
The Quaternions with an application to Rigid

Body Dynamics

Evangelos A. Coutsias† and Louis Romero‡

Department of Mathematics and Statistics,
University of New Mexico
Albuquerque, NM 87131

Friday 12 February 1999

1 Brief History

William Rowan Hamilton invented the quaternions in 1843, in his effort to
construct hypercomplex numbers, or higher dimensional generalizations of the
complex numbers. Failing to construct a generalization in three dimensions (in-
volving ”triplets”) in such a way that division would be possible, he considered
systems with four complex units and arrived at the quaternions. He real-
ized that, just as multiplication by i is a rotation by 90o in the complex plane,
each one of his complex units could also be associated with a rotation in space.
Vectors were introduced by Hamilton for the first time as ”pure quaternions”
and Vector Calculus was at first developed as part of this theory. Maxwell’s
Electromagnetism was first written using quaternions (see, eg. [6]).

2 Basic Notation and Definitions

We will define a quaternion using a scalar and a three dimensional vector. We
can write the quaternion q as

q = (a, b)

We could also use the notation

q = a + b,

or
q = ae0 + b1e1 + b2e2 + b3e3 ,

with the latter being the most explicit, exhibiting the space of quaternions, Q,
as a four dimensional vector space over the real numbers with basis elements
e0, e1, e2, e3. However, in these notes we prefer the first of these notations.

Given two quaternions q1 = (a1, b1), and q2 = (a2, b2) we can define the
addition and multiplication of quaternions.
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Definition 1 The addition of two quaternions is defined as

q1 + q2 = (a1 + a2, b1
+ b

2
)

Definition 2 The multiplication of two quaternions is defined as

q1q2 = (a1a2 − b1 · b2, a1b2 + a2b1 + b1 × b2)

Here b1 ·b2 is the dot product, and b1×b2 is the cross product of the two vectors.

We also use the following definition.

Definition 3 The conjugate of a quaternion q = (a, b) is defined as

qc = (a,−b)

It is straightforward to verify all of the following properties.

• The quaternion e0 = (1, 0) is the multiplicative identity. That is, for
any quaternion q we have e0q = qe0 = q. Furthermore, multiples of e0

commute with any quaternion q and they are the only quaternions with
that property. That is (a, 0)q = q(a, 0).

• For the other basis elements, e1 , i = 1, 2, 3, the rules of multiplication
are elek = εlkjej − δlke0 , l, k = 1, 2, 3.

• The product qcq = (a2 + b · b, 0) can be thought of as the norm of the
quaternion. We define

N(q) := qqc.

• The norm is multiplicative:

N(q1q2) = N(q1)N(q2).

• For any quaternion q = (a, b) that is not identically zero, we have

q−1 =
(a,−b)

qqc
.

That is, q−1q = qq−1 = e. This establishes Q \ {0} as a Division Algebra.

• The set of quaternions of unit norm,

Q1 := {q|N(q) = 1} ,

forms a subgroup of Q \ 0, while the set of pure quaternions

Q0 := {q|q = (0, v)} ,

is a 3-dimensional vector space over the reals, which we identify with R3.
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• In general the multiplication of two quaternions is not a commutative
operation. That is, q1q2 6= q2q1. In particular, division by q 6= 0 must be
defined as left or right multiplication by q−1, giving in general different
results. However, the additon of quaternions is commutative.

• The associative law holds for multiplication and addition.

• The distributive law holds.

Of these properties the associative law for multiplication is probably the least
obvious, but can easily be verified by direct computation. These properties can
be summarized in the following theorem.

Theorem 1 Using our definition of addition and multiplication, the quater-
nions form a noncommutative field.

3 Reflections

In what follows we will need to use the vector identity

(a × b) × c = b(a · c) − a(b · c)
Suppose we associate the pure quaternions v = (0, v) with the vector v, and

n = (0, n) with the vector n. If we define the operation

v′ = nvn,

an explicit calculation shows that

v′ = (0, v′)

where
v′ = (n × v) × n − n(n · v)

Using our identity for the cross product this can be written as

v′ = v − 2n(n · v)

If n is a unit vector, the vector v′ is the reflection of v in the plane normal to n.
We summarize this in a theorem.

