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With the rise of Bayesian methods in crystallography, the error

estimates attached to estimated phases are becoming as

important as the phase estimates themselves. Phase improve-

ment by density modi®cation can cause problems in this

environment because the quality of the resulting phases is

usually overestimated. This problem is addressed by an

extension of the 
 correction [Abrahams (1997). Acta Cryst.

D53, 371±376] to arbitrary density-modi®cation techniques.

The degree to which the improved phases are biased by the

features of the initial map is investigated in order to determine

the limits of the resulting procedure and the quality of the

phase-error estimates.
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1. Introduction

Phase improvement by density modi®cation is widely used for

the improvement of phases from MIR/MAD data. Improved

phases, along with weights representing the estimated phase

error, may then be used to calculate a weighted map for

interpretation in a graphics program. Phase improvement can

often lead to an interpretable map when the experimental

phasing alone is insuf®cient.

The aim of density-modi®cation calculations has frequently

been to obtain the best (most interpretable) map and some

success has been achieved in this respect. However, advances

in other areas of crystallographic computing, in particular the

increased use of statistical techniques, create another

imperative: that the phase probability distributions, or the

weights attached to the phases, should be as realistic as

possible. For some purposes, such as model re®nement, it may

be better to have a poorer phase set with reasonable weights

than a better phase set with unrealistic weights. In particular,

the following situations are common.

(i) The use of maximum-likelihood re®nement with phase

constraints (Pannu et al., 1998) provides a powerful method

for improving the restraint-to-parameter ratio for protein

re®nement, improving the radius of convergence and the

quality of the ®nal model. Initial phase improvement can

further improve re®nement results, but only if the error esti-

mates on the phases are reasonable.

(ii) The sequential use of several density-modi®cation

methods (possibly from different software packages) to obtain

further phase improvement depends on realistic phase-error

estimates at each stage, since most phase-improvement

procedures have been optimized to be used after a maximum-

likelihood phasing procedure (e.g. SHARP; La Fortelle &

Bricogne, 1997), which already give good phase-error esti-

mates. For best results in subsequent phase-improvement

stages, the resulting phase-error estimates should be equally

reliable to those from modern phasing software.
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In practice, almost all density-modi®cation methods lead to

badly overestimated weights (or badly underestimated phase

errors; see Cowtan & Main, 1996). This leads to signi®cant

problems in both phased re®nement and use of multiple

phase-improvement methods. In the case of phased re®ne-

ment, errors will be introduced into the model to ®t the esti-

mated phases to within the (underestimated) error bounds.

Phases from density modi®cation have been used with good

results in phased re®nement calculations, but only after the

application of a `blur factor' to reduce the associated weights

(Murshudov, 1997).

In the case of multiple density-modi®cation procedures,

subsequent procedures will be unable to overcome the phase

biases introduced by the ®rst procedure in the chain. Since

most phase-improvement calculations involve multiple cycles

of density modi®cation, the same effect also limits the ultimate

effectiveness of individual density-modi®cation calculations.

These problems have been addressed in the past by various

techniques with the aim of obtaining better maps. Some of

these techniques will be examined in more detail in order to

gauge the suitability of the output phases in weights for use in

phased re®nement and other critical applications and to

determine protocols under which reliable error estimates may

be obtained.

2. Overview of phase improvement by density
modi®cation

Conventional density-modi®cation calculations combine

information in both real and reciprocal space, and therefore

elements of the calculation are performed in both spaces.

Some initial phase information is required: for example, from

a MIR/MAD experiment. This is usually represented as a

phase probability distribution P('obs) described in terms of

Hendrickson±Lattmann coef®cients (Hendrickson & Latt-

mann, 1970).

The calculation then proceeds as follows.

(i) Centroid map coef®cients, representing best estimate of

the map coef®cients given the observed magnitudes and phase

probabilities, are calculated. These map coef®cients can be

described by a best phase and a weight to be applied to the

observed magnitudes.

(ii) An initial map is calculated from the initial map co-

ef®cients by FFT.

(iii) Density constraints are applied to produce a modi®ed

map from the initial map.

(iv) Modi®ed map coef®cients are determined from the

modi®ed map by inverse FFT.

(v) The agreement between the modi®ed map coef®cients

and the observed structure-factor magnitudes is used to esti-

mate the phase errors in the modi®ed phases. The estimated

phase error is used to form a phase probability distribution for

the modi®ed phase.

(vi) The experimental phase probability distribution and

the phase information from the modi®ed map are combined to

produce an updated phase probability distribution. This

combined distribution is obtained by multiplying the two

probability distributions.

The improved phase probabilities are then used to start

another cycle and the process is iterated until no further

improvement appears to be occurring.

Clearly, the multiplication of phase probability distributions

in step (vi) is only valid when those distributions contain

independent information. This is not the case, since the

experimental phases were used in calculating the initial map

for modi®cation. This problem forms the core concern of this

work.

The mathematical symbols used in this paper will be de®ned

by restating the calculation in mathematical terms as follows.

The initial data consist of the observed structure-factor

magnitudes |Fobs(h)| and some initial phase probability

distributions P['obs(h)]. At each cycle of density modi®cation,

an updated phase probability distribution P['(i)(h)] will be

calculated, where the subscript i represents the cycle number.

P['obs(h)] will become P['(0)(h)]. The density-modi®cation

cycle then proceeds as follows.

Step 1. Calculate the initial (centroid) map coef®cients, Finit.

Finit�h� � wjFobs�h�j exp�i'best�; �1�
where

w2 � R2�
0

P�'iÿ1�h�� cos�'�d'
� �2

� R2�
0

P�'iÿ1�h�� sin�'�d'
� �2

;

'best � tanÿ1
R2�
0

P�'iÿ1�h�� sin�'�d'
�R2�

0

P�'iÿ1�h�� cos�'�d'
� �

:

�2�
Optionally, difference map coef®cients could be used on

subsequent cycles. (F is used in this paper to represent a

general map coef®cient, not necessary a structure factor or

estimate. h, k, x and y are assumed to be vectors throughout.)

Step 2. The initial map �init is calculated by FFT,

�init�x� � �1=V�P
8h

Finit�h� exp�ÿ2�ih:x�: �3�

Step 3. The modi®ed map �mod is calculated from the initial

map by application of some set of density constraints

�mod�x� � f ��init�y� 8 y�: �4�

Step 4. The modi®ed map coef®cients are calculated by

inverse FFT,

Fmod�h� � jFmod�h�j exp�i'mod�
� R �mod�x� exp�2�ih:x�dx: �5�

A phase probability distribution for the modi®ed phases is

estimated using

P�'mod�h�� / exp�X cos�'ÿ 'mod��; �6�
where



X � �2�A=�1ÿ �2
A��jEobsjjEmodj: �7�

|Eobs| and |Emod| are the normalized magnitudes of the

observed structure factor and the modi®ed map coef®cient,

and �A is calculated by the method of Read (1986).

