
research papers

1612 Cowtan � General quadratic functions and likelihood phasing Acta Cryst. (2000). D56, 1612±1621

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

General quadratic functions in real and reciprocal
space and their application to likelihood phasing

Kevin Cowtan

Department of Chemistry, University of York,

Heslington, York YO10 5DD, England

Correspondence e-mail:

cowtan@yorvic.york.ac.uk

# 2000 International Union of Crystallography

Printed in Denmark ± all rights reserved

A general multivariate quadratic function of the structure

factors is constructed and transformed to obtain a quadratic

function of the continuous electron density. Two special cases,

where structure factors are independent and where electron-

density values are independent, are examined. These results

are related to the new likelihood-based framework of

Terwilliger [Terwilliger (1999), Acta Cryst. D55, pp. 1863±

1871] for employing structural information which was

previously exploited by means of conventional density-

modi®cation calculations. The treatment here involves

different assumptions and highlights new features of Terwilli-

ger's calculation. The generalization quadratic construction

allows the generation of cross terms relating all re¯ections and

electron densities. Other applications of this approach are

considered.
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1. Introduction

The Fourier transform relationship between real and recip-

rocal space means that any function which can be represented

in terms of parameters in one space can generally be repre-

sented in terms of the corresponding parameters in the other

space. Some functions may be transformed between spaces

more conveniently than others. This paper examines a set of

generalized quadratic functions which are particularly simple

to express in either space.

These functions have a particularly useful property: if the

exponential is taken of a general multivariate quadratic

function, the result is a general multivariate Gaussian.

Multivariate Gaussians are often used to represent probability

distributions, either because they arise from the central limit

theorem or because they represent a convenient approxima-

tion. Thus, by this method probability distributions may be

easily transformed between real and reciprocal space. This

approach was inspired by the work of Terwilliger (1999),

although the approach described here involves different

approximations which lead to a more general set of results

(although whether these approximations will be as useful in

practice is yet to be seen).

Many optimization algorithms involve the assumption that

the function to be optimized is at least locally quadratic and

therefore, give extremely good convergence when the function

to be optimized is genuinely quadratic (with a general second-

order method converging in a single step). The maximum of a

probability function which is based on a product of Gaussian

probabilities arising from various sources of information in

either space may therefore be ef®ciently located by optim-

ization of the logarithm of the probability function, which is a

quadratic function.



The methods described here differ from the likelihood

approach of Bricogne (1984) in that the probability functions

are approximated to obtain a computationally convenient

form. Some of the limitations of this approximation will be

discussed. The probability distributions will initially be

considered in terms of electron densities and structure factors

rather than atomic positional probabilities. The parameter

space is therefore one step closer to the experimental data

whilst being one step further away from the atomic model

parameters which will ultimately be used to describe the data.

It will be shown later that atomic positional probabilities lead

to simpli®cations in the treatment of density correlation.

2. The general multivariate quadratic function in real
and reciprocal space

2.1. Space group P1

Consider a general quadratic summation Q calculated in

reciprocal space over all re¯ections. Let the minima of the

quadratic function be at Fm(h) and the curvatures in each

direction be described by terms W(ÿh, ÿk), i.e.

Q�F� �P
h

P
k

�F�h� ÿ Fm�h���F�k� ÿ Fm�k��W�ÿh;ÿk�; �1�

where the arguments of W are negative for future con-

venience. If W(ÿh, ÿk) is Hermitian in six dimensions

[i.e. W(ÿh, ÿk) = W(ÿh, ÿk)*], then Q(F) will be real. An

offset structure factor is de®ned which is the difference

between the actual value and the value at the minimum

D(h) = F(h) ÿ Fm(h); then,

Q�D� �P
h

P
k

D�h�D�k�W�ÿh;ÿk�: �2�

The same summation may be written in terms of offset

densities d(x), where

d�x� � �1=V�P
h

D�h� exp�ÿ2�ih � x� �3�

and

D�h� � R
V

d�x� exp�2�ih � x� dx; �4�

giving

Q�d� �P
h

P
k

W�ÿh;ÿk� R
V

d�x� exp�2�ih � x� dx

� R
V

d�y� exp�2�ik � y� dy �5�

� R
V

R
V

d�x� d�y�P
h

P
k

W�ÿh;ÿk�

� exp�2�i�h � x� k � y�� dx dy �6�
� V2

R
V

R
V

d�x� d�y�w�x; y� dx dy; �7�

where w(x, y) is the six-dimensional Fourier transform of

W(h, k),

w�x; y� � �1=V2�P
h

P
k

W�h; k� exp�ÿ2�i�h � x� k � y�� �8�

and therefore

W�h; k� � R R w�x; y� exp�2�i�h � x� k � y�� dx dy: �9�

2.2. General space groups

Space-group symmetry introduces relationships between

terms distributed throughout real or reciprocal space. These

relationships between different parameters in real or reci-

procal space impose constraints on the values of w and W.

These may be handled by allowing w or W to be de®ned

generally and imposing the symmetry through modi®ed

Fourier transforms.

