15. DENSITY MODIFICATION AND PHASE COMBINATION

15.1. Phase improvement by iterative density modification

By K. Y. J. ZHANG, K. D. COWTAN AND P. MAIN

15.1.1. Introduction

Density modification is a technique for improving the quality of an
approximate electron-density map based on some conserved
features of the correct electron-density map. These conserved
features are independent of the unknown fine detail of the structural
conformation. They are often expressed as constraints on the
electron density in various forms, either in real or reciprocal space.
Since the structure-factor amplitudes are known, these constraints
restrict the values of phases and can therefore be used for phase
improvement.

The structure-factor amplitudes and phases are independent of
gach other if we know nothing about the electron density.
Therefore, the phases are indeterminable given only the amplitudes
(Baker, Krukowski & Agard, 1993). The information about the
electron density provides the missing link between structure-factor
amplitudes and phases. It is only through the knowledge of the
chemical or physical properties of the electron density that the
phases can be retrieved. Density modification is usually the most
straightforward application of the constraints on electron density.
However, this is only a matter of convenience in implementation.
Sometimes the constraints can be more readily implemented in
reciprocal space on structure factors.

Density-modification methods are usually implemented as an
iterative procedure that alternates between density medification in
real space and phase combination in reciprocal space. This
paradigm was first proposed by Hoppe & Gassmann (1968) in
their ‘phase correction’ method. This approach takes advantage of
the particular properties of the constraints and uses them in a way
that is most convenient to implement.

Density-modification methods usually require an initial map with
substantial phase information. In most cases, these phases are
obtained from multiple isomorphous replacement (MIR) or multi-
wavelength anomalous dispersion (MAD), but it is also possible to
improve maps from other sources, such as molecular replacement.
The amount of information in the initial map is dependent on phase
accuracy, data resolution and completeness. As more powerful
constraints are incorporated, the density modification can be
initiated from lower-resolution maps with less accurate phases.
Ab initio phasing would be achieved if a density-modification
method could start from a map generated from random phases.
Therefore, density modification can potentially lead to ab initio
phasing methods, although it does not seek direct solution to the
phase problem as its immediate goal.

There are two major components in a density-modification
procedure. One is the type of electron-density constraints. The other
is the way the constraints are exploited. These two components
combined determine the phasing power of the procedure. In this
chapter, we will review various electron-density constraints and the
way they are exploited for phase improvement.

15.1.2. Density-modification methods

The aim of density-modification calculations is to obtain new or
improved phase estimates for observed structure-factor amplitudes.
Often, this includes calculation of phases for previously unphased
reflections, for example, in the case of phase extension. The

calculation of weights, which indicate the degree of confidence in
the new phase estimates, is also an important part of the calculation.
Improved phase estimates are obtained by bringing the initial phase
estimates into consistency with additional sources of structural
information.

One difficulty in combining information from various sources is
that the amplitudes and phases are represented in reciprocal space
and include good estimates of error, whereas the other constraints
are in real space and in general, represent expectations about the
structure which may be hard to quantify. As a result, the method that
has been adopted is iterative and divided into real- and reciprocal-
space steps. A weighted map is calculated and used as a basis for
applying all the real-space modifications. The modified map is then
back-transformed to produce a set of amplitudes and phases. The
agreement between the observed amplitudes and the amplitudes
calculated from the modified map is then used to estimate weights
for the modified phases, which are used to combine the modified
phases with experimental phases to produce new phases. This
process is shown diagrammatically in Fig. 15.1.2.1.

A broad range of techniques have been applied to electron-
density maps to impose chemical or physical information. Some
sources of information used in density modification are summarized
in Table 15.1.2.1. The list included here is not exhaustive, but
covers the most widely used methods. Here, we describe some of
the constraints and the techniques through which these constraints
are implemented for phase improvement.

15.1.2.1. Solvent flattening

Solvent flattening exploits the fact that the electron density in the
solvent region is flat at medium resolution, owing to the high
thermal motion and disorder of solvent molecules. The flattening of
the solvent region suppresses noise in the map and therefore
improves phases.

15.1.2.1.1. Introduction

Biological molecules are typically irregular in shape, often
taking roughly globular forms. When they are packed regularly to
form a crystal lattice, there are gaps left between them, and these
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Fig. 15.1.2.1. Density-modification calculation showing iterative applica-
tion of real-space and reciprocal-space constraints.
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Table 15.1.2.1. Constraints used in density modification

Constraints Use

Effectiveness and limitation

(1) Solvent flatness Solvent flattening

Works best at medium resolution. Relatively
resolution insensitive. Good for phase
refinement. Weak on phase extension.