The updated phase probability distribution is calculated as

P�'�i��h�� � P�'mod�h��P�'obs�h��: �8�

The following additional symbols and terminology are used

in the paper. Fadj, map coef®cients adjusted by some means to

reduce the dependence on Finit, thus allowing meaningful

phase combination as described in steps 5 and 6. Fomit, map

coef®cients obtained from a full re¯ection-omit calculation

(see x4.1 and Cowtan & Main, 1996).

3. Correlation in phase combination

In the phase-combination calculation, the updated phase

probability distribution is obtained by multiplying the initial

phase probability by the distribution obtained from the

modi®ed map,

P�'�i�� � P�'mod�P�'obs�: �9�
Implicit in this step is the assumption that the probability

distributions for the initial and modi®ed phases are indepen-

dent. Since the centroid of the initial phase probability

distribution is used in calculating the initial map for modi®-

cation, this assumption is clearly wrong.

The approaches considered here try to improve the

combined phase estimates by isolating that portion of the

modi®ed map coef®cients which is independent of the initial

Fourier coef®cients used in the map calculation. These

modi®ed map coef®cients may then be used in the �A calcu-

lation to form independent probability estimates. For the

resultant modi®ed phase probability distribution to be inde-

pendent of the initial phase distribution, each modi®ed map

coef®cient must be independent of the corresponding initial

map coef®cient both in magnitude and phase.

In order to obtain independent phase estimates, a new set of

adjusted map coef®cients, Fadj(h), will be calculated, which

aim to be independent of the initial map coef®cients Finit(h).

One way of ensuring that the adjusted map coef®cients are

independent of the initial map coef®cients is to obtain them

from a completely independent source, so that the initial map

coef®cients play no part in the determination of the new map

coef®cients. Clearly this is impractical for density-modi®cation

calculations, which can only improve existing maps. However,

since phase combination is performed one re¯ection at a time,

it is possible to produce a scheme in which the new map

coef®cient for a particular re¯ection depends only on the

initial map coef®cients for other re¯ections. This guarantees

that the modi®ed map coef®cient is independent of the initial

map coef®cient as long as initial map coef®cients with differing

Miller indices are independent from each other. Since

conventional MIR/MAD phasing does not exploit phase

relationships between re¯ections, this assumption is valid for

experimental phasing.

An important limitation of this approach is that it is only

valid for the ®rst cycle of density modi®cation. Density

modi®cation exploits phase relationships between re¯ections

and so the modi®ed phases for re¯ections of differing Miller

index are no longer independent. The breakdown of the

approach is shown in x4.7 and gives rise to the same problems

which were encountered in traditional density-modi®cation

procedures, as documented by Cowtan & Main (1996). A full

theoretical model of a multicycle density-modi®cation calcu-

lation might suggest an answer to this problem, but such a

model is not yet available. Nonetheless, in practical tests the

approach described here provides a signi®cant improvement

over existing methods.

The resulting adjusted map coef®cient Fadj(h) will vary as

the initial map coef®cients for other re¯ections Finit(k), k 6� h

vary, but will be unchanged as Finit(h) is varied. This may

equivalently be stated in terms of the derivative of Fadj(h) with

respect to Finit(h),

@Fadj�h�
@Finit�h�

� 0 8 Finit�h�: �10�

No restriction is placed on the general derivative term

@Fmod�h�=@Finit�k� for k 6� h.

4. Approaches to correlation removal

4.1. Re¯ection omit

The re¯ection-omit scheme, described by Cowtan & Main

(1996), removes the dependence from the modi®ed map

coef®cients by omitting Finit(h) from the calculation of the

map which is used to generate Fmod(h). It is not practical to

calculate a map with each re¯ection omitted in turn, so it is

normal to divide the re¯ections into 10±20 sets and calculate a

map with each set omitted in turn. Each map is modi®ed and

back-transformed to produce estimates for the omitted

re¯ections.

An arbitrary density modi®cation is a set of functions Mh

which return a value for each modi®ed map coef®cient

dependent on the values of all the initial map coef®cients,

Fmod�h� � Mh��Finit�k1�;Finit�k2�; . . . ; Finit�ki � h�;
. . . ; Finit�kN��: �11�

In a full omit calculation, the initial map coef®cient Finit(h) is

omitted from the calculation of Fmod(h),

Fomit�h� � Mh�Finit�k1�;Finit�k2�; . . . ; 0; . . . ;Finit�kN��; �12�

therefore, Fomit(h) takes the same value for any value of

Finit(h). The gradient term @Fomit�h�=@Finit�h� is identically zero

for any density-modi®cation method.

The dif®culty of this approach is that it is time-consuming to

use many sets of re¯ections. However, noise is introduced into

the modi®ed map in proportion to the number of re¯ections in

each set, therefore fewer sets lead to noisier phases.
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4.2. The c correction

The 
 correction was introduced by Abrahams (1997) as a

means to improve the results of solvent-¯attening calculations.

It represents a correction to the diagonal elements of the

gradient matrix, achieved by subtracting the initial map

coef®cients, scaled by some real factor, from the modi®ed map

coef®cients,

Fadj�h� � Fmod�h� ÿ 
Finit�h�; �13�
therefore,

@Fadj�h�
@Finit�k�

� @Fmod�h�
@Finit�k�

ÿ 
�h�k; �14�

where in Abrahams' formulation the correction 
 is assumed

to be constant and equal for all re¯ections and is obtained

from theoretical consideration of the density-modi®cation

technique. Comparing (10) and (14), it is clear that 
 should

take the value of the diagonal element of the derivative

matrix. The value of 
 is constant only if the functions Mh are

linear, i.e. the Fmod(h) are linear combinations of the Finit(h).

In the general case, 
 may also be a function of h.

Abrahams' work concentrates on the calculation of 
 for

solvent ¯attening, although he suggests expressions for

histogram matching and some other methods. Techniques are

examined here for estimating 
 for an arbitrary unknown

density modi®cation, including cases where 
 may take on

different values for different groups of re¯ections.

4.2.1. The theoretical c. Abrahams (1997) calculates a

theoretical value of 
 for the case when the map modi®cation

can be expressed in the following form,

�mod�x� � g�x��init�x�: �15�
In the case of solvent ¯attening, g(x) is a function which is 1 in

the protein region and 0 in the solvent region (given appro-

priate adjustment of the origin term to bring the mean of the

solvent to zero). In reciprocal space, the product becomes a

convolution,

Fmod�h� � �1=V�P
k

G�hÿ k�Finit�k�; �16�

where G is the Fourier transform of g. In this case,


 � @Fmod�h�
@Finit�h�

� �1=V�G�000�; �17�

thus, 
 is constant and equal for all re¯ections. (1/V)G(000) = �g;

therefore, for solvent ¯attening 
 is equal to the fraction of the

unit cell occupied by protein.