First, we de®ne symmetry-generating Fourier transforms

which will generate correct terms in one space from any

arbitrary asymmetric unit or more of the other space as long as

any duplicated terms are divided by their multiplicity,

D�h� � R
V

d�x�P
i

expf2�i�h � �Rix� Ti��g dx; �10�

d�x� � �1=V�P
h

D�h�P
i

expfÿ2�i�h � �Rix� Ti��g; �11�

where Ri and Ti are the ith crystallographic symmetry-rotation

matrix and translation vector, respectively.

Substituting (10) in (2) and comparing with (7), an

expression for w(x, y) is obtained in terms of W(h, k) in the

presence of space-group symmetry,

w�x; y� � �1=V2�P
h

P
k

W�h; k� �12�

� P
i

P
j

expfÿ2�i�h � �Rix� Ti� � k � �Rjy� Tj��g:

Similarly, substituting (10) in (2) and comparing with (7), an

expression for W(h, k) is obtained in terms of w(x, y),

W�h; k� � R
V

R
V

w�x; y�P
i

P
j

expf2�i�h � �Rix� Ti�

� k � �Rjy� Tj��g dx dy: �13�

3. Special cases of the general quadratic function

3.1. Real-space terms independent

Consider the case when Q is a known function of d(x),

represented by w(x, y) = �(x, y)w0(x). In other words, the

contribution to Q from the value of d at any point in the map is

independent of the value of d at any other point in the map.

Substituting for w0 in (9) gives

W�h; k� � R
V

w0�x� exp�2�i�h� k� � x� dx �14�

� W 0�h� k�; �15�
where W0(h) is the Fourier transform of w0(x). Therefore, if

Q�d� � V2
R
V

d�x�2w0�x� dx �16�

then

Q�D� �P
h

P
k

D�h�D�k�W 0�ÿhÿ k�: �17�
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Enough terms of D must be calculated to exactly represent d.

For a general space group, w0 is substituted in (13) giving

Q�D� �P
h

P
k

D�h�D�k�P
i

P
j

W 0�ÿhRi ÿ kRj�

� exp�2�i�ÿh � Ti ÿ k � Tj��: �18�

This expression has not been tested in practice, but may be

easily veri®ed by substituting D(h) with a symmetry-

equivalent re¯ection and verifying that the result is unchanged

(see Appendix B).

3.2. Reciprocal-space terms independent

Similar reasoning applies if Q is a known function of D(h)

where the contributions to Q from different terms in recip-

rocal space are independent. However, there are two

complications.

(i) Each term in reciprocal space consists of two compo-

nents, one real and one imaginary. Even when individual

re¯ections are independent, the real and imaginary parts of an

individual re¯ection will usually not be independent.

(ii) The Hermitian symmetry of D(h) must be considered,

i.e. D(h) and D(ÿh) cannot be considered independent.

The second problem is addressed by including terms in

(h, h), (ÿh, h), (h, ÿh) and (ÿh, ÿh) in the calculation of Q.

The two independent complex terms W(h, h) and W(h, ÿh)

then provide the freedom required to represent the depen-

dence between real and imaginary parts of the re¯ection,

solving the ®rst problem, as shown below.

Retaining just the terms described above, (2) becomes

Q�D� � P
h2hemi

D�h�D�h�W�ÿh;ÿh� �D�ÿh�D�ÿh�W�h; h�

� D�h�D�ÿh�W�ÿh; h� �D�ÿh�D�h�W�h;ÿh�;
�19�

where `hemi' symbolizes a hemisphere of re¯ections.

Expanding in terms of real and imaginary components,

labelled by use of the subscripts A and B, and using the

Hermitian symmetry of D in three dimensions and W in six

dimensions,

Q�D� � 2
P

h2hemi

DA�h�2�WA�h; h� �WA�h;ÿh��

� DB�h�2�ÿWA�h; h� �WA�h;ÿh��
� 2DA�h�DB�h��WB�h; h��; �20�

giving a general quadratic in DA(h), DB(h) for each re¯ection

individually.

This is equivalent to the exponent of the electron-density

log-likelihood expression given by Cowtan (2000), although

the similarity is obscured by the fact that vri in that paper is

antisymmetric and therefore corresponds to the imaginary

component WB(h, h) in the complex expression above.

The same expression may be more conveniently expressed

in terms of magnitudes and phase angles,

Q�D� � 2
X

h2hemi

jD�h�j2fjW�h; h�j cos�2'D�h� ÿ 'W�h; h��

� jW�h;ÿh�j cos�'W�h;ÿh��g; �21�

where 'D and 'W are the phases of D and W. Note that the ®rst

term is dependent on 'D(h), while the second is independent

of the phase of D. Thus, in the second term the magnitude of

W(h, ÿh) determines the mean curvature of Q and in the ®rst

term the magnitude of W(h, h) determines the anisotropy of

the curvature. The directions of most and least curvature are

determined by the phase 'W(h, h). 'W(h, ÿh) may arbitrarily

be set to zero, since the imaginary part of this term has no

effect.

Any of these expressions may be equivalently expressed in

real space by taking (19) and substituting W(h, k) = �h,kW0(h) +

�h,ÿkW0 0(h). The four terms may then be written in terms of

d(x), w0(x) and w00(x) using (7),

Q�d� � V2
R
V

R
V

d�x�d�y� w0�x� y� � w00�xÿ y�� � dx dy; �22�

where w0 and w00 are the three-dimensional Fourier transforms

of W0 and W00. In practice, Q(d) will usually be calculated by

summation over a grid, which must be ®ne enough to avoid

aliasing effects.