(2) Ideal electron-density distribution Histogram matching

Works at a wide range of resolutions. More
effective at higher resolution. Very effective
for phase extension.

(3) Equal molecules Molecular averaging

Works better at low to medium resolution, Its
phasing power increases with the number of
molecules in the asymmetric unit.

(4) Protein backbone connectivity Skeletonization

Requires near atomic resolution to work.

(5) Local shape of electron density Sayre’s equation

The equation is exact at atomic resolution. It can’
be used at non-atomic resolution by choosing
an appropriate shape function. Its phasing
power increases quickly with resolution. Very
powerful for phase extension.

(6) Atomicity Atomization

If the initial map is good enough, iteration could
lead to a final model.

(7) Structure-factor amplitudes Sim weighting

Can be used to estimate the reliability of the
calculated phases after density modification.
It assumes the random distribution of errors
that caused the discrepancy between the
calculated and obscrved structure-factor
amplitudes.

(8) Experimental phases Phase combination

This can be used to filter out the incorrect
component of the estimated phases. Most
phase-combination procedures assume
independence between the calculated and
abserved phases.

spaces are filled with the solvent in which the crystallization was
performed. This solvent is a disordered liquid, and thus the
arrangement of atoms in the solvent regions varies between unit
cells, except in those small regions near the surface of the protein.
The X-ray image forms an average of electron density over many
cells, so the electron density over much of the solvent region
appears to be constant to a good approximation.

The existence of a flat solvent region in a crystal places strong
constraints on the structure-factor phases, The constraint of solvent
flatness is implemented by identifying the molecular boundaries and
replacing the densities in the solvent region by their mean density
value.

When solving a structure, the contents of the unit cell are usually
known, and so an estimate can be formed of how much of the cell
volume is taken up by solvent (Matthews, 1968). If the solvent
region can be located in the cell, then we can improve an electron-
density map by setting the electron density in this region (o the
expected constant solvent density. Once the resulting modified
phases are combined with the experimental data, an improvement
can often be seen in the protein regions of the map (Bricogne,
1974),

The solvent region of a unit cell may usually be determined even
from a poor MIR map using the following features:

(1) The mean electron density in the solvent region should be
lower than that in the protein region. Note that this information will
come from the low-resolution data, which dictate long-range
density variations over the unit cell.
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(2) The variation in density in the flat solvent region should be
much smaller than that in the ordered protein region containing
isolated clumps of density. The ‘peakiness’ of the protein region
comes from the high-resolution data.

A good method for locating the solvent region therefore takes
into account information from both low- and high-resolution
structure factors. Many methods have been proposed to locate the
protein—solvent boundary. The first of these were the visul
identification methods. The boundary was identified by digitizing
a mini-map with the aid of a graphic tablet (Hendrickson et al,
1975; Schevitz et al., 1981). The hand-digitizing procedure was
very time-consuming and prone to subjective judgmental errors
Nevertheless, these methods demonstrated the potential of solvent
flattening and stimulated further improvement on boundary-
identification methods. An automated method using a linked,
high-density approach was first proposed by Bhat & Blow (1982)
Based on the fact that the densities are generally higher in the
protein region than in the solvent region, they defined the molecular
boundary by locating the protein as a region of linked, high-density
points.

Convolution techniques were subsequently adopted as an
efficient method of molecular-boundary identification. Reynolds
et al. (1985) proposed a high mean absolute density value approach
The electron density within the protein region was expected to have
greater excursions from the mean density value than the solvent
region, which is relatively featureless. The molecular boundary was
located based on the value of a smoothed ‘modulus’ electron
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Fig. 15.1.2.2, Solvent mask determined from a map by Wang’s method.

density, which is the sum of the absolute values of all density points
within a small box.

15.1.2.1.2. The automated convolution method for
molecular-boundary identification

Wang (1985) suggested an automated convolution method for
identifying the solvent region which has achieved widespread use.
His method involved first calculating a truncated map:

[ px, p(X) > Psoly
Prrune (X) - { 0, p(x) < Psoly

The electron density is simply truncated at the expected solvent
value, psov; however, since the variations in density in the protein
egion are much larger than the variations in the solvent region, it is
generally only the protein region which will be affected. Thus, the
mean density over the protein region is increased. Similar results
may be obtained using the mean-squared difference of the density
from the expected solvent value.