The extension of this reasoning to averaging is straightfor-

ward; however, other techniques such as histogram matching

present some dif®culties which will be examined in more detail

in x4.4. The prediction of 
 is further complicated when

multiple techniques are applied simultaneously.

Application of the 
 correction to solvent ¯attening has the

effect of inverting or `¯ipping' the solvent region of the map;

therefore, the modi®ed density in the solvent region is anti-

correlated with the initial density. However, the weights for

the modi®ed phases are normally signi®cantly smaller than the

weights for the initial phases, so the improved map after phase

combination generally shows positive, if reduced, features in

the solvent region.

4.2.2. The empirical c. It is more convenient for many

purposes to have a single algorithm which is applicable to bias

reduction for any form of density modi®cation. It would

therefore be useful to be able to estimate a value for 
 from

the values of the structure factors alone without reference to

which density modi®cations have been applied.

One approach is to assume that the modi®ed map coef®c-

ient is made up from the initial map coef®cient multiplied by 
,

plus some new component Findep(h) which is independent in

magnitude and phase. As has been shown, the ®rst part of this

assumption holds, at least for solvent ¯attening:

Fmod�h� � Findep�h� � 
Finit�h�: �18�

To calculate an estimate for 
 in this expression, assuming that


 is constant for all re¯ections, we multiply this equation by

Finit(ÿh) and sum over all re¯ections,P
h 6�000

Fmod�h�Finit�ÿh� � P
h 6�000

Findep�h�Finit�ÿh�

� 
 P
h6�000

jFinit�h�j2: �19�

If Findep(h) is independent of Finit(h) in phase, the ®rst

summation on the right-hand side of this equation will be

small. Then,


 � P
h 6�000

Fmod�h�Finit�ÿh�� P
h 6�000

�Finit�h��2: �20�

Summation over all re¯ections means that 
 is real.

Applying this correction will remove the correlation

between the initial and modi®ed map coef®cients. This has the

disadvantage that only features which were not present in the

initial map coef®cients can appear in the adjusted coef®cients;

it is impossible for the empirical 
-corrected map to con®rm

features which are already present. Since there will usually be

some indication of the correct features in the initial map (e.g.

¯atness in the solvent, agreement between NCS-related

densities), the empirical 
 will generally be overestimated.

The method as outlined also assumes that 
 is constant for

all re¯ections, although it would be possible to calculate 

separately for different groups of re¯ections: for example, by

grouping re¯ections in resolution shells.

4.2.3. The perturbation c. A better approach would be to

obtain a direct estimate of diagonal terms of the gradient

matrix, allowing current features of the data to be reinforced if

they are genuinely indicated by the density modi®cation.

This may be achieved by applying a perturbation to the

initial map and measuring the size of the corresponding

perturbation in the modi®ed map. The density modi®cation

must be performed twice, once for the unperturbed and once

for the perturbed data.

Let the perturbation to the initial map coef®cients be

�Finit(h) and the corresponding perturbation in the modi®ed

map be �Fmod(h). Then, by the chain rule,



�Fmod�h� '
P
8k

@Fmod�h�
@Finit�k�

�Finit�k�: �21�

Multiplying both sides by �Finit(ÿh) and summing over some

subset H of the re¯ections,

P
h2H

�Fmod�h��Finit�ÿh� ' P
h2H

P
8k

@Fmod�h�
@Finit�k�

�Finit�k��Finit�ÿh�

' P
h2H

�
@Fmod�h�
@Fmod�h�

j�Finit�h�j2

�P
k 6�h

@Fmod�h�
@Finit�k�

�Finit�k��Finit�ÿh�
�
:

�22�
Rearranging,

P
h2H

@Fmod�h�
@Fmod�h�

j�Finit�h�j2 '
P
h2H

�
�Fmod�h��Finit�ÿh�

ÿ�Finit�ÿh�P
k6�h

@Fmod�h�
@Finit�k�

�Finit�k�
�
:

�23�
The ®nal summation in (23) (over k 6� h) is the derivative of

the re¯ection omit equation (12), which could be called

�Fomit(h). This may be expected to be independent of

�Finit(h) for the same reasons as for the omit calculation and

this term will therefore be small. As a result, if

@Fmod�h�=@Finit�h� is constant for all re¯ections in the set H,

then


H �
@Fmod�h�
@Finit�h� h2H

'
P
h2H

�Fmod�h��Finit�ÿh�P
h2H

j�Finit�h�j2
: �24�

The perturbation 
 provides an estimate for any subset of the

diagonal terms of the gradient matrix, under the assumption

that these terms are equal for the chosen subset of re¯ections.

The resultant adjusted map coef®cients will be independent of

the initial map coef®cients for a map modi®cation for which

these elements are equal and constant, i.e. the modi®cation

must be linear.

4.3. Correlation removal and solvent ¯attening

The theoretical 
 for solvent ¯attening has already been

described in x4.2.1, where it was shown that 
 = fp, where fp is

the fraction of the unit cell occupied by protein.

The perturbation 
, since it estimates the diagonal terms of

the derivative matrix, will agree with the theoretical 
 to

within the limits of the approximation in (24).

The re¯ection-omit calculation for solvent ¯attening can be

described as follows. Consider the calculation of Fomit(h), in

which only the map coef®cient Finit(h) has been omitted from

the map. The initial map coef®cients may then be written

Finit(k) ÿ �h�kFinit(h). Substituting this expression into the

equation for solvent ¯attening (16) in x4.2.1, we obtain the

equation

Fomit�h� � �1=V�P
k

G�hÿ k�Finit�k� ÿ �1=V�G�000�Finit�h�:
�25�

Since (1/V)G(000) = fp, this is clearly identical to the result for

the theoretical 
. In practice, there will be some noise intro-

duced through simultaneously omitting multiple re¯ections.

The empirical 
 is estimated by rewriting equation (25) as

Fmod(h) = fp Finit(h) + Fomit(h) and substituting in (20):


 �

P
h6�000

fpFinit�h� � Fomit�h�
� �

Finit�ÿh�P
h6�000

jFinit�h�j2
�26�

� fp �

P
h 6�000

Finit�ÿh�Fomit�h�P
h 6�000

jFinit�h�j2
: �27�

If Fomit(h) and Finit(h) are independent in phase, the ®rst term

in (27) will be dominant and then the empirical 
 will agree

with the other approaches. This may hold approximately for a

noisy initial map, where phase correlation amongst re¯ection

is insigni®cant. However, if the solvent is already ¯at in the

initial map, then Fmod(h) = Finit(h) and Fomit(h) = (1 ÿ fp)

Finit(h) and the empirical 
 is therefore equal to 1. In general,

the solvent will be ¯atter than the protein; therefore, the

empirical estimate for 
 is generally overestimated.

