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Abstract

Density modi®cation provides a simple and largely automatic tool for improving phase estimates for
observed structure factors. The phase information arises from a combination of the known structure
factor magnitudes, the current phase estimates, and stereochemical information. The magnitudes, the
current phase estimates, and stereochemical information. The addition of these phase information
derived from theoretical sources renders new structures amenable to solution, and reduces the e�ort
required to solve other structures. A diverse array of techniques which have been applied to the phase
improvement problem are reviewed. # 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

The rapid increase of the number of known three-dimensional (3D) macromolecular
structures is largely due to the success of X-ray crystallography. X-ray methods reveal the 3D
structure of macromolecules using the di�raction phenomenon caused by the interaction of X-
rays with electrons in the macromolecules that are arranged in a 3D crystal lattice. To obtain
the image of the macromolecules, requires the knowledge of both the amplitudes and phases of
the di�racted X-rays. However, it is only the amplitudes of the di�racted X-rays that are
observed, the phase information is missing. The solution to the phase problem is one of the
major challenges in the determination of 3D structures of macromolecules by X-ray
crystallography.
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The phase information for macromolecules are generally derived experimentally using either
the multiple isomorphous replacement (MIR) method or the multiple anomalous dispersion
(MAD) method. These methods require additional measurements of di�raction data and are
sometimes very time consuming. In the MIR method phase information is deduced by the
introduction of heavy atoms to the crystal and comparison of the resulting di�raction pattern.
However, the introduction of new atoms alters the crystal packing to various degrees,
consequently the derived phases may su�er from inaccuracies due to lack of isomorphism in
the derivative crystal and rarely reaches the full resolution of the native data. The electron
density maps derived from the phases estimated from these experiments may not be of
su�cient quality into which an atomic structure can be built. These drawbacks have stimulated
e�orts to improve the accuracy of the experimentally derived phases and to extend them to the
full resolution of the native data. As a result, various techniques that seek to improve the
quality of the electron density map and thereby the phases by imposing some known physical
constraints on the electron density were proposed, the earliest being the `phase correction'
method of Hoppe and Gassmann (1968).
Density modi®cation is a tool for generating improved phase estimates, and therefore

improved electron density maps, when a set of experimental structure factor magnitudes and
some initial phase estimates are available. Often this includes calculation of phases for
previously unphased re¯ections. The calculation of weights, which indicate a degree of
con®dence in the new phase estimates, is an important part of the calculation. Additional
information arising from chemical knowledge about the structure is combined with the
information from the initial phase estimates in order to obtain the improved phases.
Sources of information about a structure include the following.

1. The observed native magnitudes.
2. Experimental phase estimates based on isomorphous/anomalous di�erences.
3. Solvent content in the crystal. The solvent can usually be located from very weak phase

information, and thus, this part of the crystal structure can be solved.
4. Density histogram: the ideal electron density distribution in the protein region of the map

can serve as a constraint for phase improvement.
5. Atomicity: this can be employed strongly as Sayre's equation at high resolution and as a

known density histogram or through atomization at lower resolutions.
6. Molecular packing: the association of molecules into an oligomer either in solution or on

crystallization provides redundancy in the map, which is informative in phasing.
7. Chain connectivity can be exploited through skeletonization, which allows enhancement of

connectivity and protein-like features in the density.

Since some of this information is expressed in real space and some in reciprocal space, the
phase improvement calculation must also span both spaces. In order for phase improvement to
be integrated with statistical phasing and re®nement procedures, the improved phases must
also be expressed in terms of phase probability distributions for each re¯ection. However, the
real-space constraints are di�cult to express in statistical terms, therefore there must also be a
transformation into and out of the statistical phase representation in each cycle of the
calculation. The resulting approach is as follows.
The centroid of the initial phase probability distribution is calculated, giving rise to a `best'
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phase and weight that can be used to calculate a minimally noisy map. All the real-space
constraints are then applied as modi®cations to this map to bring it into agreement with those
constraints. The modi®ed map is then back-transformed to produce a set of magnitudes and
phases. The agreement between the observed magnitudes and the values from the map is then
used to estimate the level of phase error in the modi®ed phases. This error estimate is
transformed back into a phase probability distribution, which is then combined with the
original experimental phase probability distribution. This process is shown diagrammatically in
Fig. 1.

2. Density modi®cation methods

2.1. Solvent ¯attening

Biological molecules are typically irregular in shape, often taking rough globular forms.
Therefore when they are packed regularly to form a crystal lattice there are gaps between
them, with the spaces ®lled with the solvent in which the crystallization was performed. This
solvent is a disordered liquid, and thus apart from small regions near the surface of the protein
the arrangement of atoms in the solvent regions varies between unit cells.
The X-ray image forms an average of electron density over many cells, and so to a good

approximation the electron density over much of the solvent region appears to be constant.
When solving a structure the contents of the unit cell are usually known, and so an estimate

can usually be formed of how much of the cell volume is taken up by solvent. If the solvent
region can be located in the cell, then we can improve an electron density map by setting all
the electron density in this region to the expected mean solvent density. This in itself is not
very useful, however, once the resulting modi®ed phases are combined with the experimental
data an improvement can often be seen in the protein regions of the map (Bricogne, 1974).
The solvent region of a unit cell may usually be determined even from a poor MIR map by

the following features:

Fig. 1. Density modi®cation calculation, showing iterative application of real-space and reciprocal space constraints.