(15.1.2.1)

A smoothed map is then formed by calculating at each point in
the map the mean density over a surrounding sphere of radius R.
This operation can be written as a convolution of the truncated map,
Prranc, With a spherical weighting function, w(r)

’

Pave(X) = 3 W(r)porunc (X — 1), (15.1.2.2)
where
w(r) = {(]), Irl/R, IE[ ;g . (15.1.2.3)

Leslie (1987) noted that the convolution operation required in
equation (15.1.2.2) can be very efficiently performed in reciprocal
space using fast Fourier transforms (FFTs),

P;wc(x) = ,J/T_I{,f[pmm(x)]:f[w(r)]},

where .4 denotes a Fourier transform, and # ' represents an
inverse Fourier transform.

The Fourier transform of the truncated density can be readily
calculated using FFTs. The Fourier transform of the weighting
function can be calculated analytically by

g(s) = Fw(x)] = 21m2rRs) = 2nRs cos(2mRs)

(15.1.2.4)

(27Rs)’
3{47Rs sin(27Rs) — [(27Rs)* — 2] cos(2xRs) — 2}
N (27rRs)4 '
(15.1.2.5)
where
s=2sing/\

Therefore, the averaging of the truncated electron density by a
spherical weighting function can be achieved by two FFTs. This
greatly reduced the time required for calculating the averaged
density. Other weighting functions may be implemented by the
same approach.

A cutoff value, pey, is then calculated, which divides the unit cell
into two portions occupying the correct volumes for the protein and
solvent regions. All points in the map where e (X) < pey can then
be assumed to be in the solvent region. A typical mask obtained
from an MIR map by this means, and the modified map, are shown
in Fig. 15.1.2.2.

The radius of the sphere, R, used in equation (15.1.2.3) for the
averaging of electron densities is generally around 8 A. The
molecular envelope derived from such an averaged map tends to
lose details of the protein molecular surface. Paradoxically, a large
averaging sphere is required for the identification of the protein—
solvent boundary based on the difference between the mean density
of the protein and solvent, which is very small and can only be
distinguished when a sufficiently large area of the map is averaged.
Abrahams & Leslie (1996) proposed an alternative method of
molecular-boundary identification that uses the standard deviation
of the electron density within a given radius relative to the overall
mean at every grid point of a map. The local-standard-deviation
map is the square root of a convolution of a sphere and the squared
map, which can be calculated in reciprocal space in a similar way to
the procedure described in equations (15.1.2.4) and (15.1.2.5) as
proposed by Leslie (1987). By integrating the histogram of the
local-standard-deviation map, the cutoff value of the local standard
deviation corresponding to the solvent fraction can be calculated.
Using this procedure, a molecular envelope that contains more
details of the protein molecular surface can be obtained, since the
radius of the averaging sphere can be as low as 4 A (Abrahams &
Leslie, 1996).
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15.1.2.1.3. The solvent-flattening procedure

Once the envelope has been determined, solvent flattening is
performed by simply setting the density in the solvent region to the
expected value, psolv:

Penod (X) = {p(x)’

Psolvs

Pave (X) > Peut _
Pave (X) < Pent

If the electron density has not been calculated on an absolute scale,
the solvent density may be set to its mean value.

A related method is solvent flipping, developed by Abrahams &
Leslie (1996). In this approach, the flattening operation is modified
by the introduction of a relaxation factor, , where 7 is positive,
effectively ‘flipping’ the density in the solvent region.

o = e,
Pmod( ) = { Psoly — h/(] = ’y)][p(X) = Pscﬂv]:

(15.1.2.6)

Pave(x) > Peut
pave(x) < Pent’
(15.1.2.7)

The effect of this modification is to correct for the problem of
independence in phase combination and is discussed in Section
15.143.

15.1.2.2. Histogram matching

Histogram matching seeks to bring the distribution of electron-
density values of a map to that of an ideal map. The density
histogram of a map is the probability distribution of electron-
density values. It provides a global description of the appearance of
the map, and all spatial information is discarded. The comparison of
the histogram for a given map with that expected for an ideal map
can serve as a measure of quality. Furthermore, the initial map can
be improved by adjusting density values in a systematic way to
make its histogram match the ideal histogram.

