], 
centred on the origin. In the centrosymmetric case it  
would consist of two equal points of probabili ty den- 
sity, F = + I F  [ and F = - I F  I. In  practice, neither 
amplitude nor phase is known with perfect accuracy, 
and the probabili ty will be a smoothly varying func- 
tion, representing all available information about  
F(hkl). We will call this function Phil(A, B), and i t  
will be normalised so tha t  

l f+°~Phkz(A, B)dAdB= I . (9) 
- - 0 0  

In order to por t ray this information in structural  
terms, it is necessary to make a Fourier transforma- 
tion. The most general way to do this would be to work 
out the transforms for all possible values of A and B 
for each hkl. The probabili ty of a transform being the  
correct one would be the product 

l'l Phil(A, B) .  (10) 
h k l  

In this way one can imagine obtaining a continuum 
of structures, each with an assigned probability. The 
structures whose probabili ty fell below a certain value 
might be rejected, and the remainder examined to see 
what characteristics they had in common. 

Such an idealised procedure could not be under- 
taken in practice. However, these considerations enable 
us to define two transforms which can be calculated 
more easily. 

The more obvious is the 'most probable Fourier ' .  
This may be calculated by choosing the value of F(hkl) 
for each reflexion corresponding to the highest value 
of Phkz(A,B). This corresponds to using (1) and 
neglecting all errors. This Fourier will clearly have the 
maximmn value of I-fPI~e~(A, B) and is the most 
likely to be correct, hkZ 

If the form of the probabili ty functions P~z(A, B) 
were usually unimodal, with a single peak on the dia- 
gram, the most probable Fourier would not be a bad 
function to use, though it might tend to give too much 
weight to uncertain pha~e~, Unfortunately, it turns 
out tha t  in the isomorphous replacement method 
there is a strong tendency for Phzl(A, B) to be bi- 
modal. When two peaks have nearly equal weight, 
there is a strong chance of making a large error, if the 
most probable value of F is used. A compromise is 
clearly needed. I t  will now be shown that  the eentroid 
of the distribution provides just the required com- 
promise. 

For the time being we shall assume tha t  only one 
reflexion F(hkl), and its conjugate F(hkl), are un- 
known; the others are known with perfeet accuracy. 
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(The treatment can be extended directly to the case 
where all reflexions are unknown.) Suppose that  we 
decide to use some value Fo(hkl) for this reflexion, 
and that  the true value is FT(hkl ). In calculating a 
Fourier synthesis, we introduce an error 

1 
zJ@h~t = ~ [ (Fo-FT)  exp {-2~i(hx+ky+lz)}  

+ ( F * - F * ) e x p  {2~i(hx+ky+lz)}]. (11) 

The mean square value of z]@ over the whole unit 
cell is 

2 
<Ae>h  = (Fo-F ) 2 • (12) 

In practice, our knowledge of F T can only be ex- 
pressed in the form of a probability distribution, and 
we must take a weighted mean over all possible 
values : 

(A@hk~)2= ~-~ _ h~(A,B)[Fo-(A+iB)]2dAdB,(13) 

which we may rewrite 

<A@)~k~=2r2/V ~, thus defining r. 

r is the r.m.s, length of the vector between F o and the 
probability function we use to describe the observa- 
tions of F. I t  is our estimate of the error introduced 
in deciding to use F o. The integral is exactly analogous 
to the expression for the radius of gyration r of a 
plane lamina with density Pa~z(A, B) about the point 
Fo. As in the parallel-axes theorem of mechanics, it 
is  easy to show that  this integral has its minimum 
value when 

A Fo=ff_Phk~( ,B)(A+iB)dAdB;  (14) 

that  is, when F o is the centroid of the distribution. 
We define the 'best Fourier' as that Fourier trans. 

form which is expected to have the minimum mean square 
difference from the Fourier transform of the true F's 
when averaged over the whole unit cell. The best Fourier 
is the Fourier transform obtained by using the centroid 
of the probability distribution for F. 

A p p l i c a t i o n  t o  c e n t r o s y m m e t r i c  c a s e  

The probability distribution in the centrosymmetric 
case is a function of A alone, since B must be zero. 
In general, it will have two parts, centred on + F and 
- F ,  which will be represented by Gaussian curves of 
breadth (6'> (Fig. 5). (It should be noted that  <6'> is 
not quite the same as <(5>: for errors due to absorption 
etc., which are eliminated in comparing two similar 
crystals are important in estimating the true magni- 
tude of <6'>.) 