K.D. Cowtan, K.Y.J. Zhang / Progress in Biophysics & Molecular Biology 72 (1999) 245±270 247



. the mean electron density in the solvent region should be lower than in the protein region;
note that this information will come from the low-resolution data, which dictates long range
density variations over the unit cell;

. the variation in density in the ¯at solvent region should be much smaller than in the ordered
protein where the map should show sharp atomic features, the sharp features of the protein
region will come from the high-resolution data.

A good method for locating the solvent region will therefore take into account information
from both low and higher resolution structure factors.
On this basis Wang (1985) suggested a method for identifying the solvent region which has

achieved widespread use. His method involved ®rst calculating a truncated map:

rtrunc�x� �
�
r�x�, r�x� > rsolv

0, r�x�<rsolv

: �1�

The electron density is simply truncated at the expected solvent value rsolv, however, as the
variations in density in the protein region are much larger than the variations in the solvent
region, it is generally only the protein region which will be a�ected. Thus, the mean density
over the protein region is increased. Similar results may be obtained using the mean squared
di�erence of the density from the expected solvent value.
A smoothed map is then formed by calculating at each point in the map the mean over a

surrounding sphere of the truncated density. This has the e�ect of smoothing the map. We can
write this operation as a convolution with a spherical top hat function,

rav�x� �
X

r

g�y�rtrunc�xÿ y�, �2�

where

g�y� �
�
1 j y j <r
0 j y j> r

: �3�

A cuto� value rcut is then calculated which divides the unit cell into two portions occupying
the correct volumes for the protein and solvent region. All points in the map where
rav(x) < rcut can then be assumed to be in the solvent region.
Leslie (1987) noted that the convolution operation required in Eq. (2) can be more e�ciently

performed in reciprocal space, thus making the calculation very quick to perform on modern
computers. A section from a typical mask obtained from an MIR map by this means, and the
®nal model, is shown in Fig. 2.
Once the envelope is available, solvent ¯attening is performed by simply changing the

density in the solvent region as follows;

rmod�x� �
�
r�x� rav�x� > rcut

rsolv rav�x�<rcut

, �4�

where rsolv is the expected electron density in the solvent region.
A related method is solvent ¯ipping, developed by Abrahams and Leslie (1996). In their
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approach the ¯attening operation is modi®ed by the introduction of a relaxation factor g,

rmod�x� �
�
r�x�, rav�x� > rcut

r�x� � g�rsolv ÿ r�x��, rav�x�<rcut

, �5�

Fig. 2. Solvent mask determined from a map by Wang's method.
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where the optimum value of g is greater than 1, e�ectively `¯ipping' the density in the solvent
region. The e�ect of this modi®cation is to correct the problem of independence in phase
combination, and is discussed in section 3.3.

2.2. Histogram matching

A complementary method to solvent ¯attening, which may be applied to the protein region
of a map, was proposed by Zhang and Main (1990a). This technique was histogram matching,
a method widely used in image processing. Biological macromolecules in general and
polypeptide structures in particular display a broadly similar atomic composition, and the way
in which these atoms bond is also conserved across a wide range of structures. These
similarities in the construction of di�erent protein structures can be used, even when positional
information for individual atoms is not available.
If the positional information is removed from an electron density map, then what remains is

an unlabelled list of density values. This list is the histogram of the electron density
distribution, and contains some useful information. The electron density histogram has been
used in phase re®nement and extension (Harrison, 1988; Zhang and Main, 1990a), retrieval of
the values of low-angle structure factors whose amplitudes have not been measured during X-
ray experiment (Lunin, 1988) and even ab initio phase determination at low resolution (Lunin
et al., 1998, 1995, 1990). The frequency distribution P(r ) of electron density values in a map
can be constructed by sampling the map and counting the density values in di�erent ranges. In
practice once the electron density map has been sampled on a discrete grid this frequency
distribution becomes a histogram, but for convenience it is treated here as a continuous
distribution.
At resolutions of better than 6.0 AÊ and after exclusion of the solvent region, the frequency

distribution of electron density values for protein density over a wide range of proteins varies
only with resolution and overall temperature factor, to a good approximation. If the overall
temperature factor is arti®cially adjusted, for example by sharpening to Boverall=0, then the
frequency distributions may be treated as a function of resolution only. Therefore, once a good
approximation to the molecular envelope is known, the frequency distribution of electron
densities in the protein region as a function of resolution may be assumed to be known.
Zhang and Main (1990a) demonstrated that at better than 4 AÊ resolution the histogram for

an MIR map is generally signi®cantly di�erent from a theoretical distribution calculated from
atomic coordinates. The obvious course is therefore to alter the map in order to make its
density histogram equal to the theoretical distribution. Unfortunately, there are an in®nite
number of maps corresponding to any chosen density distribution, so it is necessary to choose
a systematic method of altering the map.
The conventional method of performing such a modi®cation is to retain the ordering of the

density values in the map. The highest point in the source map will be the highest point in the
modi®ed map, the second highest points will correspond in the same way, and so on.
Mathematically, this transformation is represented as follows: Let P(r ) be the current

density histogram, and P '(r ) be the desired distribution. Let these frequency distributions be
normalized, such that:
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�1
0

P�r� dr � 1, �6�

�1
0

P 0�r� dr � 1: �7�

Next the cumulative distribution functions N(r ) and N '(r ) are calculated:

N�r� �
�r
0

P�r1� dr1, �8�

N 0�r� �
�r
0

P 0�r1� dr1: �9�

The cumulative distribution function of a variable transforms a value chosen from the
distribution into a number between 0 and 1 representing the position of that value in an
ordered list of values chosen from the distribution.
The transformation may therefore be performed in two stages. A density value is taken from

the initial distribution, and the cumulative distribution function of the initial distribution
applied to obtain the position of that value in the distribution. The inverse of the cumulative
distribution function for the desired distribution is applied to this value to obtain the density
value for the corresponding point in the desired distribution. This is because the cumulative
distribution of the density value in the initial density histogram should equal the cumulative
distribution of the modi®ed density value in the ideal density histogram, i.e.,

N�r� � N 0�rmod�: �10�
Thus, given a density value r from the initial distribution, the modi®ed value r ' is obtained by:

rmod � N 0ÿ1�N�r��: �11�
The distribution of rmod will then match the desired distribution. The transformation of an
electron density value by this method is illustrated in Fig. 3.
The same envelope, which was used for isolating the solvent region, can be used to

determine the protein region of the cell. The combination of solvent ¯attening and histogram
matching may therefore be applied to update the density over the whole cell.
An alternate approach is to de®ne separate solvent and protein masks, with uncertain

regions excluded from either mask and allowed to keep their unmodi®ed values.

2.3. Multiresolution modi®cation

Multiresolution modi®cation is an extension of the solvent ¯attening and histogram
matching techniques which used the knowledge of electron density histograms over a wide
range of resolutions to control the detail in the map at these resolutions. The method is
applied as follows: a low-resolution map is calculated from a truncated set of re¯ections. This
map is modi®ed by solvent ¯attening and histogram matching using the electron density
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histogram at that resolution. The resulting map coe�cients (which extend to higher resolution)
are averaged with the initial map coe�cients. These new map coe�cients are then used to
calculate a higher resolution map. The process is then repeated at higher resolutions until all
the data has been included. Normally it is su�cient to use just two resolutions.

2.4. Averaging

Non-Crystallographic Symmetry (NCS) arises in crystals when two or more molecules are
related to each other by a symmetry operation that does not relate the whole crystal lattice
onto itself. Such symmetries are therefore local, as they only apply within a region of a single
unit cell. A ®ve-fold axis, for example, must be non-crystallographic, as it is not possible to
tessellate objects with ®ve-fold symmetry. Since the symmetry does not map the crystal lattice
back onto itself, the individual molecules that are related by the non-crystallographic symmetry
will be in di�erent environments, therefore, the symmetry relationships are only approximate.

Fig. 3. Histogram matching a density distribution.
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Non-crystallographic symmetries provide phase information by the following means: ®rstly,
the related regions of the map may be averaged together, increasing the ratio of signal to noise
in the map; secondly, since an asymmetric unit holding multiple copies of the molecule must be
proportionally larger than one holding a single copy, the number of independent di�raction
magnitudes available to any given resolution is also proportionally larger. This redundancy in
sampling the molecular transform leads to additional phase information.
The self-rotation and translation function are now routinely solved by use of the Patterson

rotation function and translation function, typically using software such as `AMORE'
(Navaza, 1994). In cases where the Patterson translation function is unsolvable, either the
whole electron density map, or a region which may be expected to contain a molecule, may be
rotated using the rotation solution and used as a search model in a phased translation function
(Read and Schierbeek, 1988).
Once the averaging operators are determined, the mask can be determined using the local

density correlation function as developed by Vellieux et al. (1995). This is achieved by a
systematic search for extended peaks in the local density correlation, which must be carried out
over a volume of several unit cells in order to guarantee ®nding the whole molecule. The local
correlation function distinguishes those volumes of crystal space that map onto similar density
under transformation by the averaging operator. Thus, in the case of improper NCS, a local
correlation mask will cover only one monomer. In the case of a proper symmetry, a local
correlation mask will cover the whole complex, since every operator will map one copy of the
molecule onto another copy.
Special cases arise when there are combinations of crystallographic and non-crystallographic

symmetries, of proper and improper symmetries, or when a non-crystallographic symmetry
element maps a cell edge onto itself. In the latter case the volume of matching density is
in®nite, and arbitrary limits must be placed upon the mask along one crystal axis.
Once the mask and matrices are determined, then the electron density map may be modi®ed

by averaging. This may be achieved in one or two steps. In single step averaging the density
for each copy of the molecule in the asymmetric unit is replaced by the averaged density from
every copy, however this becomes slow for high-order NCS (Fig. 4(a)). In two step averaging a
single averaged copy of the molecule is created in an arti®cial cell (referred to by Rossmann as
an H-cell (Rossmann et al., 1992)), and then the unit cell is reconstructed by replacing each
copy of the molecule with the averaged density from the H-cell (Fig. 4(b)). This is more

Fig. 4. Types of non-crystallographic symmetry averaging calculation.
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e�cient for high-order NCS, but additional errors are introduced in the use of a second
interpolation step.
Interpolation of electron density values at non-map grid sites is usually required, since the

NCS-operators will not normally map grid points onto each other. To obtain accurate
interpolated values, either a ®ne grid or a complex interpolation function are required, suitable
functions are described in Bricogne (1974) and Cowtan and Main (1998). Solvent ¯attening
and histogram matching are frequently applied after averaging, since histogram matching tends
to correct for any smoothing introduced by density interpolation.
In the case of ¯exible proteins it may be necessary to average only part of the molecule, in

which case the averaging mask will exclude some parts of the unit cell which are in the protein
region of the solvent mask. In other cases it may be necessary to apply multi-domain averaging
(Schuller, 1996), in this case the protein is divided up into rigid domains which can appear in
di�ering orientationsÐeach domain must then have a separate mask and set of averaging
matrices.
Averaging may also be performed across similar molecules in multiple crystal forms, in this

case density modi®cation is performed in each crystal form simultaneously, with averaging of
the molecular density across all copies of the molecule in all the crystal forms. This is a
powerful technique for phase improvement even when no phasing is available in some crystal
forms.