Theorem 2 If v = (0, v), and n = (0, n), where n is a unit vector, then
nvn = v′ = (0, v′) where v′ is the vector obtained by reflecting v about the
plane perpendicular to n (and passing through the origin).
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4 Rotations as the Product of Reflections

In order to understand how to represent rotations using quaternions it is helpful
to understand a theorem concerning the representation of a rotation as the
product of two reflections. This theorem is very simple in two dimensions.
Suppose we perform a reflection S1 about a line l1, followed by a reflection
S2 about a line l2. The combination of these two operations R = S2S1 clearly
leaves the point of intersection Q of the two lines fixed. The operation is a proper
isometry (distance and orientation preserving transformation) that leaves the
point Q fixed. It follows that the operation is a rotation about the point Q. It
only remains to find what the angle of the rotation is. In order to do this we
draw the picture: the reflection S1 leaves the line l1 invariant. The reflection
S2 reflects the line l1 into the line l′

1
. Clearly the angle between the lines l1 and

L′

1 is 2θ if θ is the angle between the lines l1 and l2. The proves the following
theorem.

Theorem 3 If we perform a reflection S1 about a line l1 followed by a reflection
S2 about the line l2, the resulting transformation is a rotation about the point
of intersection Q of the two lines. The rotation is from the line l1 to the line
l2, and by an angle 2θ, where θ is the angle between the two lines.

This construction clearly holds for three dimensional rotations (Figure 1).
In order to rotate by θ about a line l we need to reflect about two planes that
are at an angle θ/2, and that intersect at the line l. Suppose the line l passes
through the origin, and in the direction p where p is a unit vector. In this
case we need to choose our two planes so they also pass through the origin. If
the normals to the two planes are given by n1 and n2, then we can combine
the two reflections to get a rotation about the line in the direction p provided
n

2
× n

1
= sin(θ/2)p, and n

1
· n

2
= cos(θ/2).

Theorem 4 Let p, n1 and n2 be unit vectors. Let Si be the reflection about a
plane passing through the origin, and normal to ni. If n

2
×n

1
is in the direction

p, then S2S1 is a rotation about the line in the direction p. If the angle between
the vectors n

1
and n

2
is θ/2, then the rotation is by an angle of θ. In this case

we have n
1
· n

2
= cos(θ/2), and n

2
× n

1
= sin(θ/2)p
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Figure 1. Rotation as two successive reflections

5 The Representation of Rotations Using Quater-

nions

Suppose we want to rotate by θ about a line passing through the origin, and
pointing in the direction p. The theorem in the last section shows that we can
accomplish this by performing the reflections S2S1 of the last theorem. In terms
of quaternions this transformation maps the vector v to the vector

v′ = n2n1vn1n2

We can write this as
v′ = Cq(v) := qvq−1

where
q = n2n1 .

In order to do this we have used the fact that since ni is associated with a unit
vector, then n−1

i = −ni, and also the fact that (n2n1)
−1 = n−1

1
n−1

2
. A direct
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calculation shows that

q = ±(cos(θ/2), sin(θ/2)p)

where p is a unit vector and the sign depends on the choice of unit normals for
the two planes (the choice shown in Fig. 1 corresponds to the (-) sign). Clearly,
the rotation is independent of the sign of q. This proves the following theorem:

Theorem 5 Let q = (cos(θ/2), sin(θ/2)p) where p is a unit vector. Let v =

(0, v). The transformation qvq−1 maps v into v′ = (0, v′), where v′ is obtained
by rotating v about the p axis by θ.

We examine now the mapping q → Cq of the division algebra Q \ {0} into
the group of linear transformations of Q into itself. It is easy to see that it is a
homomorphism, since

Cq(Cp(u)) = q(pvp−1)q−1 = (qp)v(qp)−1 = Cqp(v).

Moreover,

Cq(uv) = q(uv)q−1 = (quq−1)(qvq−1) = Cq(u)Cq(v) .

We call the action of Cq on an element v a conjugation of v by q 6= 0. Conjuga-
tions have the following properties:

• Cq is norm-preserving:

N(Cq(v)) = N(q)N(v)N(q−1) = N(v) .

• All possible conjugations can be found by considering q ∈ Q1. Indeed, if
q = αp, with α 6= 0 scalar, then Cq = Cp.

• Cq = C−q.