For a general space group, w is substituted in (12) giving

Q�d� � V2
R
V

R
V

d�x� d�y�P
i

P
j

�w0�Rix� Ti � Rjy� Tj�

� w00�Rix� Ti ÿ Rjyÿ Tj�� dx dy: �23�

This expression may be veri®ed by the same approach used in

Appendix B, although the absence of phase factors makes the

expression self-evident.

4. Connection with statistical methods in
crystallography

Suppose the probability of a set of structure factors can be

represented by a multivariate Gaussian function centred on

some set of expected values for the structure factors. Such a

distribution might arise through the central limit theorem or

through some approximation. The logarithm of this prob-

ability is then a general quadratic in terms of the structure

factors. This quadratic function may be represented in turn by

a general quadratic function in real space based on the elec-

tron density across the whole map.

Furthermore, the whole procedure may be reversed. Thus, a

probability distribution in real or reciprocal space may be

represented in the other space by the following series of steps:

By this means, probability distributions may be constructed in

either space as a general multivariate Gaussian and applied in

the other space. The real-space joint probability distribution of

offset densities



P�d�x� 8 x� / exp�ÿQ�d�� �24�

may be written in reciprocal space as

P�D�h� 8 h� / exp�ÿQ�D�� �25�

and vice versa. Information about the electron-density distri-

bution in real space leads directly to a joint probability

distribution of structure factors, which may be used to re®ne

phases or predict missing re¯ections. Applying the opposite

transformation, any structure-factor magnitude-and-phase

probability distribution leads directly to a joint probability

distribution of electron-density values, from which electron-

density variances and covariances may be derived.

The joint probability distribution of structure factors is the

basis of structure-factor statistics. As more information is

incorporated into the joint probability distribution, the

statistical model becomes a better description of the observed

structure factors. Wilson statistics (Wilson, 1949) depend on

the assumption that the atomic coordinates are independent

random variables uniformly distributed across the unit cell. By

construction of the appropriate joint probability of electron

densities, two deviations from these assumptions may be

examined.

(i) The atomic coordinates are not independent; rather,

atomic positions are strongly related by bonding constraints.

In particular, atoms do not approach closer than the appro-

priate minimum bond length. Peptide geometry affects the

probabilities of certain interatomic separations beyond the

range of a single atomic bond.

(ii) The distribution of atomic coordinates throughout the

cell is non-uniform. The most common case of a non-uniform

atomic distribution occurs when the unit cell contains known

regions of solvent.

The calculation of structure-factor statistics using this

approach is outlined in x5.

Alternatively, the same approach may be applied in the

opposite direction; the joint probability distribution of

electron-density values may be calculated using probability

distributions constructed in reciprocal space; for example,

phase probability distributions from some source of experi-

mental phasing. This gives rise to variance estimates for the

electron density at any point in the map, as well as covariance

estimates between different points. The electron-density

variance may be used to calculate a likelihood that a map

feature arises from some density model, such as bulk solvent

or a fragment model.

Both these techniques may be combined in techniques for

phase improvement by use of known structural information,

i.e. a statistical density-modi®cation calculation as described

by Terwilliger (1999). Electron-density variance estimates may

be used in the estimation of solvent and non-crystallographic

symmetry envelopes, which in turn provide probability

distributions for electron densities in real space which may be

transformed to reciprocal space to update experimental phase

probability distributions. This approach is discussed further

in x6.

5. Application to structure-factor statistics

The structure-factor statistics given by Wilson (1949) are

based on a random-walk model for the contributions of indi-

vidual atoms to the total scattering. In the case where the

number of scatterers is large, the probability distribution for

the value of an individual structure factor is Gaussian, in

accordance with the central limit theorem. The width of the

Gaussian is a function of resolution and atomic shape and in

the case of a uniform random distribution the Gaussian is

centred at the origin of the Argand diagram. Blessing et al.

(1996) extended this work to deal with the case where the

atomic shape varies according to a Gaussian spread of B

factors. Srinivasan & Parthasarathy (1976) provide more

general formulae which are valid even when a small number of

scatterers dominate and the resulting probability distributions

are non-Gaussian.

In this work, the value of a structure factor is already

assumed to obey a Gaussian distribution and so the problem

of a small number of scatterers cannot be addressed; however,

the problem of a non-uniform distribution of atoms is ideally

suited to treatment here.

Initially, the case where density values are independent will

be considered (16, 17). If the Wilson assumption of a uniform

random distribution of scatterers is made, then D(h) = F(h) for

non-origin terms, w0 is constant and W0 is a delta function at

the origin, so the joint probability distribution of offset

structure factors is given by

P�D�h� 8 h� / exp�ÿQ�D��
Q�D� �P

h

D�h�D�ÿh�W 0�000�

� W 0�000�Ph jD�h�j2: �26�
Thus, the marginal distribution for an individual (offset)

structure factor is given by

P�D�h�� / exp�ÿW 0�000�jD�h�j2�: �27�
Note that this model predicts that the distribution of complex

structure factors will be Gaussian and that the width of the

Gaussian will be constant for all re¯ections and independent

of resolution.