2.5. Skeletonization

At worse than atomic resolution the density peaks for bonded atoms are no longer resolved,
and so interpretation of the density in terms of atomic positions involves recognition of
common motifs in the pattern of ridges in the density. Skeletonization is a tool developed by
Greer (1985) to assist model building by tracing high ridges in the electron density to describe
the connectivity in the map.
Skeletonization has more recently been adapted to the problem of density modi®cation

(Baker et al., 1993). A skeleton is constructed by tracing the ridges in the map. The resulting
ridges form connected `trees'. These trees may be pruned to remove small unconnected
fragments and break circuits to select for protein-like features. A new map may then be built
by building density around the links of the skeleton, using the pro®le of a cylindrically
averaged atom at the appropriate resolution.
Baker et al. (1993) have used this method to add new features to a partial model of a

molecule. An e�cient alternative algorithm for tracing density ridges is given by Swanson
(1994).

2.6. Sayre's equation

Sayre's equation (Sayre, 1974) expresses the constraint that the atoms of a structure are
equal and resolved, and has formed the foundation of direct methods for many years. In
protein calculations the resolution is generally too poor for atoms to be resolved, this is
apparent in Sayre's equation since the bulk of the terms required to calculate the equation are
beyond the resolution limit.
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For equal and resolved atoms, squaring the electron density changes only the shape of the
atomic peaks and not their positions. The original density may therefore be restored by
convoluting with some smoothing function, c(x), which is a function of atomic shape

r�x� � V

N

X
y

r2�y�c�xÿ y�, �12�

where

c�xÿ y� � 1

V

X
h

y�h� exp�2pih�xÿ y��: �13�

The equations are more frequently expressed in reciprocal space as a system of equations
relating structure factors in magnitude and phase

F�h� � y�h�
V

X
k

F�k�F�hÿ k�, �14�

where

y�h� � f�h�
g�h�

is the ratio of scattering factors of real and `squared' atoms and V is the unit cell volume, and
is the Fourier transform of the shape function, c(x).
The residual of Sayre's equation in real space can be expressed as:

r1�x� � V

N

X
y

r2�y�c�xÿ y� ÿ r�x�: �15�

The gradients of this residual may be used in a Newton±Raphson calculation for the solution
of the equation. To apply Sayre's equation to a particular structure, it is necessary to add
additional constraints particular to that structure. Constraining the structure factor magnitudes
leads to a large number of local minima, thus the approach adopted is to add a second set of
linear equations, constraining the density values to equal the values obtained by density
modi®cation,

r2�x� � wmod�x��rmod�x� ÿ r�x��, �16�

where rmod(x) is the density at a grid point obtained after averaging, solvent ¯attening, etc.
and wmod(x) is a weight indicating the strength of constraint for that grid point.
Least squares solution of the two sets of equations together may be performed rapidly using

a conjugate gradient approach (Zhang and Main, 1990b) and gives rise to a map which is
substantially in agreement with both Sayre's equation and the other density modi®cation
constraints.
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2.7. Atomization

Agarwal and Isaacs (1977) proposed a method for the extension of phases to higher
resolutions by interpreting an electron density map in terms of `dummy' atoms (so called
because at the initial resolution of 3.0 AÊ true atom peaks could not be resolved), subject to
constraints of bonding distance and number of neighbors. The coordinates and temperature
factors of these dummy atoms may then be re®ned against all the available di�raction
magnitudes. Structure factors may then be calculated from the re®ned coordinates, to provide
phases for the high-resolution re¯ections and improve the phases of the starting set.
This approach has been extended in ARP/wARP program (Lamzin and Wilson, 1997) by the

use of di�erence map criteria to test dummy atom assignments, with the aim of removing
wrong atoms and introducing missing atoms. With modern re®nement algorithms this
technique has become very e�ective for the solution of structures from poor molecular
replacement models, or even directly from MIR/MAD maps (Weeks et al., 1995).

2.8. Low-density elimination

The electron density values in the protein region of the map should be positive at atomic
resolution. However, the density values may be negative due to phase error or the missing of
high resolution structure factors in the Fourier synthesis for non-atomic resolution data.
Shiono and Woolfson (1992) proposed a low-density elimination method for phase re®nement
and extension. It modi®es the density by,�

r 0�r� � r�r� for r�r� > 0:2rc

r 0�r� � 0 for r�rR0:2rc

, �17�

where rc is the expected height of a light-atom peak in the protein region.
To eliminate the discontinuity in the density due to the above procedure, Refaat and

Woolfson (1993) introduced another formula that produced a smoother modi®cation function
on the electron density,8><>: r 0�r� � r�r�n�1

rc�r�n � r�r�n for r�r� > 0

r 0�r� � 0 for r�r�R0

, �18�

where n is some integer greater than unity. This modi®cation makes r '(r) both smooth and
continuous. The e�ectiveness of this low-density elimination process has been illustrated by
phase re®nement for the structure of avian pancreatic peptide at 1.17 AÊ resolution. The mean
phase error was reduced from 748 to 398.