The relative weight of these two parts of the distri- 
bution is our estimate of the probability of a correct 
sign determination. This estimate is made by compar- 

ing the discrepancies between theory and experiment 
with the estimate of error (E),  assuming 

(a) F is positive; 
(b) F is negative. 

When [F] is small it will be important to remember 
that  F~ need not have the same sign as F (Table 1). 

Table 1. Discrepancy between theory and experiment 
in various cases 

Sign of F Sign of FH Discrepancy 
+ + f~- (FH -- F) 
+ -- fc-t- (_~a-t- 2') 
- + f ~ -  (FH + F)  
- - f~+(FB--F) 

The probability of the two cases are then as follows: 

Probability F is positive 

p + = N [ exp { _ (fc- [F H-  F])2~ 
2<E>2 J 

+exp{ ('c-[F.+F])2}] (15a) 
2<E> 2 

Probability F is negative 

2<E>2 J 
J ( f0+ 

+ e x p  l -  ~ JJ (15b) 

where N is a normalising factor such that  P+ + P_ = 1. 
Rearranging these gives 

P + =  2/¥ exp { (F-t-fc)2+F2H}sinh~Ft~(F+fc)~ 
2<E>'- J' 

exp[~ ( F - f ~ ) 2 + F ~ |  .__~Fz(F--f~)~ P _ = 2 N  

P+ { 2Ff~[sinh {F,(F+f~)/(E) e} 
(16) T2_ =exp sigh " 

The expressions may be simplified ff fc and E are 
small compared to (F + FH). In this case the possibility 
of F and F~ having different sign may be neglected 
and the second terms in (15) disappear. Under these 
conditions 

N-1=2  exp{ (F--FH)~+~}cosh~fc(F--FH)~ 
- -  2 (E>2  ( ~ J "  

If we write 
t= fc (F . -F) / (E )  2, (17) 

P+, P_ may be written 

P+ = et/2 cosh t 
_P_= e-t~2 cosh t .  (18) 

Thus when (F+F~) is large compared to <E), ]fc[, 
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the  value  of F which mus t  be used to give the  best 
Fourier  is 

Fo= ( P + - P ) F = F  t anh  t (19) 

a n d  the  m e a n  square value of <F o -  FT) e, t aken  over 
the  whole p robabi l i ty  dis t r ibut ion is 

r" = ( F o -  F)2P + + (Fo + F)2P_ + ( rY) 2 
= $'~ seth 9. t + < ~ ' )  ~ . (20) 

I t  will help to discuss these results in terms of a 
concrete example.  The da ta  given below are typical  
of a weak reflexion in haemoglobin where the ex- 
per imenter  would cer ta inly  doubt  the significance of 
his sign de terminat ion:  

2' = 200, F H = 225, fc = + 75 (electrons/unit cell). 

Typical est imates of ( E )  and ((~') would be 

( E ) = 5 0 ,  ( ~ ' ) = 3 5  (electrons/unit cell). 

The discrepancies in the results according to the 
various possible sign combinat ions m a y  be found from 
Table  1, and are set out in Table 2. Using equations 

Table 2. Probabilities of various sign combinations 
in an actual case: 

F = 200, FH = 225, fc = + 75, ( E )  = 50 

Probability, 
assuming 

Sign Sign Discrepancy Gaussian error 
of F of F/~ (from Table 1) distribution 

+ + 50= (E) Ne-½ = 0.606N 
+ -- 500= IO(E} ~Ve -5° = 10-~IN 
-- + 350= 7(E) Ne -~4"5 = 10-z°N 
- - X~}~)- 2(E)  N¢ -z - [}q~gN 

(15), after f inding the normalis ing factor N, we obtain 

P+=0 .818 ,  P _ = 0 . 1 8 2 .  

Alternat ively,  using the approximate  t r ea tmen t  we 
f ind t--0-750, giving exact ly  the above result. Even  
when F is only three t imes Ifcl, the  inaccuracy is quite 
negligible. 

Equat ions  (19) and  (20) give 

F o =  + 127, r ~ = 2 3 , 8 0 0 +  1,200= 15W. 

The t r ea tmen t  thus shows tha t  this reflexion should 
be put  into the Fourier  synthesis  with a weight of 
about  0.6, and  even then  the radius of gyrat ion is 
surpris ingly large. I t  is instruct ive to compare it  wi th  
the  values corresponding to 

(a) giving the  reflexion full weight wi th  positive 
sign ; 

(b) omit t ing the reflexion from the synthesis.  