For the purpose of studying rotations in R3, we restrict our attention to
Cq acting on v with q ∈ Q1, v ∈ Q0 ≡ R3. Then it is easy to see that
v′ = Cq(v) ∈ R3:

(v′)c = (Cq(v))c = (qvqc)c = qvcqc = −qvqc = −v′ ,

where we recall that v ∈ Q0 if and only if vc = −v and for q ∈ Q1 we have
q−1 = qc. We also recall that q, p ∈ Q1 implies that qp ∈ Q1.

Orientation in R3 is defined, as usual, by the triple scalar product. Thus,
the three vectors a, b, c form a right-handed system if sign(a · (b×c)) = +1. The
dot product of two pure quaternions u, v can be defined naturally as the scalar

u · v = (u · v, 0) = −uv + vu

2
,
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while their cross-product can be defined as the pure quaternion

u × v = (0, u × v) =
uv − vu

2
.

Since conjugation respects multiplication of quaternions, it also respects the dot
and cross products in Q0. Thus

C(u · (v × w)) = Cq(u) · (Cq(v) × Cq(w)) .

Since conjugation leaves scalars invariant, C(u · (v × w)) = u · (v × w) and
orientation is clearly preserved by conjugation. Thus, conjugation is a linear,
orientation preserving isometry of Q0 ≡ R3 onto itself, i.e. a proper orthogonal
transformation. That all such transformations can be thus obtained follows
from theorem 5. Now we see that Cq is a 2 → 1 group homomorphism of the
Q1 onto SO(3,R), with ±q ∈ Q1 giving the same orthogonal transformation.
Of course, this correspondence was established explicitly in theorem 5. Now we
see how rotations can be composed:

Theorem 6 The composition of two successive rotations, about axes p
1

and p
2
,

and by angles θ1 and θ2, respectively, results in a rotation about axis p
3

by angle
θ3 given in terms of the quaternion q3 = q2q1 where

qi =
(

cos(θi/2), sin(θi/2)p
i

)

, i = 1, 2, 3 .

Example: Consider the regular octahedron with vertices at A = (+1, 0, 0),
B = (−1, 0, 0), C = (0, +1, 0), D = (0,−1, 0), E = (0, 0, +1) and F = (0, 0,−1).
Clearly, a rotation by π/2 about the x-axis maps the octahedron into itself.
Followed by a rotation by π/2 about the y-axis (which also maps the octahedron
into itself), the net effect is to map the vertices as follows: A → (0, 0,−1), B →
(0, 0, +1), C → ((+1, 0, 0), D → (−1, 0, 0), E → (0,−1, 0) and F → (0, +1, 0).
Thus, the face AFC has rotated into itself by 2π/3 about its outward normal
(AFC → CAF ) and the face EDB has rotated into itself by −2π/3 about its
own outward normal EDB → BED ). In terms of quaternions:

(cos(π/4), sin(π/4)j)(cos(π/4), sin(π/4)i) =

(

1

2
,

√
3

2

i + j + j × i
√

3

)
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so that the net rotation is about the axis (i + j − k)/
√

3 by angle 2π/3.

B

C

D

E

F

A

e1

e2

c

Figure 2. Rotating the octahedron: a rotation by 90o about the x-axis,
followed by a rotation by 90o about the y-axis, produces a net rotation
of 120o about c, the normal from the origin to the face AFC.

6 Representation of unit quaternions as 3X3 or-

thogonal matrices.

We recall some facts about rotation matrices in 3-space; in the following discus-
sion Q ∈ R3 will be an orthogonal matrix.

• The defining property of an orthogonal matrix is:

QQT = I.

• If x is an eigenvector, we have:

Qx = λx ⇒ Qx? = λ?x?

so that
(x?)T x? = (x?)T QT Qx? = (x?)T λ?λx? .

so that λ?λ = 1. Since the characteristic polynomial is a real cubic, one
of the roots must be real. Restricting to Q ∈ SO(3,R) (i.e. detQ = 1 ),
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the roots must be 1, eiφ and e−iφ. Thus

TrQ = 1 + 2 cosφ

.

• The eigenvector x of eigenvalue 1, invariant under Q, is called the axis of
rotation. It is easily seen that Q rotates the plane perpendicular to x by
angle φ.