This result is of course only true if the scattering is from

point (delta function) atoms. However, it is interesting to note

that the assumption of independent density values in real

space is identically equivalent to the assumption of point

scatterers often used in earlier direct-methods work. This

implies that to obtain a realistic distribution of structure-factor

magnitudes as a function of resolution, the correlation

between neighboring values in an electron-density map must

be modelled.

The simplest approach to modelling the correlation of

neighboring map points is to apply a simple correction which

gives the correct distribution in the case of a uniform distri-

bution of atomic positions and then apply the same correction

to the non-uniform case. This may be achieved by rescaling

each re¯ection to produce the desired ¯at distribution with

resolution, in a manner analogous to the K-curve scaling used
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in the MULTAN direct-methods package (Main et al., 1980).

In this case, (17) would be rewritten as

Q�D� �P
h

P
k

K�h�D�h�K�k�D�k�W 0�ÿhÿ k�; �28�

where K(h) is the factor which normalizes the offset structure

factor D(h), i.e. K(h) = 1/h|D(h)|2i1=2
s , and the expectation

value is calculated by an average over a resolution shell. This

is equivalent to (2) with

W�h; k� � K�ÿh�K�ÿk�W 0�ÿhÿ k�; �29�
i.e. the six-dimensional array of cross terms is constructed

from two three-dimensional arrays, one describing local

correlation in the map and the other describing the variance as

a function of map coordinate.

The real-space representation of the same function is

Q�d� � V3
R
V

R
V

d�x�k�uÿ x� dx
R
V

d�y�k�uÿ y� dy w0�u� du;

�30�
which is equivalent to (7) with

w�x; y� � R
V

k�uÿ x�k�uÿ y�w0�u� du: �31�

In the case where the density distribution is uniform [i.e. w0(x)

is constant], (28) gives the normal Wilson distribution and

after a change of variable (31) becomes

w�x; y� � w0
R
V

k�u0�k�u0 ÿ �xÿ y�� du0 � k0�xÿ y�; �32�

where k0 is the autocorrelation function of k and the Fourier

transform of K2.

Note that since K is the reciprocal of the expected offset

structure-factor magnitude, K is a function which increases

with resolution and as a result k and k0 feature high-resolution

ripples. In practice, these functions will be aliased and will

depend on both resolution and grid sampling. k is in fact the

function which when convoluted with an average atomic shape

function gives rise to a delta function; this is not possible in the

continuous case. The calculation of k on a discrete grid in real

space is probably not useful; however, it is helpful to under-

stand that k contains information about the pattern of corre-

lation amongst neighboring densities.

In practical calculations, independent probability distribu-

tions should be constructed for the values of the sharpened

map where possible and the offset structure factors rescaled in

reciprocal space according to an appropriate function of

resolution K. This rescaling of the structure factors is

equivalent to the use of unitary structure factors (Us) and

atomic positional probabilities by Bricogne (1984).

Bond-length restrictions and common interatomic distances

will lead to a deviation from Wilson statistics and corre-

sponding variations in the pattern of correlations amongst

neighboring densities. These may therefore be introduced by

calculating a modi®ed curve K using structure factors from a

model cell ®lled with representative protein-like density.

Once an appropriate resolution-dependent scaling has been

determined, the effect of a non-uniform distribution of atoms

may be included by simply adjusting w0(x) appropriately, e.g.

to exclude atoms from the solvent region.

To determine probability distributions for the observed

structure factors, the scattering from the whole cell must be

considered. This may include contributions from several

different types of density: for example, the unit cell may be

known to consider some regions of low thermal motion, some

regions of high thermal motion and some regions of solvent.

Each of these will have its own K curve. A joint probability

distribution for the total scattering from the cell can be

constructed either by convolution of probability distributions

of partial structure factors or by multiplication of probability

distributions of independent components of the scattering.

Both multiplication and convolution of Gaussian distributions

may be performed analytically. This is equivalent to the `multi-

channel' approach proposed by Bricogne (1988).

6. Application to phase improvement

A solvent envelope or the combination of a non-crystallo-

graphic symmetry operator and envelope provide structural

information in real space which may be framed in terms of

probabilities for electron-density values. In the case of a

solvent envelope, the probability of an electron-density value

may be considered to be a Gaussian about the expected

solvent mean, whose width varies from the expected solvent

standard deviation for map points which are de®nitely solvent

to in®nity for map points which are de®nitely protein. (A

protein mean and variance constraint could also be intro-

duced, in which case the expected mean density would vary

across the map.)

Non-crystallographic symmetry is only slightly more

complex. In order to obtain independent indications of NCS-

related density, the expected mean density for a NCS-related

map point will be the mean of the other NCS-related copies

only. (Thus, in the case of twofold NCS only one independent

estimate of the density is available.) The expected variance

will depend on the variances of the other copies of the density

(plus an additional term for non-isomorphism) and will

decrease as the number of copies increases. The non-

isomorphism term may be estimated from the agreement of

the NCS-related densities in comparison to the expected

variance of the map. To obtain accurate statistics in reciprocal

space, w(x, y) should include covariance terms for the NCS-

related map points.