This  corresponds to f inding the radius of gyrat ion of 
the  d iagram (Fig. 5) about  the  p o i n t + 2 0 0  and about  
the  origin, respectively. The results are 

(a) (4002 × 0-182) + 352 = 174 ~ 

(b) 200 ~ + 352 = 2032. 

- -  200 

x 
° ~  

2 

o I + 2 0 0  
F 

/ 

Fo=127 

Fig. 5. Probability distribution for F in a centrosymmetric 
case. Calculated for 

F=200, F~=225, fc= +75, (6 ' )=35,  (E>=50. 

We m a y  take  est imate  (b), the mean  square error due 
to omit t ing the reflexion, as a s tandard.  In  this  case, 
when we are only about  80% sure of a correct sign 
determinat ion,  the mean  square error due to giving 
the reflexion full weight is about  0.73 of the s tandard.  
By  using the correct weighting function, i t  m a y  be 
fur ther  reduced to 0.60 of the s tandard.  

(d) 

' 0 1 2 
t t 

~ g ,  ~, ~ v ~  ~h0~i~g ~a] th~ pmb~b~i W Y ~ ~os~ti~e, 
P+=exp (t)/2cosht; (b) the best weight to apply to 
F, ti'o/F=tanh t; (c) the mean square error when this 
weight is used, r~/Fe=sech ~ t; (d) the mean square error 
without weighting, 4P_. 

Fig. 6 shows P+, the best weight Fo/F and the 
r.m.s, error r/F as a funct ion of t. The curves have  
been calculated from equations (18)-(20), assuming 
tha t  ( 5 ' )  makes  a negligible contr ibut ion to r. For  
comparison, the r.m.s, error due to including the t e rm 
with full  positive weight is also plot ted (this is found 
to be 4 P ) .  If  an exper imenter  does not  wish to use 
weighting factors, he should omit  from his Four ier  
synthesis  all terms where he is less t h a n  75 % sure of 
the  signs, (i.e. ] P + - ½ 1 < i )  since to include them 
would make  his synthesis worse. 

N o n - c e n t r o s y m m e t r i c  case  

The probabi l i ty  dis t r ibut ion in the  non-centrosym- 
metr ic  case has a much  more complicated form and  
we cannot a t t empt  to t reat  i t  so rigorously. In i t ia l ly  
we shall assume tha t  IF[ is known accurately,  and t ha t  
the observational  error ~} lies ent irely in the observat ion 
of IFn]. The extent  to which this assumpt ion is just if ied 
will be considered later. 
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Neglecting error, phases may be determined by 
forming a closed triangle from the known vector fc 
and the known amplitudes F,  2' H (Fig. 7(a)). (Since 

o 

F p 

Fig. 7. Ef fec t  of errors on phase  de te rmina t ion :  
non-centrosymrnetric case. (See text). 

this triangle may be drawn in two ways, there is still 
an ambiguity in the phase which can only be settled 
by using another isomorphous replacement in which 
the vector fc has a different argument.) Then 

F ~ =  F2 + ~ + 2FIfcl cos ~ .  (21) 

To deal with errors we have to consider FR, fH as 
represented by probability functions. In drawing these 
on the diagram we shall consider the vertex O of the 
triangle as a fixed point (Fig. 7(b)). The two prob- 
ability functions may now be combined into one, 
showing the probability that  the point marked P 
falls at that  point in the diagram. This distribution is 
the convolution of the two previous ones; if [fc] is 
much smaller than F and FB, the result is close to 
a Gaussian of elliptical contour with major axis 
V(<s>~+<5> 9) and minor axis <~> (Fig. 7(c)). Moving 
P along the minor axis of the ellipse has little effect 
on the phase of F relative to that  of fc, which is what 
we are trying to determine. So far as this phase is 
concerned, the probability function may be repre- 
sented by its projection on its major axis, which is 
very nearly a Gaussian of breadth V(<s>~+<5>~)=<E> 
(Fig. 7(d)). This is clearly equivalent to regarding the 
whole error as residing in the determination of ~'H. 

In practice, errors will occur in the determination of 
both F and F~. To show that  an error in F causes a 
phase error of the same magnitude as an error in ~'~, 
(21) may be differentiated with respect to these two 
quantities. So long as [fc] is small compared to F,  F~  
we find 

d~ d~ 
~ dF~" 

Thus the assumption that all the error lies in the 
determination of FH does not affect the magnitude 
of the phase error. All these approximations are most 
accurate when F and F B are large, which is when 
estimation of error is most important. We can be 
satisfied with a much cruder estimate for the weaker 
terms. 