• The direction of x is easily found from Q: since Qx = x and QT x = x, it
follows that (Q − QT )x = 0. Then

x1

Q32 − Q23

=
x2

Q13 − Q31

=
x3

Q21 − Q12

.

Returning to the discussion of the previous section, we see now how to
construct the quaternion associated with a given rotation matrix: simply set

q = ± (cos(θ/2), sin(θ/2)x) ,

assuming |x| = 1.
For the reverse construction, i.e. for the matrix representation of a given

quaternion (that is, for finding the matrix that affects a rotation about an
axis x by angle θ in 3-space, we proceed directly: assume q = (q0, q) ∈ Q1,
q = q1e1 + q2e2 + q3e3. Then, from r′ = qrqc we can determine the matrix that
transforms the components of a given vector r = (0, r) to those of r′ = (0, r′) .
We have:

(0, r′) = (q0, q)(0, r)(q0,−q)

= (−q · r, q0r + q × x)(q0,−q)

= (0, (q2

0
− q · q)r + 2q(q · r) + 2q0q × r)

giving
r′ = Ar

with

A = (q2

0 − q · q)I + 2qqT + 2q0





0 −q3 q2

q3 0 −q1

−q2 q1 0





or

A = 2





(q2
0 + q2

1 − q2
2 − q2

3)/2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 (q2

0
− q2

1
+ q2

2
− q2

3
)/2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 (q2

0
− q2

1
− q2

2
+ q2

3
)/2



 .

If we set q0 = cos(θ/2), qi = sin(θ/2)xi, x2

1
+ x2

2
+ x2

3
= 1, then we can write

A = cos θI+(1− cos θ)





x2

1
x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x3x2 x2

3



+ sin θ





0 −x3 x2

x3 0 −x1

−x2 x1 0





where x is the axis and θ the angle of rotation. As A is quadratic in q, using
±q give the same result.
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7 Translations in Q and the groups SU(2,C) and

SO(4,R).

We now consider another representation of the quaternions, intended to clarify
the composition of rotations. To simplify the discussion, we consider quaternions
of the form: z = a0e0 + a1e1 and identify them with the complex numbers:

z = a0e0 + a1e1 ∼ a0 + a1i .

Then the arbitrary quaternion q can be written :

q =

3
∑

0

aiei = e0z + e2w

where z is as above and w = a2e0 − a1e1. In what follows we use the symbol
for the imaginary unit, i, interchangeably with e1, i.e. e2i = −ie2 = −e3 etc.
Define now the translation operator Tq :

Tq(v) := qv .

In components, and using the obvious fact we2 = e2w
? (where z? is the normal

complex conjugate) it is not hard to see that, with v = e0s + e2u,

Tq(v) = qv = (e0z + e2w)(e0s + e2u) = e0(zs − w?u) + e2(ws − z?u)

so that, if we identify the quaternion v = e0s + e2u with the complex 2-vector
(s, u)T and we restrict to q ∈ Q1 we see that the mapping

q → Tq =

(

z −w?

w z?

)

provides a faithful representation of the group of unit quaternions Q1 into the
group SU(2,C) of 2 × 2 unitary complex matrices:

TqTp = Tqp

and
det(Tq) = |z|2 + |w|2 = N(q) = 1 .

Since all elements of SU(2,C) can be thus constructed and the correspon-
dence is 1-1, it follows that q → Tq is a group isomorphism of Q1 with SU(2,C).

Returning to quaternions, we now construct the composition of rotations
in terms of unitary matrices. A more useful representation, in terms of real
4X4 orthogonal matrices can be found by direct multiplication: if q = (a0, a),
v = (b0, b) then

Tq(v) = qv = (a0b0 − a · b, a0b + b0a + a × b)
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and writing v = (b0, b1, b2, b3)
T we find:

Tq =









a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0









.

If q ∈ Q1, this is easily seen to be an orthogonal transformation in R4.

8 Rigid body dynamics: The use of quaternions

in the numerical integration of the Euler equa-

tions.