The variance of the solvent density is used by Terwilliger

(1999) and Roversi et al. (2000) to estimate the probability of a

density point belonging to the solvent. In the case of Terwil-

liger, this is estimated from the current map; in the case of

Roversi and coworkers, the global formula of Blow & Crick

(1959) is used. Calculation of the probability distribution of

electron densities gives rise to a variance estimate which varies

as a function of position in the map.

A similar approach may be used to determine a non-

crystallographic symmetry-averaging mask by testing whether

regions of the map related by the non-crystallographic

symmetry operator agree at a statistically signi®cant level.



This approach leads naturally to a probability-based version of

Abrahams' weighted averaging approach (Abrahams, 1996).

Once the probability distribution has been assembled in

real space, it may be converted to reciprocal space with a

resolution-weighting function and combined with other

sources of reciprocal-space phase information, such as phasing

from experimental sources.

This approach is in essence the `reciprocal-space solvent-

¯attening' approach demonstrated by Terwilliger (1999),

with a different representation of the probability distribu-

tions. However, additional covariance terms have been

derived, the need to rescale the offset structure factors has

been demonstrated and map-variance information has been

incorporated.

6.1. Comparison with reciprocal-space solvent flattening

The general multivariate Gaussian function of the offset

structure factors arising from independent Gaussian functions

of the density values in real space {i.e. exp[ÿQ(D)] where

Q(D) is given by (18)} is closely related to the likelihood

expression used by Terwilliger (1999). Q(D) is therefore

related to the log-likelihood expression in that paper. If all

cross terms between re¯ections are neglected except for the

cross terms between Friedel opposites, which may not be

neglected, then the six-dimensional summation in (18)

becomes a three-dimensional summation and a summation

over two re¯ections

Q�D� �P
h

P
k��h

D�h�D�k�P
i

P
j

W 0�ÿhRi ÿ kRj�

� exp�2�i�ÿh � Ti ÿ k � Tj��
�P

h

D�h�D�h�P
i

P
j

W 0�ÿhRi ÿ hRj�

� exp�ÿ2�ih � Ti� exp�ÿ2�ih � Tj�
� P

h

D�h�D�ÿh�P
i

P
j

W 0�ÿhRi � hRj�

� exp�ÿ2�ih � Ti� exp�2�ih � Tj�: �33�
Writing in terms of real and imaginary components and

collecting the terms in �h,

Q�D� � 2
P

h2hemi

DA�h�2

�P
i

P
j

Re�W 0�ÿhRi ÿ hRj� exp�ÿi�i;h� exp�ÿi�j;h�

�W 0�ÿhRi � hRj� exp�ÿi�i;h� exp�i�j;h��
�DB�h�2

P
i

P
j

Re�ÿW 0�ÿhRi ÿ hRj� exp�ÿi�i;h�

� exp�ÿi�j;h� �W 0�ÿhRi � hRj� exp�ÿi�i;h�
� exp�i�j;h��
� 2DA�h�DB�h�

P
i

P
j

Im�W 0�ÿhRi ÿ hRj�

� exp�ÿi�i;h� exp�ÿi�j;h��; �34�
where the symmetry phase shifts 2�h�Ti are written as �i,h.

The ®rst two terms in this equation are equivalent to

Terwilliger (1999) equations (16) and (19) for 'h = 0, with the

obvious sign change in the arguments of W0. The third term

allows the directions of maximum and minimum curvature in

the Argand diagram to lie along an arbitrary direction, rather

than along the directions de®ned by 'h and 'h + �/2. The

corresponding expression in Cowtan (2000) is incorrect,

omitting the phase-shift term.

One notable difference between the approach described

here and that of Terwilliger is that the density probability

distribution is approximated here before changing from real to

reciprocal space. As a result, no Taylor series expansion is

required: the resulting distribution is correct across the whole

of the Argand diagram. The disadvantage of this approach is

that some information about the probability distribution of

density values is discarded. For example, a bimodal probability

distribution for the value of the electron density at some point

in the map will be approximated by a single broad distribution.

The practical implications of these changes have yet to be

investigated. However, for the simple application of solvent

¯attening, the differences between a ®xed-width Gaussian plus

constant and variable-width Gaussian model are likely to be

small.

Using this model, it is possible to ask what information can

be gained from a solvent-¯atness constraint, by considering

the variation in log-likelihood across the whole of the Argand

diagram for each re¯ection. Suppose real-space probability

distributions are constructed to represent ¯at density in the

solvent region and completely unknown density in the protein.

The probability distribution for the electron density at any

position in the map is therefore a Gaussian centred on the

solvent density whose width increases with the probability that

the density belongs to the protein.

When expressed in reciprocal space, the likelihood

maximum will be centered at the origin of the Argand diagram

for each non-origin re¯ection. [Since the maximum-likelihood

electron density is ¯at and at the solvent level, the maximum-

likelihood structure factors will be zero, i.e. Fm(h) = 0 and

D(h) = F(h) for h 6� 0.] Therefore, in the case of unobserved

re¯ections for which both magnitude and phase are unknown,

this information alone cannot predict non-zero values for

unobserved re¯ections. In the case of re¯ections whose

magnitude is known, the Gaussian probability centred on the

origin can give rise to at best a symmetrical bimodal phase

distribution (i.e. in terms of Hendrickson±Lattman coef®-

cients, A = B = 0). Combination of this probability distribution

with an experimental phase probability distribution can

provide some phase improvement.