15.1.2.2.1. Introduction

Histogram matching is a standard technique in image processing.
It is aimed at bringing the density distribution of an image to an
ideal distribution, thereby improving the image quality. The first
attempt at modifying the electron-density distribution was that by
Hoppe & Gassman (1968), who proposed the ‘3-2" rule. The
electron density was first normalized to a maximum of 1 and
modified by imposing positivity. Subsequently, the electron density
was modified by proa = 307 — 2p°. Podjarny & Yonath (1977) used
the skewness of the density histogram as a measure of quality of the
modified map. Harrison (1988) used a Gaussian function as the
ideal histogram in his histogram-specification method for protein
phase refinement and extension. The choice of the Gaussian
function as the ideal electron-density distribution was based on
theoretical arguments instead of experimental evaluation. The
Gaussian function was also made independent of resolution.
Lunin (1988) used the electron-density distribution to retrieve the
values of low-angle structure factors whose amplitudes had not
been measured during an X-ray experiment. The electron-density
distribution was thought to be structure specific and was derived
from a homologous structure. Moreover, the histogram was derived
from the entire unit cell, including both the protein and the solvent.
Zhang & Main (1988) systematically examined the electron-density
histogram of several proteins and found that the ideal density
histogram is dependent on resolution, the overall temperature factor
and the phase error. It is, however, independent of structural
conformation. The sensitivity to phase error suggests that the
density histogram could be used for phase improvement. The
structural conformation independence made it possible to predict
the ideal histogram for unknown structures.
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15.1.2.2.2. The prediction of the ideal histogram

Polypeptide structures in particular, and biological macromole-
cules in general, display a broadly similar atomic composition, and
the way in which these atoms bond together is also conserved across
a wide range of structures. These similarities between different
protein structures can be used to predict the ideal histogram even
when positional information for individual atoms is not available in
a map. If the positional information is removed from an electron-
density map, then what remains is an unlabelled list of density
values. This list is the histogram of the electron-density distribution,
which is independent of the relative disposition of these densities,
The shape of the histogram is primarily based on the presence of.
atoms and their characteristic distances from each other. This is true
for all polypeptide structures.

The frequency distribution, P(p), of electron-density values ina
map can be constructed by sampling the map and counting the
density values in different ranges. In practice, once the electron-
density map has been sampled on a discrete grid, this frequency
distribution becomes a histogram, but for convenience, it is treated
here as a continuous distribution. |

At resolutions of better than 6.0 A and after exclusion of the
solvent region, the frequency distribution of electron-density values
for protein density over a wide range of proteins varies only with
resolution and overall temperature factor to a good approximation.
If the overall temperature factor is artificially adjusted, for example,
by sharpening to Boyeri = 0. then the frequency distributions may
be treated as a function of resolution only. Therefore, once a good
approximation to the molecular envelope is known, the frequency
distribution of electron densities in the protein region as a function
of resolution may be assumed to be known. Therefore, the ideal
density histogram for an unknown map at a given resolution can be
taken from any known structure at the same resolution (Zhang &
Main, 1988, 1990a).

The ideal electron-density histogram can also be predicted by an
analytical formula (Lunin & Skovoroda, 1991; Main, 1990a). The
method adopted by Main (1990a) represents the density histogram
by components that correspond to three types of electron density in
the map. The first component is the region of overlapping densities,
which can be represented by a randomly distributed background
noise. The second component is the region of partially overlapping
densities. The third component is the region of non-overlapping
atomic peaks, which can be represented by a Gaussian.

The histogram for the overlapping part of the density can be
represented by a Gaussian distribution,

Po(p) :NGXP[—(,O—,E)E/ZUZ], (15.1.28)

where 7 is the mean density and o is the standard deviation. The
region of partially overlapping densities can be modelled by a cubic
polynomial function,

Ppo(p) = N(ap® +bp* +cp+d). (15.1.29)

The histogram for the non-overlapping part of the density can be
derived analytically from a Gaussian atom,

Poolp) = N(A/p)[In(po/ )], (15.12.10}

where pyp is the maximum density, N is a normalizing factor and A s
the relative weight of the terms between equation (15.1.2.8) and
equation (15.1.2.10).
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If we use two threshold values, p; and p,, to divide the three
density regions, the complete formula can be expressed as

Nexp[-(p-7//20]  for 20<p,
P(p) = N(ap® +bp* +cp+d) for 2p <p<pr.
N(A/p)[tn(po/p)]""? for g B &
(15.1.2.11)

The parameters a, b, ¢, d in the cubic polynomial are calculated
by matching function values and gradients at p; and p. The
parameters in the histogram formula, p, o, A, po, p1, p2, can be
obtained from histograms of known structures.