This is an important distinction between the empirical 
 and

the other approaches. The other approaches all return a scaled

version of the current structure factors when applied to an

already ¯attened map. This re¯ects the fact that solvent ¯at-

tening is con®rming a feature already present in the map;

therefore, the current phasing should be reinforced. By

contrast, since the empirical 
 only allows new uncorrelated

features to appear in the adjusted data, when ¯attening an

already ¯at map no new phasing is introduced.

As a result, the empirical 
 may discard some useful

information. However, the other approaches may give rise to

problems when ¯attening is applied over multiple cycles to the

same data. This problem is considered further in x4.7.

4.4. Correlation removal and histogram matching

Histogram matching (Zhang & Main, 1990) is an effective

complement to solvent ¯attening, since while solvent ¯at-

tening provides updated values for the density in the solvent

region of the map, histogram matching provides values for the

protein region. It is also particularly effective for increasing

the resolution of a map (Zhang et al., 1997).

Histogram matching involves the rescaling of density values

in the map to obtain some desired density histogram, which is

a known function of resolution and arises from the shape and

spacing of atoms in protein structures. The rescaling is applied

by giving each point in the protein a value based only on the

initial value of the density at that point,

�mod�x� � f ��init�x��; �28�
where f is a monotonically increasing function.
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In order to obtain an equivalent formula in reciprocal space,

the function f can be replaced by a power-series expansion,

�mod�x� � c0 � c1�init�x� � c2�init�x�2 � c3�init�x�3 � . . . �29�
The Fourier transform of this equation is

Fmod�h� � Vc0�h�000 � c1Finit�h�
� c2�1=V�P

k

Finit�k�Finit�hÿ k�

� c3�1=V2�P
k

P
l

Finit�k�Finit�l�Finit�hÿ kÿ l� � . . .

�30�
Ignoring the origin term, each modi®ed map coef®cient is

primarily dependent on the corresponding initial map coef®-

cient, followed by a Sayre term, a quartet term and so on.

Abrahams suggests that a theoretical 
 correction may be

calculated for histogram matching (Abrahams, 1997; x5) from

the formula 
 = �g, where g(x) is calculated by dividing the

modi®ed map by the initial map according to the formula

g�x� � ��mod�x� � c�x�����init�x� � c�x��; �31�
where c(x) is chosen to ensure that the numerator is zero at

any map point where the denominator is zero. Unfortunately,

c(x) is under-determined; for example, c(x) = ÿ�mod(x) satis-

®es this condition but gives g(x) = 0 for all x. From (29), when

�init(x) = 0, �mod(x) = c0, so in practice it is suf®cient to add a

constant in the numerator to avoid singularities. An additional

feature of histogram matching is that the modi®ed map is

independent of the mean and variance of the initial map and

the positions of the zeros in the initial map are arbitrarily

dependent on its origin term.

A slight modi®cation of this approach which avoids these

dif®culties is to calculate the least-squares straight line ®tting

�mod(x) to �init(x). The gradient of this line will give an esti-

mate for 
 and the intercept is ignored. m and c are calculated

to minimize R in the expression

R �P
x

f�m�init�x� � c� ÿ �mod�x�g2; �32�

giving


 � m � �init�mod ÿ �init �mod

�2
init ÿ �init

2
: �33�

The Fourier transform of this equation is identical to the

empirical estimate for 
 described in x4.2.2.

Some problems with this approach appear when we

consider the derivatives of the modi®ed map with respect to

the initial map coef®cients. From (30),

@Fmod�h�
@Finit�h�

� c1 � c2�2=V�Finit�0�

� c3�3=V2�P
k

Finit�k�Finit�hÿ k�: �34�

The density modi®cation is non-linear; therefore, no 

correction will completely remove the effect of Finit(h) on

Fmod(h). Using 
 = c1 will give zero gradient near Finit(h) = 0;

the perturbation 
 will give zero gradient near the current

values of Finit and the empirical 
 will force the integral of the

gradient between zero and the current value to zero.

In this case, the re¯ection-omit method behaves differently

from the various 
 corrections because the dependence of

Fmod(h) on Finit(h) is explicitly removed, and therefore the

gradient term is constant and zero even for non-linear density

modi®cations.

4.5. Correlation removal and averaging

When performing averaging alone (i.e. without solvent

¯attening), the region of the cell outside the averaging mask is

unmodi®ed. The density inside the averaging mask is scaled

down by a factor of 1/Nncs and combined with the reoriented

density from elsewhere in the cell (where Nncs is the order of

the non-crystallographic symmetry). Each map coef®cient of

the rotated density will be largely independent of the corre-

sponding initial map coef®cient; the value of 
, re¯ecting the

fraction of the original signal in the modi®ed map, is expected

to be fs + fp/Nncs, where fs and fp are the solvent and protein

fractions, respectively.

When solvent ¯attening is applied, the solvent density is no

longer conserved and so the expected value of 
 will be fp/Nncs,

as given by Abrahams (1997).

Note that averaging may be described as multiplication of

the original signal by some mask function, which may now

contain the values 1 and 1/Nncs (and 0 if ¯attening is

performed), followed by addition of a signal which is some-

what independent of the original density. The strong parallel

with the solvent-¯attening calculation suggests that the

behaviour of the various approaches to correlation removal

will be similar to the case of solvent ¯attening.

4.6. Correlation removal and other density modi®cations

Multi-resolution modi®cation is a technique ®rst employed

in the dm package, version 1.8 (Cowtan, 1998) and exploits the

fact that electron-density histograms have been predicted over

a wide range of resolutions. Solvent ¯attening and histogram

matching are therefore applied at several resolutions as

follows. A low-resolution map is initially calculated from a set

of re¯ections truncated to the lower resolution. This map is

modi®ed by solvent ¯attening and histogram matching using

the electron-density histogram at that resolution. The

resulting map coef®cients (which extend to higher resolution)

are averaged with the initial map coef®cients. The new map

coef®cients are then used to calculate a higher resolution map.

The process is then repeated using higher resolution cutoffs

until all the data has been included. Most of the improvement

is obtained by performing density modi®cation at two reso-

lutions, with comparatively small gains from further stages.

When the perturbation method was used to estimate the 

correction in this case, it was found that different values of 

are required in the different resolution shells. In this case, it is

necessary to calculate the 
 correction as a function of reso-

lution. This approach may also be necessary for other complex

density modi®cations; for example, atomization calculations

such as the ARP/wARP procedure (Lamzin & Wilson, 1997).



4.7. Density modi®cation over multiple cycles

The problem of correlation has further implications when

density modi®cation is applied over multiple cycles. As was

shown in x4.3, application of solvent ¯attening to an already

¯attened map will reinforce the existing phasing, since the

solvent ¯attening is assumed to be new information. Over

many cycles, this would lead to the solvent constraint over-

whelming the contribution from the experimental phasing.