2.9. Double histogram method

In the conventional (1D) electron density histogram matching method (Zhang and Main,
1990a), a one-to-one mapping is made on the original electron density to the new electron
density so that the density histogram of the modi®ed map matches that of the ideal histogram
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(see Fig. 3). The order of the electron density values is retained after histogram matching. Two
grid points with the same electron density value will have the same density value after
histogram matching. Therefore, the pattern of peaks and troughs in the modi®ed map is
similar to that in the original map. This is necessary in the histogram matching process, since
there are many alternative ways of adjusting the electron density values for matching the
electron density distribution to that of an ideal one. However, this feature is undesired,
especially when spurious electron peaks need to be removed and new electron densities
corresponding to missing atoms need to be generated. This coupling of original and modi®ed
maps is broken during phase combination or when other constraints are introduced.
Alternative ways of decoupling the electron density order between the modi®ed and original
maps are the incorporation of other features of electron density in addition to the electron
density distribution.
Refaat and Woolfson proposed a double-histogram matching method where the density

modi®cation takes into account not only the current density values at a grid point but also
some characteristic of the environment of that grid point within some distance (Refaat et al.,
1996). They investigated several local density environments, such as local maximum density,
local minimum density and local variance. In their double-histogram matching procedure, the
grid points are divided into ten groups containing the same number of grid points in each
group over ten di�erent value ranges of the local characteristic. The ten groups are modi®ed to
give di�erent histograms, each corresponding to that obtained under the same circumstances
from a structure similar to the one under investigation. Comparison of the double-histogram
matching method with the normal histogram matching method with weighting of structure
factors and damping, the improvement is usually an order of 48 in mean phase error and an
increase of 0.06±0.08 in the map correlation coe�cient.

2.10. Histogram moment method

The electron density distribution can be de®ned by the moments of electron density. In
general, it requires in®nite order of moments to completely de®ne a distribution. However, the
distribution can be adequately de®ned with only a few lower order moments. Gu et al.
proposed a histogram moment method for phase improvement, which implements the density
histogram constraint in reciprocal space (Gu et al., 1996). The phase improvement process was
carried out by minimizing the di�erence between the electron density moment and its target
value using Fourier transforms. The target values of moments were derived from known
proteins. The protein region and the solvent region were treated separately. Tests have been
carried out on two moderate sized proteins. They found that the re®nement using the third
moment is most e�ective and that re®nement with higher order moments, or in solvent region,
added noting useful. They suggested that the histogram moment method, which changes phases
in reciprocal space, is independent of the normal histogram matching method, which changes
density in real space. In general, the e�ciency of the moment method for phase re®nement is
similar to, but slightly worse than, the normal histogram matching method. The normal
histogram matching method, which matches all moments simultaneously, brings more
information to bear and therefore should be more powerful. However, since the histogram
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moment method modi®es phase in reciprocal space rather than density in real space, it may
have something extra to o�er when combined with other histogram matching methods.

2.11. Ab initio phasing and density modi®cation

Density modi®cation is an iterative procedure that modi®es the initial electron density so
that it conforms to a set of given constraints corresponding to the characteristics of an ideal
electron density map. The requirement of an initial electron density, thereby an initial set of
phase estimates, is not due to the limitation of the density modi®cation procedure but rather
due to the phasing power of the constraints it used. Density modi®cation methods can be used
in ab initio phasing, in which case the starting map is generated from random phases. The
phasing power of the electron density constraints currently available is not powerful enough to
enable the phase re®nement and extension at medium to high resolution starting from
randomly generated phases by density modi®cation methods. However, the constraints used in
density modi®cation have been shown to be useful in obtaining phases ab initio at very low
resolution (Lunin et al., 1990, 1995, 1998). Moreover, density modi®cation has been
successfully used for ab initio phasing of small proteins at atomic resolution as part of the
Shake and Bake method (Miller et al., 1993).

2.11.1. Density histogram as a constraint in reciprocal space phasing
The direct low resolution phasing method proposed by Lunin et al. (1990) used the ideal

electron density histogram at very low resolution to select the best phase set among a large
number of randomly generated phase sets. Due to the degeneracy of the density histogram,
many phase sets may have density histograms close to the ideal histogram. Cluster analysis was
used to group the viable solutions to di�erent subsets. It was possible to identify the cluster
that corresponds to the correct solution according to its compactness. Test phasing of 29 low-
resolution re¯ections for a model structure of two molecules of carboxypetidase A resulted in a
correlation coe�cient of 0.94 and a mean phase error of 408 compared with the correct phases.

2.11.2. Structure factor amplitudes as a constraint for ab initio phasing in the Few-Atom-Model
method
An alternative method to the direct low-resolution phasing method that uses the phases as

variables is the Few-Atom-Model (FAM) method, which uses the positions of a very small
number of large Gaussian scatters or `pseudo-atoms' as variables (Lunin et al., 1995, 1998).
The best models are selected by choosing those with the highest correlation of structure factor
amplitudes corresponding to the model with the observed amplitudes. The phases calculated
from these best models are analyzed by a clustering procedure leading to a few possible
solutions, from which the correct solution can be recognized by simple additional criteria. The
FAM method has been successfully applied to data calculated from a model ribosome crystal
at 60 AÊ resolution and to the neutron di�raction data of the AspRS-tRNAAsp complex at 50 AÊ

resolution.
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2.11.3. Shake and Bake method
The phase problem can be formulated as a constrained global minimization to determine the