15.1.2.2.3. The process of histogram matching

Zhang & Main (1990a) demonstrated that, at better than 4 A
resolution, the histogram for an MIR map is generally significantly
different from the ideal distribution calculated from atomic
coordinates. The obvious course is therefore to alter the map in
sich a way as to make its density histogram equal to the ideal
distribution. Unfortunately, there are an infinite number of maps
corresponding to any chosen density distribution, so we must
choose a systematic method of altering the map.

The conventional method of performing such a modification is to
fetain the ordering of the density values in the map. The highest
point in the original map will be the highest point in the modified
map, the second highest points will correspond in the same way, and
§0 On.

Mathematically, this transformation is represented as follows.
Let P(p) be the current density histogram and P'(p) be the desired
distribution, normalized such that their sums are equal to 1. The
cumulative distribution functions, N(p) and N’'(p), may then be
calculated:

N(p) = [ Po) dp,
e (15.1.2.12)
N'(p)= [ Plp) dp.

fmin

The cumulative distribution function of a variable transforms a
value chosen from the distribution into a number between 0 and 1,
representing the position of that value in an ordered list of values
chosen from the distribution.

The transformation may, therefore, be performed in two stages. A
density value is taken from the initial distribution and the
cumulative distribution function of the initial distribution is applied
to obtain the position of that value in the distribution. The inverse of
the cumulative distribution function for the desired distribution is
applied to this value to obtain the density value for the
corresponding point in the desired distribution. Thus, given a
density value, p, from the initial distribution, the modified value, ol
is obtained by

§ = N"N()). (15.1.2.13)

The distribution of p" will then match the desired distribution after
the above transformation. The transformation of an electron-density
value by this method is illustrated in Fig. 15.1.2.3. The
transformation in equation (15.1.2.13) can be achieved through a
linear transform represented by
p; =a;p; + by, ([5.1.2.14)
where i = {1, ...,n} and n is the number of density bins. The
above linear transform is sufficient if the number of density bins is
large enough. An n value of about 200 is usually quite satisfactory.
Various properties of the electron density are specified in the
density histogram, such as the minimum, maximum and mean
density, the density variance, and the entropy of the map. The mean
density of the ideal map can be obtained by

pmax
i . . . . . ) p= [ pP(p) dp. [15.1.2.15)
Pmin
N N
08 0 1 osl ) | The variance of the density in the ideal
' ' map can be obtained by
L J L ] — 172
0§ B alp) = (p2 - ﬁz) (15.1.2.16)
04 0.4+ 1 where
P
02+ 02 F - 2= [ p*P(p) dp. (15.1.2.17)
Prmin
0 : - 0 - : : -
s 0 0's ] 15 > 05 0 0.5 ) s > The entropy of the ideal map can be
! ’ calculated by
) Pmax
Flp) P'(p) | S=— [ P(p)pln(p) dp. (15.1.2.18)
0.8 " 7 08 F Prin
Therefore, the process of histogram
061 1 88T 1 matching applies a minimum and a max-
imum value to the electron density,
04 1 04+t 1 imposes the correct mean and variance,
and defines the entropy of the new map.
02t 02k | The order of electron-density values
' remains unchanged after histogram match-
i . . . . . ing.
30.5 0 05 1 15 ) _00.5 0 0.5 1 15 5 Histogram matching is complementary

Fig. 15.1.2.3. Transformation of density p to p[ 4 by histogram matching.

to solvent flattening since it is applied to
the protein region of a map, whereas
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solvent flattening only operates on the solvent region of the map.
The same envelope that was used for isolating the solvent region
can be used to determine the protein region of the cell. An
alternative approach is to define separate solvent and protein masks,
with uncertain regions excluded from either mask and allowed to
keep their unmodified values.