Terwilliger, however, describes non-zero predicted magni-

tudes for unmeasured re¯ections. These predictions arise

through implicit use of the inter-re¯ection cross-terms, even

those terms are not included in the curvature expression. The

second-order approximation to the log-likelihood function in

reciprocal space provides an accurate local estimate of the

log-likelihood gradient, which is in turn dependent on all the

inter-re¯ection cross terms. The omission of cross terms in the

curvature expression only limits the rate of convergence on

the log-likelihood maxima. The result is a computationally

economic algorithm; however, the approximation will affect
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the estimated shape of the log-likelihood around the

maximum.

This behaviour is illustrated in Fig. 1. The axes in this ®gure

represent two separate re¯ections. Although the maximum of

the log-likelihood function is at the origin, as soon as one

re¯ection is constrained to a non-zero value the constrained

maximum for the other becomes non-zero through the action

of the inter-re¯ection cross terms.

6.1.1. Example: reciprocal-space solvent flattening with
known origin term. The effect of cross terms in reciprocal

space solvent ¯attening can be illustrated in P1 by examining

the behavior when a smooth `solvent-probability' mask and an

origin term [i.e. F(000)] are known.

In the Gaussian model, the probability distributions for

densities across the whole map will be centred on �solv and

have a variance which is low in the solvent region and high in

the protein region. The quadratic coef®cient w(x, x) will be the

reciprocal of the variance at that point. The quadratic terms

will be independent in real space.

Therefore, the log-likelihood is described by (16) with w0(x)

large and positive in the solvent region and small and positive

in the protein region. The centre of the distribution

�m(x) = �solv.

Transforming to reciprocal space gives a distribution

centred on

Fm�h� � V�solv h � 0

0 h 6� 0

�
: �35�

The quadratic coef®cients W0(h) are the Fourier transform of

w0(x) and therefore correspond closely to the G function of

Rossmann & Blow (1962) with non-origin terms inverted.

Substituting D(h) = F(h) 8 h 6� 0 and D(000) = F(000) ÿ
Fm(000), where Fm(000) = V�solv in (16), gives

Q�D� � �F�000� ÿ Fm�000��2W 0�000�
� 2�F�000� ÿ Fm�000��P

h 6�0

F�h�W 0�ÿh�

� P
h 6�0

P
k 6�0

F�h�F�k�W 0�ÿhÿ k�: �36�

The value of [F(000) ± Fm(000)], while smaller than F(000),

should still be larger than any non-origin re¯ection for real

problems. Since W0 is related to the G function it will be a

low-resolution function dominated by the origin term. The

most signi®cant terms in determining the minimum of the

quadratic (and therefore the likelihood maximum) areP
h6�0F(h)W0(ÿh), which must be as negative as possible andP
h6�0F(h)F(ÿh)W0(000), which cannot be negative and so

must be close to zero.

The expression
P

h 6�0F(h)W0(ÿh) is the Fourier transform

of V
R

V �(x)w0(x)dx. For this expression to be small or nega-

tive, �(x) must be small or negative when w0(x) is large and

positive, i.e. in the solvent region. The value of �(x) is far less

important when w0(x) is small, i.e. in the protein region.

The expression
P

h6�0F(h)F(ÿh)W0(000) is least positive

when
P

h6�0|F(h)|2 is small, i.e. the map is as smooth and

featureless as possible.

Therefore, it can be seen that ®xing just the origin term

gives a constrained likelihood maximum corresponding to a

smooth map with lower density in the solvent region and

larger and more variable density in the protein region.

A similar analysis can be made in the case when a single

re¯ection is ®xed and gives rise to a familiar G function-like

relationship [see, for example, Cowtan (1999), equation (16)].

7. Alternative approaches to likelihood-based phase
improvement

7.1. General phasing approach with Gaussian contributions

Suppose probability distributions are available for both

structure-factor magnitudes and phases and for electron-

density values. If each of these distributions can be repre-

sented as a general multivariate Gaussian in the space

concerned (with cross terms if necessary), then the informa-

tion can be combined by transforming all the multivariate

Gaussians to a single space. If the probability distributions are

independent, they may be combined by multiplication; in

other words, by simply summing the corresponding quadratic

coef®cients.

Information which does not give rise to a multivariate

Gaussian probability in one space may also be incorporated by

construction of an appropriate Gaussian approximation to the

probability distribution.

The maximum of the resulting multivariate Gaussian may

be located by ®nding the minimum of the corresponding

polyquadratic function. In the general case, this involves

inverting a six-dimensional matrix of the structure-factor

curvatures [W(h, k)] or electron-density curvatures [w(x, y)];

Figure 1
Illustration of how inter-re¯ection cross-terms in the curvature lead to a
non-zero estimate of a re¯ection when another re¯ection is ®xed.



however, most practical cases will consist of combinations of

probabilities which are independent in either real or recip-

rocal space and the resulting system is amenable to ef®cient

solution (see Appendix A). Inversion of the full curvature

matrix will be required to obtain complete variance and

covariance information for all parameters in either real or

reciprocal space, although it may be possible to calculate the

diagonal elements of the inverse matrix and therefore the

parameters variances more ef®ciently.