phases of the structure factors given only their amplitudes.
For small molecules at far atomic resolution, the system is overdetermined and the

constraints of positivity and atomicity are su�cient to solve the phase problem. This is
embodied in the tangent formula,

tan�fH� �
ÿ
X

K

��EKEH�K

�� sin�fK � fÿHÿK�X
K

��EKEH�K

�� cos�fK � fÿHÿK�
, �19�

which formed the basis for almost all of the Direct Method programs for small molecular
structure determination. Here KK and EH+K are normalized structure factors, fK and fÿHÿK
are phases and the index K represents those reciprocal space vectors with known phases. The
unknown phase fH is estimated individually from a set of known phases through the tangent
formula.
Protein crystals rarely di�ract to atomic resolution and they contain more atoms in one

asymmetric unit than small molecules. The non-atomic resolution has disquali®ed the positivity
and atomicity constraints. The large number of atoms in the asymmetric unit weakened the
power of tangent formula that estimates an unknown phase using only a small set of known
phases. Protein crystals also contain a large volume of contiguous solvent molecules. This also
undermines the underlying assumption of random distribution of atoms in the statistically
based direct methods.
In order to extend the power of direct methods to solve the phase problem of

macromolecules, the minimum principle has been proposed (Hauptman, 1991). A global
minimization protocol, Shake and Bake (Miller et al., 1993), has been developed to determine
the phase ab initio by solving the minimum function (Debaerdemaeker and Woolfson, 1983;
Hauptman, 1991),

R�f� �

X
H, K

kHK

�
cos fHK ÿ

I1�kHK�
I0�kHK�

�
X
H, K

kHK

, �20�

where kHK is a triple product of normalized structure factors, fHK is the phase associated with
the triplet of re¯ections, H, K and H+K. The quotient of the two Bessel functions,

I1�kHK�
I0�kHK� ,

represents the expected value of cos fHK.
The Shake and Bake method alternates between reciprocal space phase re®nement, via the

reduction of the minimum function, and the real space density modi®cation by means of a
peak-picking protocol that serves to impose electron density constraints. It starts from the set
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of structure factors with phases generated from randomly positioned atoms. The starting
phases are re®ned by minimizing the minimum function using a global binary search routine.
Density ®ltering has been accomplished by a discrete electron-density modi®cation protocol
consisting of selecting a speci®ed number of the highest peaks on the electron density map
calculated from the re®ned phases. The picked atoms are used to calculate new structure
factors, the phases of which are used as the starting point for a new round of global
minimization. The Shake and Bake method, and its variants, such as the Half Baked method
(Sheldrick and Gould, 1995), have been shown to be e�ective for solving the phases of small
proteins at near atomic resolution (Hauptman, 1997; Weeks et al., 1994, 1995). Its potential
and limitations remain to be fully explored.

2.12. Reciprocal space interpretation of density modi®cation

Hendrickson and Lattman (1970) showed that solvent ¯attening can be described in terms of
relationships amongst neighboring re¯ections in reciprocal space.
Consider the solvent ¯attening operation as multiplication of the map by some mask gsf(x),

where gsf(x)=1 in the protein region and gsf(x)=0 in the solvent region. Thus:

rmod�x� � gst�x� � r�x� �21�
This assumes that the solvent level is zero, which can be achieved by suitable adjustment of the
F(000) term.
If we take the Fourier transform of this equation then the product becomes a convolution,

thus:

Fmod�h� � 1

V

X
k

Gsf�k�F�hÿ k�, �22�

where Gsf(k) is the Fourier transform of the mask gsf. The solvent mask gsf shows the outline
of the molecule with no internal detail, and so must be a low-resolution image. Therefore, all
but the lowest resolution terms of Gsf will be negligible.
The convolution expresses the relationship between phases in reciprocal space arising from

the constraint of solvent ¯atness in real space. As only the terms near the origin of Gsf are
non-zero, the convolution can only relate phases that are local to each other in reciprocal
space. Thus it can only provide phase information for structure factors near the current
phasing resolution limit.
This reasoning may also be applied to other density modi®cations. Histogram matching

applies a non-linear rescaling to the current density in the protein region. Therefore the
equivalent multiplier ghm(x) shows variations about 1.0, which are related to the features in the
initial map. The function Ghm(h) for histogram matching is therefore dominated by its origin
term. However it shows signi®cant features to the same resolution as the current map, or
beyond as the density rescaling becomes more complex. Histogram matching can therefore give
phase indications to twice the resolution of the initial map, although phase indications will be
weak and contain errors depending on the level of error in the initial map.
Averaging may be described as the summation of a number of reoriented copies of the
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electron density within the region of the averaging mask (Rossmann et al., 1992), i.e.

rmod�x� � gncs�x�
X
i

ri�x�, �23�

where ri(x) is the initial density r(x) after transformation by the i'th NCS operator. This
summation is repeated for each copy of the molecule in the whole unit cell. The function
Gncs(h) is the Fourier transform of a mask, as for solvent ¯attening, but since the mask covers
only a single molecule, rather than the molecular density in the whole unit cell, the extent of
Gncs(h) in reciprocal space is greater.

Fig. 5. The functions of g(x) and G(h) for solvent ¯attening, histogram matching, and averaging.
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Sayre's equation is already expressed as a convolution, although in this case the function
G(h) is given by the structure factors F(h) themselves. However as higher resolution terms are
considered, more of the re¯ections required to form the convolution are missing and the error
increases.
The functions g(x) and G(h) for these density modi®cations are illustrated in Fig. 5 for a

simple one-dimensional structure.