This problem is addressed in practical density-modi®cation

implementations by performing phase combination from the

weighted modi®ed phases back to the initial experimental

phases at each cycle, rather than to the phases obtained from

the previous density-modi®cation cycle as might be expected.

In practice, if phase combination is performed using the phase

probability distributions from the previous cycle, the ®gures of

merit converge rapidly towards 1.0 with little improvement in

the phases after the ®rst cycle.

A further dif®culty arises because the density constraints

imply phase relationships throughout reciprocal space. The

bias-reduction techniques described in this paper depend on

assuring that Fadj(h) is primarily dependent on Finit(k), k 6� h,

and is minimally dependent on Finit(h). However, after a single

cycle of density modi®cation, all the other re¯ections will

contain contributions from Finit(h), which in turn will in¯uence

the value of Fadj(h) on subsequent cycles.

A simple illustration can be seen in the case of applying

solvent ¯attening twice to the same map. In the case of 50%

solvent, Abrahams (1997) showed that the application of


-corrected solvent ¯attening was identical to ¯ipping

(inverting) the density in the solvent region (introduced by

Abrahams & Leslie, 1996). The resulting map coef®cient

Fadj(h) is only dependent on Finit(k), k 6� h, and not Finit(h).

However, applying the same density modi®cation again ¯ips

the solvent back to its initial value; therefore, the initial data is

restored through phase relationships with the rest of the

re¯ections.

Let F0(h) be the coef®cients of the initial map, F1(h) the

coef®cients after the ®rst modi®cation of the map and F2(h)

the coef®cients after the second modi®cation of the map. For a


-corrected ¯attening calculation, the coef®cients are related

as follows

F1�h� � �1=V�P
k 6�h

G�hÿ k�F0�k�; �35�

F2�h� � �1=V�P
k6�h

G�hÿ k�F1�k�: �36�

The derivative matrix of F2(h) with respect to F0(l) is then

@F2�h�
@F0�l�

�P
k

@F2�h�
@F1�k�

@F1�k�
@F0�l�

� �1=V2� P
k 6�h;l

G�hÿ k�G�kÿ l�: �37�

The diagonal elements of this matrix are given by

@F2�h�
@F0�h�

� �1=V2�P
k 6�h

jG�hÿ k�j2: �38�

Even if the diagonal elements of both derivative matrices are

zero, the diagonal elements of the product will be non-zero

and will increase with the strength of the phase relationships

in reciprocal space.

To counter this problem, it might be possible to perform

bias reduction with respect to several maps from different

stages of the calculation; however, in a real calculation the

effect of phase weighting and combination at each stage make

such an approach extremely complex.

5. Test calculations

To test some of the ideas described here, data were used from

the structure of RNAase from Streptomyces aureofaciens

(SÆ evcÏõÂk et al., 1991). The structure consists of two molecules of

96 amino acids in the asymmetric unit, including one �-helix

and a twisted three-strand antiparallel �-sheet. The structure

was solved using multiple isomorphous derivatives and re®ned

to 1.8 AÊ .

This data set was chosen because the derivative data were

all available and the structure was suitable for testing of both

averaging and non-averaging calculations. The phasing was

calculated using an earlier data set to 2.4 AÊ and the two

weaker (mercury and iodine) derivatives of the three collected

at that resolution. MIR phases were calculated using the

SHARP program (La Fortelle & Bricogne, 1997); SHARP was

chosen because it not only provides good phase estimates, but

has less tendency to overestimate the accuracy of the esti-

mated phases (and thus the FOMs) than other programs. The

mean ®gure-of-merit of the initial phases to 2.5 AÊ resolution

was 0.35, although beyond 3.1 AÊ there was only one derivative

and the phasing was very weak. The mean phase error was

�73� and the map correlation to the ®nal map was 0.40. The

resulting map shows broken connectivity along the main chain

and many links between chains; this map would be dif®cult to

interpret and thus provides an effective trial for density

modi®cation.

The various correlation-removal techniques described in

this paper were implemented in an experimental version of the

dm density-modi®cation software (Cowtan, 1998). For the

purposes of understanding the propagation of bias in phase-

improvement calculations, some simpli®cations were made in

the density-modi®cation algorithm.

(i) All re¯ections are used at every cycle of the calculation.

It has often been the practice to introduce re¯ections during

the course of a density-modi®cation calculation; for example,

to perform gradual phase extension for lower to higher reso-

lution shells and reduce overestimation of FOMs for weakly

extrapolated re¯ections. (However, use of all re¯ections is the

recommended approach for the dm software in re¯ection-omit

mode).

(ii) The calculations are run for a small number of cycles.

Performing many cycles of density modi®cation may lead to

maps which are more easily interpreted but more noisy when

judged in terms of weighted mean phase error or map corre-

lation to the ®nal model. (This is a direct result of the weights

being overestimated.) The problem of which map is `best'

Acta Cryst. (1999). D55, 1555±1567 Cowtan � Phase-improvement calculations 1561

research papers



research papers

1562 Cowtan � Phase-improvement calculations Acta Cryst. (1999). D55, 1555±1567

depends on the purpose for which it is to be used, so the

behaviour of the calculations is only examined over enough

cycles to demonstrate the points raised in this paper.

Thus, the results presented here are intended less as a direct

comparison of the various approaches, but are an attempt to

elucidate the mechanism of signal propagation and error

estimation in phase-improvement calculations.

The perturbation 
 was implemented by introducing a

perturbation to each acentric re¯ection whose magnitude was

of 10% of the mean intensity in each resolution shell and

whose phase was random. The perturbations are used in two

ways: ®rstly, to estimate the mean of the diagonal elements of

the derivative matrix in order to test the independence of the

initial and modi®ed map coef®cients and, secondly, as an

estimate for the 
 correction to remove that dependence.

5.1. Sources of error in the modi®ed phase probabilties

The initial phases will contain a certain level of error, which

ideally should be re¯ected in the probability distributions

attached to those phases. In order to compare different

density-modi®cation schemes, additional errors introduced

during phase improvement must be compared. Types of error

introduced during phase improvement include the following.

(i) Bias from the initial map. This occurs if the density-

modi®cation calculation increases the weight of the features

already present in the initial map without the support of

additional information from the density-modi®cation

constraints. This source of error can be examined by applying

a noise signal to the initial map and measuring whether that

noise signal has been reinforced in the ®nal map. The results

are presented in x5.2 and x5.3.

(ii) Over-weighting of the modi®ed phases. This occurs

when the estimated phases errors attached to the modi®ed

phases are systematically smaller than the actual errors in the

phases. This can cripple any subsequent calculation which

depends on the phase-error estimates. Over-weighting is

tested in x5.4. Furthermore, over-weighting of the phases from

an early cycle of a density-modi®cation calculation will also

contribute to bias in the following cycles (x5.3).