The choice between real and reciprocal space for the

calculation is probably only a matter of computational

convenience: reciprocal space offers advantages in that the

structure factors and phases are used at most stages of the

structure-solution process. However, calculation in real space

allows immediate calculation of maps for interpretation and

may have advantages when combined with automatic updating

of solvent and averaging masks or density ®tting.

7.2. General phasing approach with non-Gaussian
contributions

If non-Gaussian probability information is available in one

space, then the obvious approach is to perform the calculation

in that space. The Gaussian probability information from the

other space must be transformed and may be combined with

the non-Gaussian information. Direct determination of the

global maximum will not be possible in this case; however,

standard gradient methods may be used. Local maxima may

present problems in this case.

The most common case in which this approach may be

adopted is the use of conventional MIR or MAD data. This

information is usually represented by the product of a

Hendrickson±Lattman distribution for the phase multiplied by

a Gaussian distribution for the magnitude based on the

experimental standard deviation for the structure-factor

magnitude; however, a general two-dimension probability

distribution as employed by SHARP (La Fortelle & Bricogne,

1997) could be used. This distribution is multiplied by the

multivariate Gaussian obtained from density constraints in

real space. Since the Hendrickson±Lattman distribution may

be strongly bimodal, local minima may provide a signi®cant

dif®culty. Phase permutation or simulated annealing could be

used; however, a simpler approach may be to obtain an initial

estimate for the global maximum using the Gaussian

approximation to the MIR/MAD probability distribution, as

described previously, and use this as a starting point for

locating the minima of the true combined distribution. This is

somewhat analogous to the use of quadratic underestimation

to ®nd the global minima of a function with many local minima

(Dill et al., 1997).

Non-Gaussian probabilities may arise in real space if

density estimates arise from several sources; for example, the

total probability at a coordinate may be a weighted sum of

Gaussians based on whether the coordinate is in solvent or

protein and whether it is in an NCS-related domain. In this

case, the Gaussian probabilities may be transformed to

reciprocal space and then summed; however, the logarithm of

the resulting probability will no longer be a quadratic function.

Terwilliger's electron-density likelihood expression could be

expressed exactly by this approach, since the Gaussian-plus-

constant probability function [Terwilliger, 1999, equation (3)]

is a special case of a sum of Gaussians.

If non-Gaussian probabilities are present in both spaces

then an approximation will have to be made in one space. In

this case, the approach of calculating a Taylor series approx-

imation to the gradient and curvature around the current

estimates, as used by Terwilliger, may be more useful.

8. Other applications

The approaches described here to the representation of

probability distributions between real and reciprocal space

have a number of other applications.

Any application which makes use of Sim-like weights (Sim,

1959) can be adapted to use re¯ection-by-re¯ection phase

probability distributions calculated directly from the real-

space fragment with corresponding variances attached. These

variances may be estimated on the basis of positional and

other uncertainties associated with the fragment density. A

full �A-like usage (Read, 1986) would involve determination

of the atomic positional uncertainty and using it to explicitly

calculate density variances and covariances on the basis of the

possible positions of every atom. This is probably impractical

except for isolated atoms.

The calculation of electron-density variances across the unit

cell also has applications. This information could be used to

calculate a probability that a volume of density is associated

with a particular model, leading to a likelihood-based version

of the fragment-searching algorithm of Cowtan (1999). This

information may also be useful in model-building programs to

distinguish between features in the map which are well

determined and therefore should be ®tted by the model and

those which are poorly determined and therefore are more

likely to contain artifacts.

9. Limitations

The approaches described here are limited by the restriction

that all probability distributions must be Gaussian.

In reciprocal space, this means that the common case of a

Hendrickson±Lattman phase probability distribution with an

accurately measured structure-factor magnitude can only be

represented by a two-dimensional Gaussian about the

centroid of the distribution. The bimodality and radial nature

of the distribution are lost.

In real space, the use of Gaussian probabilities for electron

densities precludes any effective use of positivity until the

density is known very accurately. Bricogne (1984) showed that

the combination of positivity (through entropy maximization)

and the known origin term allows the derivation of a joint

probability distribution which embodies the phase relation-

ships used in traditional direct methods. These relationships

are inaccessible using the methods described here, although

local curvatures of a non-Gaussian probability function could
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still be calculated using the same approach as Terwilliger

(1999).

10. Conclusions

A mathematically simple and computationally ef®cient

framework has been described for combining probability or

likelihood distributions originating in both real and reciprocal

space. This framework is closely related to methods which

have already been demonstrated by Terwilliger (1999) as a

powerful alternative to traditional density-modi®cation

procedures. The new treatment provides an alternative

perspective on that work.

The same approach allows the calculation of variances for

electron densities derived from the magnitude-and-phase

probability distribution in reciprocal space.

A full six-dimensional representation allows an arbitrary

multivariate Gaussian to be transformed between real and

reciprocal space without loss of information. This general form

is probably impractical except at very low resolution at the

moment; however, some calculations will be amenable to

sparse-matrix methods.