An application of the quaternion reduction for rotations is discussed for the
solution of the Euler equations of motion of a rigid body with one point fixed
in three dimensional space. The natural setting for describing the motion are
the ”body-fixed coordinates” in which the moment of inertia tensor is constant.
In the absence of externally applied torques, the motion is integrable and the
angular velocity (and momentum) can be determined explicitly for all time in
terms of elliptic functions. However, to produce a description of the motion in
space, we need to compute the orthogonal transformation that relates to the
”Space-fixed” coordinate system. This requires the computation of an evolving
orthogonal matrix from the time history of the angular velocity. This computa-
tion is much simpler in the quaternion representation. Moreover, if an external
torque is applied, its description in body coordinates requires knowledge of the
orthogonal transformation. In that case the two sets of equations become cou-
pled, and apart from a few special cases, the Euler equations are no longer
integrable in general.

8.1 The Euler equations for rigid body dynamics.

A rigid body is a system of points whose mutual distances are fixed in space.
In the following discussion we shall assume that one of the points of a rigid
body, O, is fixed in space, and we shall introduce two orthogonal coordinate
systems: an inertial coordinate system Ox1x2x3, fixed in space, and the system
OX1X2X3 fixed in the body. We shall choose the body system so that it’s axes
coincide with the principal axes of inertia. In the following discussion we shall
adopt the notation of, and refer to, Arnold’s Mathematical Methods of Classical
Mechanics, Chapter 6 ([1]).

In the sequel we shall use x to denote a vector, x to denote its coordinates
in space and X to denote its coordinates in the body. In keeping track of the
motion of a rigid body, one needs to be able to give its orientation is space at
each instant. A vector X in the body will have coordinates in space

x = Q(t)X
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where Q(t) is an orthogonal transformation. For the time evolution of X and x
we have:

dx

dt
=

dQ

dt
X + Q

dX

dt
.

Since X = QT x we can write

dx

dt
=

dQ

dt
QT x + Q

dX

dt
.

Since QQT = I, it follows that the matrix Q′QT is skew symmetric, so that
there exists a vector ω such that

s(t) := Q′QT =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (1)

so that
x′ = [ω, x] + QX ′ . (2)

The vector ω is called the instantaneous angular velocity in space. In the body,
eq.(2) is written, using the invariance of the cross-product (i.e. the fact that
[ω, x] = [QΩ, QX] = Q [Ω, X] ):

x′ = Q
(

[Ω, X] + X ′
)

. (3)

The angular momentum m (M = QT m in the body) of a rigid body is related
to its angular velocity by the inertia tensor, A:

m = A|spaceω

with a similar equation for body quantities. By choosing its principal axes for
our body coordinate system, we can write A in the form

A|body =: A = I1e1e
T
1 + I2e2e

T
2 + I3e3e

T
3 .

This expression is, of course, constant, while A|space =: a(t) = Q(t)AQT (t)
varies, depending on the body’s orientation. The matrix A is symmetric, positive
semidefinite, and we assume that 0 < I1 ≥ I2 ≥ I3 ≥ 0. The kinetic energy is
easily seen to be

T (ω) = T (Ω) =
1

2
(M, Ω) =

1

2
(AΩ, Ω) .

Newton’s laws give
dm

dt
= t ,

with t some externally applied torque (which we will assume is a given vector
in space). In the body, this becomes:

dm

dt
= t = Q

(

[Ω, M ] +
dM

dt

)

(4)
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or, rewriten entirely in terms of body variables:

dM

dt
= [M, Ω] + T (5)

with T = QT t. These are the Euler equations of motion of a rigid body, one of
whose points is fixed in space. In the absense of external torques, there are two
integrals: the energy T (Ω) and the total angular momentum M = M ·M = m·m,
that is

T =
1

2

(

M2

1

I1

+
M2

2

I2

+
M2

3

I3

)

M2 = M2

1
+ M2

2
+ M2

3

so that the equations are completely integrable and the motion (in the body
frame!) happens on the intersection of a sphere and a triaxial ellipsoid. It is
clear then that, on the surface of the energy ellipsoid in angular momentum
space, the points of intersection of the major and minor axes are centers, while
the points of intersection of the intermediate axis are saddlepoints, and motion
about that axis is unstable. Of course, the description in space coordinates is
considerably more complex.