Using the approximate result given above, we can 
now estimate the probability, from the observations, 
of a particular phase, ~, being the true phase. This is 
done by finding the error x(~) needed to be added to 
the observed F~  to close the triangle when F is given 
some phase ~. Using the cosine law (21) we have 

F~+~+2[ fc ]F  cos cF=.F~+2FBx+x 9 . (22) 

The probability P(T) of a given phase is 

N exp {-zP/2E~} ,  (23) 

where N is a normalising factor such that  

f~ P(~)d~ = I .  
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Fig. 8. Der iva t ion  of a phase probabi l i ty  curve  in a typica l  case. 
(a) E r ro r  x involved in closing the  phase tr iangle,  as a 
func t ion  of phase.  The full line and  the  do t t ed  line represent  
results f rom different  i somorphous  replacements .  (b) Rela- 
t ive probabi l i ty  of the  phases,  assuming Gaussian error  
dis t r ibut ion.  (c) P r o d u c t  of the  two curves  shown in (b), 
showing the  jo int  phase probabi l i ty  curve,  resul t ing f rom 
tak ing  all the  in format ion  together .  The ambigu i ty  is pa r t ly  
resolved. 
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This is inconvenient to handle analytically, and a 
graphical method has been developed which can be 
used very rapidly. This consists of two rulers, hinged 
together, each of which carries a cursor. One cursor 
is pivoted at the centre of the coordinate system; 
the length of the attached ruler represents F. The 
length of the other represents Fz, and its cursor 
carries a scale graduated directly in units of x2/<E> 2. 
(A variety of scales is made for different values of 
<E}). The vector f~ is represented by laying a marker 
on the baseboard. The probability of any phase ~ may 
be estimated by setting F to the appropriate phase 
and reading off the value of x2/<E> ~" from the cursor 
when the triangle is closed. This is proportional to 
log (P(q~)/N). 

Fig. 8 illustrates the way these values of x2/<E> ~ 
may be used to calculate the relative probabilities of 
various phases. As already mentioned, a single iso- 
morphous replacement gives an ambiguous result for 
the phase. This ambiguity may be resolved by the use 
of a further member of the isomorphous series for 
which the vector f~ has a different phase. The prob- 
abilities may be multiphed together to give a joint 
probability curve. When this product has been taken 
over all pairs of compounds in the isomorphous series, 
the curve gives all available information about the 
phase of the reflexion. 

/3 

\ \  

. \ . . . . .  A 

\ 

\\ 

Fig.  9. The  phase  p robab i l i ty  curve  of Fig. 8(c), r ep lo t t ed  on 
an  A r g a n d  d iagram.  The  cen t ro id  of the  whole d is t r ibut ion ,  
a nd  of each of its par ts ,  is indica ted .  

This phase probability curve may be used to plot a 
probability map on an Argand diagram as previously 
described (Fig. 9). (The breadth of the annular region 
is again <6'>, as in the centrosymmetric case). In 
order to obtain the 'best Fourier', we need a way of 
finding the centroid of such a probability map. We 
also need a method of estimating the radius of gyra- 

tion, r, since this will be used to give a measure of 
the accuracy of the 'best Fourier'. 

In practice, these phase probability curves turn out 
to be of two types. One of these, the unimodal type, 
may be closely represented by a Gaussian probability 
distribution of phase; the other, the bimodal type, is 
close to the sum of two Gaussians which have the same 
breadth, given appropriate weights. I t  is shown in the 
appendix that  the centroid of such a unimodal Gaus- 
sian distribution lies at a radius F exp(-½¢2)  from 
the origin, where ¢ radians is the breadth of the Gaus- 
sian. In the case where the probability curve is uni- 
modal, this is the weight which must be given -to the 
reflexion in the 'best Fourier'. In cases like that  
illustrated in Figs 7 and 8, where the curve is bimodal, 
the weighted mean of two such centroids must be 
used. 

In the appendix the radius of gyration, r, has also 
been calculated. Allowing for the uncertainty <6'> in 
the magnitude of IFI, the result is 

r 2=F2(1 -exp  ( -  (~2))+@'>~. (24) 

The accuracy of the 'best  Four ier '  

Previous treatments of errors in crystallographic 
results have usually been concerned with the accuracy 
of atomic coordinates. Here we are chiefly interested 
in cases with no prospect of resolving the atomic 
positions, and since no refinement can be carried out 
the errors may be much larger than in the conventional 
treatments. However, we have found that  an approach 
similar to that  of Cruickshank (1949) may be used. 