(iii) Noise introduced during the calculation. Noise is

introduced by sources including errors in masks, ¯attening of

ordered solvent, incorrect density histograms and omission of

missing or free-set re¯ections. The relative effect of the

combination of bias, over-weighting and noise between

different density-modi®cation schemes may be examined by

comparing the ®nal maps from phase improvement. These

results are presented in x5.5.

5.2. Correlation tests

5.2.1. Estimation of c. The ®rst tests were to establish the

level of dependence between initial and modi®ed map coef-

®cients under a variety of density modi®cations and bias-

reduction schemes. This was achieved by using the perturba-

tion 
 to estimate the mean of the diagonal elements of the

derivative matrix.

Note that the mean of the diagonal elements is not an

absolute indicator of independence, since the elements of the

diagonal matrix may be scaled by simply scaling the modi®ed

map; however, the density-modi®cation techniques in dm are

all implemented in such a way as to preserve the data on an

absolute scale and the values therefore contain signi®cant

information.

The values for 
 calculated using theoretical, perturbation

and empirical estimates with solvent ¯attening, histogram

matching, averaging and ¯attening plus averaging are shown

in Table 1.

For solvent ¯attening, averaging, and ¯attening plus aver-

aging, the theoretical values match those predicted by the

perturbation 
 very well. However, in all cases the empirical 

is overestimated. This suggests that the initial map already

agrees to some extent with the density constraints: the solvent

is already ¯atter than the protein, the protein already has a

histogram skewed away from Gaussian and the NCS-related

domains already agree somewhat. These features are present

in the initial map, and the empirical 
 tries to ensure that they

are not present in the adjusted map.

Note that the estimated 
 for histogram matching is

signi®cantly greater than 1, revealing that the histogram-

matching process is scaling up the initial map coef®cients.

Whether it is also adding useful information is not apparent at

this stage. Further tests reveal that the estimated 
 for histo-

gram matching varies with resolution, map quality and solvent

content, and prediction of a theoretical value is therefore

probably impractical. The empirical 
 is overestimated and

therefore unsuitable for use as a theoretical estimate.

The theoretical estimates for 
 for the other density

modi®cations are con®rmed by the perturbation method. The

theoretical 
 can be calculated for solvent ¯attening and

averaging calculations and only requires a single density-

modi®cation step; therefore, this approach is quicker when

only these methods are employed.

5.2.2. Application of the c correction. The estimated values

for h@Fmod�h�=@Finit�h�i for the adjusted map coef®cients

arising from the re¯ection-omit method and the various 

corrections are shown in Table 2. The derivative with no bias

correction agrees well with the previous estimate for the

perturbation 
 (the small differences arise from the use of a

different random seed).

Table 1
Estimated 
 corrections for solvent ¯attening, histogram matching,
averaging and averaging plus ¯attening.

The theoretical 
 is calculated for the formulae in x4.3 and x4.5.

Density modi®cation Estimated 


Theoretical Perturbation Empirical

Solvent ¯attening 0.55 0.56 0.63
Histogram matching ² 1.79 1.97
Averaging 0.725 0.70 0.75
Averaging + solvent ¯attening 0.275 0.32 0.46

² For histogram matching, the only theoretical estimate for 
 is the empirical 
; see
x4.4.



The re¯ection-omit method, the theoretical and perturba-

tion 
 all give map coef®cients which are independent of the

initial estimates to within the range of error introduced by the

perturbation (again excepting the theoretical 
 for histogram

matching).

The perturbation 
 overestimates the dependence between

the initial and modi®ed map coef®cients, and as a result the

corrected coef®cients have an inverse dependence on the

initial values. Thus, phase combination with these coef®cients

will suppress genuine features in the initial map.

The value of h@Fmod�h�=@Finit�h�i estimated by the pertur-

bation methods was also examined as a function of resolution.

Under all the density modi®cations described above,

@Fmod�h�=@Finit�h� does not appear to vary signi®cantly with

resolution. This result is expected from the theory for solvent

¯attening and averaging; however, it is interesting that it also

holds for histogram matching.

5.3. Correlation over multiple cycles

To examine the effect of correlation over multiple cycles of

density modi®cation, the perturbation procedure used to

estimate h@Fmod�h�=@Finit�h�i in the previous section was

modi®ed to apply a full phase-improvement calculation.

The adjusted map coef®cients were incorporated in a full

iterated density-modi®cation calculation as follows. Weights

were calculated for the phases associated with the adjusted

map coef®cients, using the �A approach of Read (1986). Phase

combination was performed between the newly weighted

phases and the MIR phase probabilities (or, in a later test, the

phase probability distributions from the previous cycle). The

combined phases and weights were used in the calculation of a

new weighted map for the next cycle of density modi®cation.

To test for bias over multiple cycles, a perturbation was

introduced into the initial map coef®cients (but is not present

in the phase probability distributions employed in phase

combination). The corresponding perturbation in the ®nal

map after multiple cycles of density modi®cation was then

measured for the various bias corrections and density modi-

®cations. Note that these bias estimates are lower bounds,

since each phase combination will introduce further bias with

respect to the (unperturbed) MIR phases.

Estimated values of h@Fdm�h�=@Finit�h�i, where Fdm(h) is the

map coef®cient after multiple cycles of density modi®cation

and phase combination, are shown in Fig.

1. The estimated bias is shown for density-

modi®cation schemes using the uncor-

rected �A phase weighting, the perturba-

tion 
 correction and for the empirical 

correction. (The re¯ection-omit and theor-

etical 
 results are very similar to the

perturbation 
 and so have been omitted).

Figs. 1(a) and 1(b) show the results for

solvent ¯attening and ¯attening plus aver-

aging, respectively.

In Fig. 1(a), the modi®ed phases with no

bias correction remain biased with respect

to the initial map for the whole of the calculation. After a

single cycle, the perturbation 
 gives a map which is unbiased

with respect to the initial map. However, after a second cycle

the map is again strongly biased by the initial map, as was

predicted in x4.7. Subsequently, even cycles show bias with

respect to the initial map and odd cycles do not. The behaviour

of the empirical 
 is similar to the perturbation 
 with respect

to bias. The inclusion of the phase weighting and combination

steps means that the level of bias is no longer subject to simple

estimation.

Similar tests on the level of bias in the maps after multiple

cycles of density modi®cation were conducted using histogram

matching alone and NCS averaging alone. In both cases, the

results were very similar to those obtained using solvent ¯at-

tening alone.