3. Phase combination

Once a modi®ed map has been obtained, modi®ed phases and magnitudes may be obtained
by inverse Fourier transforms. The modi®ed phases are usually combined with the initial
phases by multiplication of their probability distributions.

Pnew�f�h�� � Pinit�f�h��Pmod�f�h��: �24�
The probability distribution for the initial phases is usually described in terms of Hendrickson±
Lattman coe�cients (Hendrickson and Lattman, 1970) or by a centroid phase and ®gure-of-
merit. In order to estimate a unimodal probability distribution for the modi®ed phase, some
estimate of the associated error must be made, this is usually achieved using some form of Sim
weighting scheme.
Recombination with the initial phases assumes independence between the initial and

modi®ed phases, and is a source of di�culties. Most density modi®cation constraints are
underdetermined and thus phase recombination with the initial data is vital. However this
leads to a strong bias with respect to the initial phases. The exception is when high-order NCS
is present, in this case the combination of NCS and observed magnitudes is su�cient to
determine the phases, and phase combination may be omitted, however weighting of the phases
is still necessary. In this case it is also possible to restore missing re¯ections in both magnitude
and phase.

3.1. Sim/Sigma-a weighting

The phase probability distributions for density modi®ed phases have generally been
estimated under assumptions that were made for the combination of a partial atomic model
with experimental data. The assumption is that the calculated magnitudes and phases arise
from a density map in which some atoms are present and correctly positioned, and the
remaining atoms are completely absent (Sim, 1959). Thus the di�erence between the true
structure factor and the current value must be the e�ective structure factor due to the missing
density alone. If the phase of this quantity is random and the magnitude is drawn from a
Wilson distribution (Wilson, 1949) the following expression is obtained:

Pmodel�f� � exp�X cos�fÿ fmodel��: �25�
The error estimate for the phase depends on the e�ective amount of missing structure is
estimated on the basis of the agreement of the modi®ed magnitudes with their measured values
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X � 2 j FobskFmodel jP
Q

�26�

where
P

Q may be estimated by a number of means, for example, (Bricogne, 1976):

P
Q � hj Fobs j2 ÿ j Fmodel j2i, �27�

where the average in Eq. (27) is normally taken over all re¯ections at a particular resolution. A
more sophisticated approach is the sa method (Read, 1986) which allows for errors in the
atomic model and has also been used in density modi®cation.
Although these approaches have been applied with some success, the assumption in Eq. (24)

that the density modi®ed magnitudes and phases are independent of the initial values is invalid.
Since the density constraints are typically under-determined it is possible to achieve an
arbitrarily good agreement between the model magnitudes and their observed values without
improving the phases. As a result, phase weights from density modi®cation are typically
overestimated.
This problem has traditionally been addressed by limiting the number of cycles of density

modi®cation in which weakly phased re¯ections are included. Typically, density modi®cation is
started with only some subset of the data (for example, those re¯ections well phased from MIR
data). Only these re¯ections are included in the phase recombination, with other re¯ections set
to zero. As the calculation progresses, more re¯ections are introduced until all the data is
included. The ®gures of merit of re¯ections that undergo fewer cycles of phase recombination
will be correspondingly smaller (Leslie, 1987; Zhang and Main, 1990a). In averaging
calculations where considerable phase information is available from high order NCS, it is still
typically necessary to perform phase extension over hundreds of cycles and adding a very thin
resolution shell of new re¯ections at each cycle (Chapman, 1998).

3.2. Re¯ection-omit

In order for the modi®ed phases to be independent of the initial phases, the new information
must be determined from a di�erent source from the initial phases. Since phasing calculations
are performed on a re¯ection-by-re¯ection basis, the initial phase estimates for di�erent
re¯ections from a MIR or MAD experiment are independent. Thus the modi®ed phase for a
re¯ection can depend on the initial phases of every other re¯ection in the di�raction pattern.
This is achieved through the re¯ection-omit scheme.
The re¯ections are divided into (typically 10 or 20) sets, and density modi®cation

calculations are performed excluding all re¯ections from each set in turn. The re¯ections from
each of the omitted sets are combined to give a complete new data set. This data should be less
dependent on the original magnitudes, therefore the modi®ed magnitudes may be expected to
give a better indication of the quality of the modi®ed phases.
The resulting maps obtained using solvent ¯attening and/or histogram matching are

dramatically improved (Cowtan and Main, 1996). In the case of averaging calculations
however, the re¯ection-omit approach makes little di�erence, since the averaging constraints
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usually contain su�cient phase information to make the modi®ed map largely independent of
the initial map. The resulting phase estimates and their probability distributions are unbiased
after a single cycle of density modi®cation, but on subsequent cycles the phases of individual
re¯ections are no longer independent, and so bias remains a problem if the calculation is
repeated over many cycles.
The free R-value (BruÈ nger, 1992) has been used in a cross-validated density modi®cation

protocol to prevent over-®tting of data and to optimize the parameters in density modi®cation,
such as solvent ¯attening (Roberts and BruÈ nger, 1995). This approach is subject to the same
problems of bias as the estimation of phase errors, and so is of limited use.