15.1.2.2.4. Scaling the observed structure-factor
amplitudes according to the ideal density histogram

In the process of density modification, electron density or
structure factors from different sources are compared and
combined, It is, therefore, crucial to ensure that all the structure
factors and maps are on the same scale. The observed structure
factors can be put on the absolute scale by Wilson statistics (Wilson,
1949) using a scale and an overall temperature factor. This is
accurate when atomic or near atomic resolution data are available.
The scale and overall temperature factor obtained from Wilson
statistics are less accurate when only medium- to low-resolution
data are available. A more robust method of scaling non-atomic
resolution data is through the density histogram (Cowtan & Main,
1993; Zhang, 1993).

The ideal density histogram defines the mean and variance of an
clectron density, as shown in equations (15.1.2.15) and (15.1.2.16).
We can scale the observed structure-factor amplitudes to be
consistent with the target histogram using the following formula,
obtained from the structure-factor equation and Parseval’s theorem.
The mean density and the density variance of the observed map can
be calculated as

7 = (1/V)F(000),

1/2
7(p) = (1/V) [;wmf] |

The mean and variance of the electron-density map at the desired
resolution are calculated using the target histogram, the mean value
of the solvent density, p,,, and the solvent volume of the cell, Vig,.
The F(000) term can then be evaluated from equations (15.1.2.15)
and (15.1.2.19):

F(000) = (V — Vo )P + Violv oy (15.1.2.21)

The scale of the observed amplitudes can be obtained from
equations (15.1.2.16) and (15.1.2.20),

F'(h) = KF(h),

(15.1.2.19)

(15.1.2.20)

(15.1.2.22)

where

k=[@-]" fam @F(hﬂ /} (15.1.2.23)

This method is adequate for scaling observed structure factors at
any resolution.

15.1.2.3. Averaging

The averaging method enforces the equivalence of electron-
density values between grid points in the map related by
noncrystallographic symmetry. The averaging procedure can filter
noise, correct systematic error and even determine the phases ab
initio in favourable cases (Chapman ef al., 1992; Tsao ef al., 1992).

15.1.2.3.1. Introduction

Noncrystallographic symmetry (NCS) arises in crystals when
there are two or more of the same molecules in one asymmetric unit.
Such symmetries are local, since they only apply within a sub-
region of a single unit cell. A fivefold axis, for example, must be
noncrystallographic, since it is not possible to tessellate objects with
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fivefold symmetry. Since the symmetry does not map the crysid
lattice back onto itself, the individual molecules that are related by
the noencrystallographic symmetry will be in different enviton
ments; therefore, the symmetry relationships are only approximite

Noncrystallographic symmetries provide phase information by
the following means. Firstly, the related regions of the map mayb¢
averaged together, increasing the ratio of signal to noise in the
Secondly, since the asymmetric unit must be proportionally lar
to hold multiple copies of the molecule, the number of independeil
diffraction amplitudes available at any resolution is also propok
tionally larger. This redundancy in sampling the molecul
transform leads to additional phase information which can b
used for phase improvement.

15.1.2.3.2. The determination of noncrystallographic
symmetry

The self-rotation symmetry is now routinely solved by the usedf
a Patterson rotation function (Rossmann & Blow, 1962). The
translation symmetry can be determined by a translation function
(Crowther & Blow, 1967) when a search model, either &
approximate structure of the protein to be determined or
structure of a homologous protein, is available. The searches of
Patterson rotation and translation functions are achieved typically
using fast automatic methods, such as X-PLOR (Briinger ef aly
1987) or AMoRe (Navaza, 1994). In cases where no search modelis
available or the Patterson translation function is unsolvable, eithe
the whole electron-density map, or a region which is expected
contain a molecule, may be rotated using the rotation solution and
used as a search model in a phased translation function (Read &
Schierbeek, 1988). i

Once the averaging operators are determined, the mask can be
determined using the local density correlation function &
developed by Vellieux er al. (1995). This is achieved by 4
systematic search for extended peaks in the local density
correlation, which must be carried out over a volume of severd
unit cells in order to guarantee finding the whole molecule. The
local correlation function distinguishes those volumes of crystl
space which map onto similar density under transformation by the
averaging operator. Thus, in the case of improper NCS, a locl
correlation mask will cover only one monomer. In the case on
proper symmetry, a local correlation mask will cover the whale
complex (Fig. 15.1.2.4a,b). ‘

(a) Proper (closed) NCS (b) Improper (open) NCS

(¢) One-stage averaging (d) Two-stage averaging

Fig. 15.1.2.4. Types of noncrystallographic symmetry and averaging
calculation.