Once averaging and solvent ¯attening are combined

(Fig. 1b) the problem of bias becomes far less serious in the

uncorrected density-modi®cation scheme, suggesting that

even with twofold averaging and solvent ¯attening the phases

are reasonably well determined. The perturbation 
 shows less

oscillation than in previous cases. However, the empirical 
 is

still overcorrecting, leading to alternate maps which are

positively and negatively correlated with the initial map.

Note that these results explain the oscillations in map

quality from cycle to cycle observed in Cowtan & Main (1996).

Maps on even cycles are systematically worse owing to

stronger bias with respect to the initial map.

5.4. Figure-of-merit estimation

The critical test of the bias-reduction schemes described

here is the accuracy of the estimated phase errors (®gures of

merit) which are obtained. Ideally, the ®gure-of-merit west(h)

should be an estimate of cos[�'(h)], where �'(h) is the error in

the estimated phase for that re¯ection.

The ®gure-of-merit (FOM) overestimation can be measured

by calculating the FOM overestimation factor m which gives

the best ®t between (1/m)west(h) and cos[�'(h)] for the entire

data set. [Thus, for re¯ections with west(h) = 1, �'(h) should

equal 0 and for re¯ections with west(h) = 0, �'(h) should be

evenly distributed over 0±2�.]

The FOM overestimation factor m is shown in Fig. 2(a) for

the MIR data after 1±6 cycles of solvent ¯attening. The initial

FOMs for the MIR data are slightly overestimated; the error
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Table 2
Estimated @Fmod�h�/@Finit�h� after bias correction by re¯ection-omit and 
 corrections for solvent
¯attening, histogram matching, averaging and averaging plus ¯attening.

The theoretical 
 is calculated using the formulae in x4.3 and x4.5.

Density modi®cation h@Fmod�h�=@Finit�h�i after correction

None Omit Theoretical 
 Perturbation 
 Empirical 


Solvent ¯attening 0.54 ÿ0.01 0.01 ÿ0.02 ÿ0.11
Histogram matching 1.77 ÿ0.03 ² ÿ0.01 ÿ0.19
Averaging 0.70 0.01 ÿ0.03 ÿ0.01 ÿ0.06
Averaging + solvent ¯attening 0.30 0.00 0.02 ÿ0.02 ÿ0.16

² For histogram matching, the only theoretical estimate for 
 is the empirical 
; see x4.4.
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treatment in the SHARP program is comprehensive, so this

initial error overestimation may well be the result of errors in

the ®nal model phases. Results are shown for no bias correc-

tion, perturbation and empirical 
 correction. (The re¯ection

omit and theoretical 
 results are indistinguishable from the

perturbation 
 result.)

After a single cycle of solvent ¯attening with no bias

correction, the overestimation of FOMs is considerably worse

and worsens further over subsequent cycles. Examining the

data itself reveals that the mean estimated FOM hwest(h)i
rapidly approaches 1.0, even though the phases stop

improving and the mean phase error is still �70�.
With the perturbation 
, the FOM overestimation factor is

unchanged after the ®rst cycle, although overestimation occurs

on subsequent cycles. Although bias with respect to the initial

map only appears in even-numbered cycles, overall bias

worsens as the cycles proceed because bias is being introduced

with respect to every previous map in the calculation. The

mean FOM increases every cycle, but much more slowly than

without bias correction.

The empirical 
 causes the least overestimation of FOMs,

suggesting that the ®gures of merit are most reliable; however,

examining the data shows that the phases are not improving

either.

Similar results are obtained for all the bias-removal tech-

niques using histogram matching or averaging.

Fig. 2(b) shows the FOM overestimation m for the MIR and

density-modi®ed data using both solvent ¯attening and aver-

aging. Note that in this case even with no bias removal the

error estimation is much better than for solvent ¯attening

Figure 2
FOM overestimation for MIR data and after 1±6 cycles of (a) solvent
¯attening and (b) ¯attening plus averaging.

Figure 1
Estimated values of h@Fdm�h�=@Finit�h�i for (a) six cycles of solvent
¯attening and (b) six cycles of ¯attening plus averaging, as a function
of number of density-modi®cation cycles using no bias correction,
perturbation 
 and empirical 
.



alone (Fig. 2). Bias removal is effective in reducing the

remaining FOM overestimation. This again con®rms that

when averaging and another constraint are available, the

phases are fairly well determined.

5.5. Phase-improvement results

The quality of the improved map will depend on both the

quality of the phases and the quality of the associated weights

which are used in calculation of a weighted map. The overall

quality of all of this information may be judged by calculating

the correlation coef®cient between the weighted map using

the density-modi®ed phases and weights with the ®nal map

obtained from the re®ned model at the same resolution,

correl � �dm�cal ÿ �dm �cal

���2
dm ÿ �dm

2���2
cal ÿ �cal

2��1=2
: �39�

The map correlation coef®cient is highly sensitive to the

overall B factor, but for these comparative trials using an

identical initial data set it provides an adequate comparison.

The map correlations presented here are calculated over the

whole electron-density map; however, similar results were

obtained when the correlation was calculated over the protein

region alone.

Fig. 3 shows the map correlation coef®cient for the MIR

map and 1±6 cycles of solvent ¯attening with various bias-

reduction techniques. With no bias reduction, the map

improves for a single cycle, but beyond that the map dete-

riorates again. The poor quality of the initial map in this case

makes the ®nal map very sensitive to bias from FOM over-

estimation, hence the poor result in this case.

Re¯ection-omit and the theoretical and perturbation 

corrections give similar results, with a more substantial

improvement on the ®rst cycle and roughly constant correla-

tion coef®cient for the next two cycles before the map again

deteriorates owing to FOM overestimation. Note that the

re¯ection-omit calculation gives a very slightly poorer result

than the other two methods; this is a consequence of the noise

introduced by omitting large batches of re¯ections. As the

number of omit sets is increased to 100 or 1000, the results for

the re¯ection-omit calculation approach those for the other

methods.

The empirical 
 performs well for one cycle, but on the

second cycle the map is worse than the initial map. The good

features introduced in the ®rst cycle are being removed by the

overcorrection applied in the second cycle. To avoid this

problem, an additional test was performed: the phase prob-

ability distributions obtained after empirical 
 correction at

each cycle were multiplied by the combined phase probability

distribution from the previous cycle (as opposed to the

experimental distribution), as was suggested in x4.2.2. The

results are better, but more cycles are required to achieve the

best map, which is still poorer than for the perturbation 
.

Fig. 4 shows the map correlation coef®cient for the MIR

map and 1±6 cycles of histogram matching. With no bias

correction, there is a similar improvement as for solvent ¯at-

tening over a single cycle. However, with re¯ection omit or the

perturbation 
 there is a much greater improvement over a

single cycle, and the improvement continues for two further

cycles before oscillating as described in x5.3. The empirical 

behaves in a similar manner as for solvent ¯attening, although

combination back to the previous cycle helps less in this case.