The approaches described here cannot replace the methods

of Terwilliger (1999) or Bricogne (1984), because the Gaussian

representation of the probability functions precludes the use

of certain types of information such as positivity; however, the

computational convenience of the Gaussian model may

render it valuable for some applications. Implementation of

the ideas described here has not yet been attempted.

APPENDIX A
Locating the minimum of combined quadratic sum
functions

The quadratic sum functions used in this paper have been

formulated in terms of a distribution about the minimum by

the change of variable from F to D or � to d. For multiple

distributions to be combined, they must all be written in terms

of the same set of variables; therefore, we must transform back

to F or �.

Consider a function Q which is represented in reciprocal

space,

Q�D� �P
h

P
k

D�h�D�k�W�ÿh;ÿk� �37�

or

Q�F� �P
h

P
k

�F�h� ÿ Fm�h���F�k� ÿ Fm�k��W�ÿh;ÿk�: �38�

This equation can be written in matrix form

Q � �Fÿ Fm�TW�Fÿ Fm�; �39�

where F is the vector of structure factors, Fi = F(hi) and W is

the matrix of curvatures Wi,j = W(ÿhi, ÿkj). The gradient with

respect to the vector of structure factors is then

�Q

�F
� 2�Fÿ Fm�TW: �40�

For quadratic functions originating in reciprocal space, Fm(h)

is available since it was used in the construction of the func-

tion. For quadratic functions originating in real space, Fm(h)

may be obtained by taking the Fourier transform of the

parameters of the minimum in real space �m(h).

Suppose several quadratic functions with different centres

and curvatures (possibly arising from different spaces) are

summed; the gradient of the resultant function at any point in

the parameter space will be the sum of the gradients of the

individual functions. The curvature matrix (which is inde-

pendent of the parameters) is also the sum of the curvatures of

the individual functions. To obtain the centre of the composite

function, the gradient vector at any point must be pre-multi-

plied by the inverse of the curvature matrix to obtain the shift

required to reach the minimum (multiplied by ÿ2).

Direct inversion of the matrix of curvatures (whose rank is

the number of re¯ections) will be impractical in most cases.

However, the problem is amenable to almost any ®rst- or

second-order optimization method as a consequence of the

following.

(i) In practice, the individual matrices of curvatures will

always be non-negative de®nite. After combination of quad-

ratic functions formed in real and reciprocal space, the

combined matrix will almost always be positive de®nite.

(ii) The product of the matrix of curvatures and an arbitrary

vector may be calculated directly for functions which are

independent in reciprocal space and by convolutions for

functions which are independent in real space. For the

combined function, the result may be summed over all

contributors.

(iii) The gradient of the combined function may be calcu-

lated from the product of the matrix of curvatures with the

distance to the centre of each quadratic function. Again, the

combined gradient is simply a sum over the contributors.

An obvious candidate for the solution of such systems is the

conjugate-gradient technique as employed by Zhang & Main

(1990) in the solution of Sayre's equation for large structures.

An advanced Newton-like method such as BFGS (Fletcher,

1987), which forms an estimate of the inverse matrix from

which parameter variances may be calculated, may also be

useful if the inverse matrix can be represented in a compact

manner (e.g. as a sparse matrix).

APPENDIX B
Verification of general symmetry relationships

The space-group-general expressions for the special case

quadratic distributions (in particular equation 18) are not self-

evident. For example, Cowtan (2000) omits the phase shift

factors in this equation. (18) will therefore be demonstrated to

be invariant under symmetry transformation of the reciprocal-

space terms D(h).



The set of symmetry operators is closed, so two symmetry

operators applied in turn always give a third symmetry

operator; thus, there exists i for all m, n such that

Rn�Rmx� Tm� � Tn � Rix� Ti: �41�
Collecting terms in powers of x,

RnRm � Ri �42�
RnTm � Tn � Ti: �43�

If (18) is invariant under symmetry transformation of the

terms, then substituting D(hRn)exp(2�ih�Tn) for D(h) should

not affect the value of the expression. (18) becomes

Q�D� �P
h

P
k

D�hRn� exp�2�ih � Tn�D�k�

� P
i

P
j

W 0�ÿhRi ÿ kRj� exp�2�i�ÿhTi ÿ kTj��

�P
h

P
k

D�hRn�D�k�
P

i

P
j

W 0�ÿhRi ÿ kRj�

� expf2�i�ÿh�Ti ÿ Tn� ÿ kTj�g: �44�
From (42) and (43), substitute Tiÿ Tn = RnTm and Ri = RnRm,

Q�D� �P
h

P
k

D�hRn�D�k�
P

i

P
j

W 0�ÿhRnRm ÿ kRj�

� exp�2�i�ÿhRnTm ÿ kTj��: �45�
Let h0 = hRn. The summation over i becomes a summation

over m because i is a function of m,

Q�D� �P
h0

P
k

D�h0�D�k�P
m

P
j

W 0�ÿh0Rm ÿ kRj�

� exp�2�i�ÿh0Tm ÿ kTj��; �46�
which is equivalent to the original expression.

Therefore, it is clear that this expression may be assembled

from an arbitrary unique set of terms in reciprocal space

without altering the result. (Friedel opposites should still be

included to obtain a real result or, alternatively, the real part

of the expression can be calculated and doubled.)
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