When torque is included, only a few special cases are known to be integrable,
and the problem is hard in all cases ([2]). Here we will focus on aspects related
to the numerical integration of (5). For that, we see that the key problem
is determining the transformation matrix Q(t) from knowledge of the angular
velocity, Ω. Indeed, the Euler equations can be readily written in terms of the
angular velocity: since Mi = IiΩi, (5) become, in terms of components:

d

dt





Ω1

Ω2

Ω3



 =















I2 − I3

I1

Ω2Ω3 +
T1

I1

I3 − I1

I2

Ω3Ω1 +
T2

I2

I1 − I2

I3

Ω1Ω2 +
T3

I3















(6)

with T = QT t.
To completely determine the system in space, we must also determine the

operator Q(t) whose evolution is connected to the angular velocity Ω by the
equation

dQ

dt
= sQ = QS := Q





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0



 .

However, integration of this system of nine equations in the components
of Q(t) is both computationally costly, and may introduce unnecessary errors
in that the orthogonality of the rows of Q may not be preserved sufficiently
accurately. Instead, we can employ the quaternion representation of rotations,
to reduce this computation to an integration of four equations.
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8.2 Kinematics: computing the transformation Q(t) from

the history of Ω(t)

As we saw previously, for q ∈ Q1 (i.e. N(q) = 1 ) the coordinates of a vector in
space and body coordinates will be given by

x = qXqc , (7)

where x = (0, x), X = (0, X), and q = q(t) is the quaternion representing a
rotation by the matrix Q(t). Then, for dX/dt = 0:

dx

dt
=

dq

dt
Xqc + qX

dq

dt
=

(

dq

dt
qc

)

x + x

(

q
dqc

dt

)

.

Lemma 1
dq

dt
qc is a pure quaternion.

Indeed, the scalar part is (setting q = (q0, q) ):
dq0

dt
q0 +

dq

dt
· q =

d

dt
N(q) = 0.

We introduce v =
dq

dt
qc = (0, v). Then, since vc = −v and xc = −x, we have

dx

dt
= vx − xv = 2v × x

or, equivalently,
dx

dt
= [2v, x] .

In terms of the discussion in the previous subsection, we set

ω = 2v = 2
dq

dt
qc .

This gives the equation (refering to the matrix for multiplication by a quaternion
derived at the end of Section 7):

dq

dt
=

1

2
ωq =

1

2









0 −ω1 −ω2 −ω3

ω1 0 −ω3 ω2

ω2 ω3 0 −ω1

ω3 −ω2 ω1 0

















q0

q1

q2

q3









(8)

that is, an equation for the rotation has been derived in terms of the angular
velocity that involves the evolution of four, instead of nine, quantities. In fact,
the first of the above equations simply ensures the conservation of the norm of
q.

In terms of the angular velocity in the body frame, we have that Ω = qcωq
or ω = qΩqc so that

dq

dt
=

1

2
qΩ =

1

2









0 −Ω1 −Ω2 −Ω3

Ω1 0 Ω3 −Ω2

Ω2 −Ω3 0 Ω1

Ω3 Ω2 −Ω1 0

















q0

q1

q2

q3









(9)
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which, together with the Euler equations for Ω

d

dt





Ω1

Ω2

Ω3



 =















I2 − I3

I1

Ω2Ω3 +
T1

I1

I3 − I1

I2

Ω3Ω1 +
T2

I2

I1 − I2

I3

Ω1Ω2 +
T3

I3















(10)

and the equations giving the torque in the body frame from its space frame
value

(0, T ) = qc(0, t)q → T = QT t

where the rotation matrix, Q, is given in terms of the components of q by

Q = 2





(q2

0
+ q2

1
− q2

2
− q2

3
)/2 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3 (q2

0
− q2

1
+ q2

2
− q2

3
)/2 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1 (q2

0 − q2

1 − q2

2 + q2

3)/2



 .

Finally, the position of a point in the body, X, in terms of absolute space
coordinates is given by the transformation

(0, x) = q(0, X)qc → x = QX .

Variants of the above form of the rigid body equations, with a time inte-
gration involving the three components of the angular velocity and the four
components of q have been used by various authors in the numerical integra-
tion of the equations describing non-Newtonian fuids such as liquid crystals,
molecular dynamics simulations of complex molecules etc. (see, eg., [3], [5]).

Acknowledgment In preparing these notes, we made use of the lecture
notes of Prof. Paco A. Lagerstrom on quaternions and representations of the
rotation group ([4]).
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