Using the weighting systems given above a 'best 
~ourier' may be calculated. The estimates d r ~ may 
now be used to form an idea of how accurate this 
Fourier is. This means, in principle, considering the 
probability of other Fouriers, where terms are given 
different values, and seeing to what extent they agree 
with the 'best Fourier'. 

The r.m.s, error in electron density due to a single 
term in the synthesis is given by (12). r 2 is the estimate 
of the mean value of (F o -  Fz) ~ for a particular term. 
The central limit theorem states, under very general 
conditions about the distribution of the A~'s, that  
if there is a very large number of them of a similar 
order of magnitude, the total error 

A~ 0total -- ~ / ~ h l f l  (25) 
hkl 

will have a normal probability distribution (Cram~r, 
1937). The r.m.s, value 

2 ¢o ¢o oo 

V h=O k=--co l=--co 

(26) 

is the standard error of electron density. 
In this way it is possible to allocate a level of 

significance to all the features in the Fourier. The 
accuracy of the 'best Fourier' will usually be the same 
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throughout  the  uni t  cell; except t ha t  in some space 
groups there will be special positions where errors are 
larger because exp (2~ri(hx+lcy+lz))  is un i ty  for all 
permi t ted  terms. Occasionally there m a y  be special 
circumstances which introduce a small  number  of 
overpoweringly large error t e r m s - - i n  this  case the 
above conditions are not  satisfied, and  a normal  
dis t r ibut ion of this  k ind  cannot  be assumed. A case 
of this  sort is discussed in detai l  by  Blow (1958). 
Another  approach would be to synthesize the com- 
plete funct ion (A~total)2(x, y, z) from the values of 
rg'(hlcl). 

Conclusion 
We have  described a method  for minimis ing  the effect 
of exper imenta l  errors on the results obtained by  the  
isomorphous replacement  method.  A method  for 
es t imat ing the accuracy of the results has also been 
given. I t  m a y  be asked whether  i t  is worth while 
carrying out detai led calculations of this  k ind  in  
pract ical  cases. 

Methods of the  k ind  we have  described here are 
laborious, and  our experience with them is l imited to 
two of the projections of haemoglob in- -one  centro- 
symmetr ic  (Bragg & Perutz,  1954), and one non- 
centrosymmetr ic  (Blow, 1958). The use of comphcated 
weighting functions makes  only small  changes in the 
appearance of the f inal  Fourier. More impor tan t  effects 
arise because the cautious crystal lographer prefers to 
omit  from the Fourier  synthesis  terms whose phase 
is uncertain.  Often a Fourier  can be made  worse by  
this omission, despite the uncer ta inty .  I t  is in these 
cases tha t  a reasonable es t imate  of error and  a simple 
weighting funct ion can be most  useful. 

W h a t  is more impor tan t  in the case of proteins is 
to have  a quant i ta t ive  assessment of the accuracy of 
the f inal  Fourier,  at  least in a few sample cases. The 
errors m a y  appear  so large tha t  the  va l id i ty  of the 
results m a y  be doubted;  however, i t  turns  out t ha t  
with the large number  of terms involved in a three- 
dimensional  analysis,  h ighly  significant results m a y  be 
obtained. (Blow, 1958; Kendrew et al., 1958). In  this 
way  the results of X-ray  studies of proteins m a y  be 
interpreted on an  objective basis. 

APPENDIX 

Calculation of w e i g h t  w h e n  phase probability 
curve is a Gaussian 

Fixed  phase error 
Firs t  consider the case where there is a known phase 

error, a, in the phase of a reflection. I ts  ampli tude,  F ,  
is assumed to be known accurately.  If  we include the 
te rm in a Fourier  synthesis  wi th  this  wrong phase, 
what  weight should it  be given to minimise  the errors ? 
Let  the chosen weight be w. Let  the true phase be ~. 
The t ransform of this one reflexion (hid) and its 
conjugate (h-~) has the form 

2 
~hk~(X, y, Z) ---- ~ F  cos (q~T2~r(hx+lcy+lz))  

= 2 F  cos yJ/V, 

say, at  a specified point  in the t ransform. 
Then the error introduced into the  Fourier  

/ l~h~ = 2 F  [cos yJ--w cos (~p-~)] /V 

= 2 F  [cos y~(1 - w  cos a ) - s i n  yJ(w sin ~x)]/V. 