Fig. 5 shows the map correlation coef®cient for the MIR

map and 1±6 cycles of both solvent ¯attening and histogram

matching. The results are fairly similar to those for histogram

matching alone, again suggesting that this is the more powerful

constraint. With no bias reduction, the map is somewhat

improved over histogram matching alone, suggesting that the

problem is somewhat better determined. Interestingly, when
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Figure 3
Map improvement measured by map correlation coef®cient for maps
from MIR and 1±6 cycles of solvent ¯attening. The results of the
theoretical 
 correction are omitted because they are indistinguishable
from the perturbation 
 results. Emp/comb 
 refers to the empirical 

correction with phase combination back to the previous cycle.

Figure 4
Map improvement measured by map correlation coef®cient for maps
from MIR and 1±6 cycles of histogram matching.
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bias correction is applied the results are very slightly worse

than for histogram matching alone. It is suspected that one

important effect of both constraints is to increase the contrast

between solvent and protein, and actually forcing solvent

¯atness as well is detrimental at this resolution. As resolution

drops, histogram matching becomes less effective, so the

combination may still be useful in many cases.

Fig. 6 shows the map correlation coef®cient for the MIR

map and 1±6 cycles of solvent ¯attening, histogram matching

and averaging. In this case, the results continue to improve as

the calculation progresses with or without bias reduction;

however, the results from the bias-reduction calculation are

better. This again suggests that the calculation is now quite

well determined.

The optimum number of cycles is determined by the

cumulative effect of the various sources of error in the

calculation. In the absence of these sources of error, the map

should continue to improve over many cycles. However,

overweighting increases quickly with the number of cycles in

all cases except the averaging calculation; as a result, phase

improvement stops beyond 2±3 cycles in these cases. The bias

with respect to the initial map makes a small additional

contribution, favouring calculation over an odd number of

cycles.

To illustrate the effect of bias removal on the resulting map,

a test was performed using using histogram matching alone.

The solvent boundary was determined from the ®nal model

rather than from the initial map in order to isolate the effects

of errors in the solvent boundary. Density modi®cation was

performed with and without bias correction and the resulting

maps were compared.

The region of density around Phe89 in the structure is

shown in Fig. 7 for the MIR map and for density-modi®ed

maps with no bias correction and with the perturbation 

correction. The MIR map shows poor connectivity, with

several links between adjacent chains and some small breaks

in the main-chain density. Density modi®cation with no bias

correction breaks some of the cross-links, but does not restore

the chain breaks. With the perturbation 
, the connectivity is

almost completely restored and much of the side-chain density

is present. The phase errors in the three maps are 73, 69 and

61�, respectively.

5.6. Solvent ¯attening and histogram matching

Early results (Zhang & Main, 1990) suggested that solvent

¯attening and histogram matching contributed roughly

equally to map improvement, with solvent ¯attening more

powerful for re®ning existing phases and histogram matching

more effective for phase extension.

In the light of the results obtained here, those conclusions

are seen to be inaccurate. The phase relationships implicit in

histogram matching are more powerful than those implicit in

solvent ¯attening (for similar volumes of protein and solvent);

however, histogram matching suffers more from bias by the

initial map. Of course for extrapolated phases this is not a

problem, and so histogram matching appeared particularly

effective in this case. Once a bias-reduction method is intro-

Figure 6
Map improvement measured by map correlation coef®cient for maps
from MIR and 1±6 cycles of solvent ¯attening, histogram matching and
averaging. Note the altered scale of the y axis.

Figure 5
Map improvement measured by map correlation coef®cient for maps
from MIR and 1±6 cycles of solvent ¯attening and histogram matching.

Table 3
Comparison of MIR, solvent ¯attened (SF), histogram matched (HM),
and ¯attened + matched (SF + HM) maps at various resolutions.

The improved phases are after a single cycle of density modi®cation and
perturbation 
 correction. The correlations are all against the 2.5 AÊ map.

Resolution (AÊ ) Map correlation

MIR SF HM SF + HM

4.5 0.293 0.323 0.332 0.328
4.0 0.335 0.387 0.395 0.393
3.5 0.370 0.425 0.452 0.442
3.0 0.394 0.460 0.501 0.489
2.5 0.399 0.472 0.515 0.506



duced, histogram matching is seen to be signi®cantly more

effective.

Table 3 shows the results of applying solvent ¯attening,

histogram matching and both techniques at once to the MIR

data after truncation to various resolutions (the data is

therefore slightly better than a true data set at that resolution).

At lower resolutions, all the techniques give limited

improvement (which is unsurprising, as the truncated maps

are very poor indeed) and the difference between solvent

¯attening, histogram matching and their combination is small.

As resolution improves, the phase improvement becomes

more effective, as does the difference between the solvent-

¯attened map and the histogram-matched map.

6. Conclusions

The treatment of bias in density-modi®cation calculations

presented here has contributed to a further understanding of

how bias arises and how it may be reduced in order to achieve

good maps and realistic estimates of phase error.

Bias reduction by Abrahams' 
 correction, although theor-

etically only applicable to density modi®cations based on a

linear function of the initial map, has been shown to be

suf®cient for most solvent ¯attening, averaging, histogram

matching and multi-resolution modi®cation. The theoretical

estimates of 
 given by Abrahams are ideal for combinations

of solvent ¯attening and averaging; however, for the other

density modi®cations the perturbation method provides a

good prediction of 
. In the case of extremely non-linear

density modi®cations, it may still be necessary to resort to the

slower re¯ection-omit calculation.

Over multiple cycles of density modi®cation, it has been

shown that the ®nal phase-error estimates are underestimated

even when bias-reduction methods are used, since after the

®rst cycle of density modi®cation the phase estimates for

different re¯ections are no longer independent. For reliable

error estimates, density modi®cation should only be

performed over a single cycle. Best maps are obtained when

density modi®cation is performed over an odd number of

cycles; therefore, with weak density constraints the best map is

often obtained after three or ®ve cycles. Error estimates over

multiple cycles improve as the density constraints become

stronger, so for averaging calculations it is usually possible to

run many more cycles of phase improvement and the resulting

phase-error estimates may be used with care.

In addition, more light has been shed on the effect of

histogram matching. The reciprocal-space phase constraints

implied by the histogram constraint are more powerful than

the phase constraints implied by solvent ¯attening; however,

this has been masked in the past by the fact that histogram-

matched maps were far more strongly biased by the initial

map. After bias removal, histogram matching is signi®cantly

more powerful than solvent ¯attening for comparable volumes

of protein and solvent.

Dr Cowtan received funding from United Kingdom BBSRC

(grant number 87/B03785) for this work.
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Figure 7
Electron density for RNAase around residue Phe98 for (a) MIR map, (b) histogram matching with no bias correction, (c) histogram matching with
perturbation 
 correction.
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