3.3. The gamma-correction and solvent ¯ipping

Abrahams and Leslie (1996) have shown that solvent ¯ipping is dramatically more e�ective
as a density modi®cation than solvent ¯attening. This may be shown to be theoretically
equivalent to performing a re¯ection omit calculation for each re¯ection individually in the
case where the dependence between the initial and modi®ed maps is linear (Abrahams, 1997).
In Eq. (22) solvent ¯attening is represented in reciprocal space by convolution of the

structure factors with a function G(h). If the origin term of G is set to zero, then the modi®ed
structure factor Fmod(h) will depend upon the values of all the structure factors except itself,
this is equivalent to performing a re¯ection omit calculation with that re¯ection alone omitted.
Let the origin-removed G be called Gg (h), and its Fourier transform gg (x):

Gg�h� �
�
0, h � 0
G�h�, h 6� 0

�28�

then

gg�x� � g�x� ÿ g�x�: �29�
The convolution of the re¯ection data with Gg (h) is equivalent to performing a refection omit
calculation omitting every re¯ection in turn. However, the convolution may still be performed
in real space, thus the full omit calculation becomes a simple multiplication of the map by
gg (x):

rmod�x� � gg�x� � r�x�: �30�
In the case of a solvent ¯attening calculation, gg (x) will be equal to g(x) minus the fraction of
the cell which is protein, thus in the case of a protein with 50% solvent, gg (x) has a value of
0.5 in the protein and ÿ0.5 in the solvent. Multiplication of the map by this function results in
`¯ipping' of the solvent.
If the origin term of the G-function can be determined, then the ¯ipping calculation may be

alternately performed by subtracting this value, multiplied by the initial map, from the ®nal
map. The origin term of G is the g-correction of Abrahams (1997).
Extension of the g-correction to averaging calculations is trivial, however other density

modi®cations present some problems. The theoretical formula for g of Abrahams fails for
histogram matching. Cowtan (1999) describes a method for estimating the g-correction for an
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arbitrary density modi®cation by applying a perturbation to the initial map and examining the
scale of the resulting perturbation in the modi®ed map. This perturbation g method works well
for histogram matching and multi-resolution modi®cation, and any combination of these
methods with solvent ¯attening or averaging.

3.4. The simultaneous application of constraints for phase improvement

The chemical and physical information of the underlying structure that the electron density
represents serves as constraints on the phases. For small molecules, the constraints of positivity
and atomicity are su�cient to solve the phase problem ab initio (Hauptman, 1986; Karle, 1986;
Woolfson, 1987), because crystals of small molecules generally di�ract to atomic resolution.
However, no single constraint at our disposal is powerful enough to render the
macromolecular phase problem determinable, because macromolecule crystals rarely di�ract to
atomic resolution. Therefor, Zhang and Main suggested a protocol that combines individual
constraints for phase improvement (Zhang, 1993; Zhang et al., 1997; Zhang and Main, 1990b).
One obvious way of implementing several constraints is to apply them one after the other on

the electron density. This sequential application, although easy to implement, su�ers some
drawbacks. The cyclic application of all constraints may not converge easily since some
constraints may contain contradicting information as how the density should be modi®ed. An
alternative way of implementing various constraints is through simultaneous application. The
density solution that satis®es all the constraints is obtained by a global minimization procedure
(Main, 1990; Zhang and Main, 1990b).
In order for a modi®ed electron density map to satisfy all constraints at the same time, we

have to solve a system of simultaneous equations which includes all the residual Eqs. (15) and
(16),

r1�x� � V

N

X
y

r2�y�c�xÿ y� ÿ r�x�,

r2�x� � wmod�x��rmod�x� ÿ r�x�� �31�

where wmod is the relative weight between Sayre's Eq. (14) and the constraints from density
modi®cation (16).
Eqs. (31) represent a system of non-linear simultaneous equations with as many unknowns

as the number of grid points in the asymmetric unit of the map and twice as many equations
as unknowns. The functions rmod(x) and c(x) are both known. The least squares solution,
using either the full matrix or the diagonal approximation, is obtained using Newton±Raphson
technique for FFTs as described by Main (1990).
A ¯ow chart of the protocol for the simultaneous application of constraints is shown in Fig.

6.
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4. Example

As an example, density modi®cation was applied to the structure of RNAse from
Streptomyces aureofaciens (Sevcik et al., 1991). The structure consists of two molecules of 96
amino acids in the asymmetric unit, including one a-helix and a twisted 3-strand anti-parallel
b-sheet. The structure has been solved using multiple isomorphous derivatives and re®ned to

Fig. 6. Flow chart for phase improvement by the simultaneous application of electron density constraints.
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1.8 AÊ . A poor set of starting phases was generated using the two weakest derivatives, giving
MIR phases to 3.1 AÊ and very weak SIR phasing to 2.5 AÊ . The MIR map was uninterpretable.
The MIR and density modi®ed phases are compared by plotting the mean of the cosine of

the phase error, weighted by the ®gure-of-merit and structure factor magnitude, as a function
of resolution (over all re¯ections this is equivalent to map correlation). The results of density
modi®cation by various techniques and their combinations, using the perturbation gamma
correction for bias reduction over ®ve cycles, are shown in Fig. 7.
Solvent ¯attening or averaging alone improves the phases slightly at low resolution, but does

not lead to signi®cant phase extension. The combination of histogram matching and solvent
¯attening improves the low-resolution phases and gives signi®cant phase extension to higher
resolutions. Adding multiresolution modi®cation gives a further slight improvement across the
resolution range. Adding averaging as well gives a dramatic improvement over the whole
resolution range. These results have demonstrated that each constraint contains some degree of
independent phasing information and the constrains are synergistic in phase improvement. The
simultaneous application of all available constraints gave the best result in phase improvement.
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