(A1) 

2 2 Let  r 2 be the mean  value of 2V A Qh~l, taken over all 
values of y~. 

r 2 -- Fe[(1 - w  cos ~)2+we sin e c~] 

= z w ( 1 - 2 w  cos ~+we) .  (A2) 

r e is a m i n i m u m  when 

dr ~. 
dw - 2 F 2 ( w -  cos c~) = 0 .  (A3) 

This gives, for the best weighting factor, 

w0-- cos c¢ . (A4) 

Gaussian distribution of error 

We now consider the  case where the  phase is un- 
certain and there is a Gaussian probabi l i ty  distribu- 
t ion of phase errors 

P(o~) = - -  exp - (A5) 
( 2 ~ ) ~  

Equat ion  (A2) still holds for a given value of ~. 
The mean  value of r 2 over the whole dis t r ibut ion 

of ~ is 

_ F 2 f ~ ( 1  +w2_ { ~2} = 2w cos ~) exp - dec r2(~) ( 2 ~ ) ~  _ ~ 

(A6) 
Using the result  

f ~e-~x2  cos bxdx = ~ exp { -b~/4ae} /2a  
0 

this  simplifies to 

re(a) =Fe[1  + w e - 2 w  exp { -  ½a2)] ; (A7) 

dr 2 
dw - 2 F ~ ( w -  e x p ( - ½ a g } ) ;  (A8) 

and  the best weighting funct ion is 

w0 = exp ( - ½ a e ) ,  (A9) 

which approximates  to (A4) wi th  a = ~ ,  for small  
values of a. 

Subst i tu t ing this value back into (A7) gives 

rg=F~[1-exp {_oe}]. (A10) 
53* 
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The unified program for phase determination, valid for all the space groups and both the equal and 
unequal atom cases, is continued here. The present paper is concerned with the centrosymmetrie 
space groups comprising type 3P 1. A detailed procedure for phase determination is described for 
this type. 

1. I n t r o d u c t i o n  

This is the fourth in a series of papers concerned with 
a program for phase determination initiated by us 
(Karle & Hauptman, 1959, hereafter referred to as 1P). 
The application of the new probability methods, based 
on the Miller indices as random variables, is made to 
the space groups of type 3PI, (Hauptman & Karle, 
1953). This type consists of the eleven primitive 
centrosymmetrie space groups in the hexagonal sys- 
tem. We present here a detailed procedure for phase 
determination which utilizes the same general formula 
and, at the same time, makes use of relationships 
among the structure factors characteristic of each 
space group. 

2. N o t a t i o n  

The same notation as appears in 1P (1959) is employed 
here. 

3. P h a s e  d e t e r m i n i n p ,  f o r m u l a s  

3"1. Basic formulas 

B2, o: ~ 2  ____ 1 + 4~0.2 

M <Xpk~q(h÷k)>k ~- R2, 0" (3.1.1) 

(2~)3/20.~ 

X </~pk~,q(hl_l_k) ~r(hl~h2~k) >k 
0'6 _1/2 

-- 2 0.~/-----~ -t- -~-4 (#h l~h ' l  ~' "4- ~r~h2#ht2r "1- #hl~h2#htlt~..h2)-t- .R3, 0 . 

(3.1-2) 

3.2. Integrated formulas 

.~,2_ 1 20.~ <AtkAt(~+k))k+R~,o (3.2-1) I2, o: ~h  - + C~(t) 04 

0.] 0.~ 0.]/~ 
- - C 3 ( t ) 0 . 3 4 / 2  < A t k A t ( h l + k ) Z / l t C n l + h 2 + k ) > k  - 2 0.~]----~ -3 L 0.4 

t t i t  ! tte t 
X ('~hl ~'~l~tl ' + ~'Vh2 '~h2 "3t- '~hl-f-h2 '~hl-t-h2) + R3, o. (3"2"2) 

In these formulas, p, q, r and t are restricted to be 
positive. Ordinarily they are given values in the range 
2-4. 

The remainder terms are given in the appendix § 6 
and in 1P (1959). Equation (3.1.1) or (3.2-1) serves to 
determine the magnitudes of the structure factors 
[d~[ corresponding to the squared structure. By means 
of equation (3.1.2) or (3.2.2), the phases of these t 
structure factors ~h may be determined. In the next 


