
Using Quaternions to Calculate RMSD

EVANGELOS A. COUTSIAS,1 CHAOK SEOK,2 KEN A. DILL3

1Department of Mathematics and Statistics, University of New Mexico,
Albuquerque, New Mexico 87131

2School of Chemistry, College of Natural Sciences, Seoul National University,
Gwanak-gu, Shillim-dong, San 56-1, Seoul 151-747, Republic of Korea

3Department of Pharmaceutical Chemistry, University of California in San Francisco,
San Francisco, California 94143-2240

Received 29 December 2003; Accepted 13 July 2004
DOI 10.1002/jcc.20110

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one
structure with respect to the other to minimize the root-mean-square deviation (RMSD). We present a simple derivation,
based on quaternions, for the optimal solid body transformation (rotation-translation) that minimizes the RMSD between
two sets of vectors. We prove that the quaternion method is equivalent to the well-known formula due to Kabsch. We
analyze the various cases that may arise, and give a complete enumeration of the special cases in terms of the
arrangement of the eigenvalues of a traceless, 4 � 4 symmetric matrix. A key result here is an expression for the gradient
of the RMSD as a function of model parameters. This can be useful, for example, in finding the minimum energy path
of a reaction using the elastic band methods or in optimizing model parameters to best fit a target structure.
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Introduction

We are interested in comparing the geometries of two solid objects.
For example, often in computational biology there is a need to overlay
the structure of one protein onto another in a way that minimizes the
RMSD error. This is useful for comparing protein model structures to
known database structures, or for assessing the geometric similarity of
one protein with another, or comparing two conformations of the
same protein. The first step in computing the RMSD error is to bring
the two structures together as closely as possible, by rigid space
motions (a proper rotation and translation). As is usual in such
problems, we assume that there is already a proper assignment of the
points on one object to the points on the other.

The mathematical statement of the problem is: “Given an
ordered set of vectors yk (target) and a second set xk (model), 1 �
k � N, find an orthogonal transformation � and a translation r
such that the residual E (weighted by wk)

E :�
1

N �
k�1

N

wk��xk � r � yk�2 (1)

is minimized.” The weight factor wk allows us to emphasize
various parts of the structure, such as the backbone of a polypep-

tide. Often, the weights will be equal to 1. Because the weights can
be incorporated into xk and yk, we omit wk below.

The problem of optimal superposition has attracted the interest
of a number of authors1–10 (see also references in ref. 11). Among
these, the solution by Kabsch2 has been the most popular and
widely used. The method produces the residual in terms of the
singular value decomposition (SVD) of the 3 � 3 correlation
matrix � [see eq. (5) below]. The method is applicable to vectors
of arbitrary dimension, and it appears to have been first derived by
Schönenman1 in the context of Factor Analysis.

By making use of quaternions instead, a different formulation
can be developed.5,7 The quaternion corresponding to the optimal
rotation is found as the leading eigenvector of a certain 4 � 4
matrix, � [see eq. (10) below], whose elements are formed from
those of �. Quaternion parametrization of rotations respects
chirality and does not suffer from coordinate singularities such as
those inherent in Euler angles.11 In this note we establish the
equivalence of the SVD and quaternion based results for the
optimal rotation. We give a self-contained derivation of the best-fit
RMSD, defined as e :� �Emin in terms of quaternions. We show
how one can use the formalism to arrive at both proper and
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improper rotations, and give a discussion of the issues related to
degeneracy.

In Appendix B we provide a brief introduction to quaternions.
We then extend this formulation to show that the derivative of

the RMSD e with respect to the model coordinates xk, �e/�xk, is
simply the minimal residual. This quantity is useful for efficiently
searching the parameter spaces to optimize objective functions that
involve the best-fit RMSD.

For example, in the energy parameter optimization algorithm
proposed by Rosen et al.,12 the goal is to minimize the structural
difference between the energy minimum and the target. In ref. 12,
the RMSD based on a dihedral angle metric is used as a measure
of structural deviation. Although the gradient of the dihedral
RMSD is easy to compute, Cartesian RMSD gives a better mea-
sure of structural difference. The reason for this is that the dihedral
RMSD does not capture the effect that perturbations of middle
dihedral angles in a chain structure entail much larger structural
changes than those of terminal angles. Our formula for �e/�xk can
be used to apply the method in ref. 12 to the problem in Cartesian
measure.

Another example in which �e/�xk is useful is in determining
the minimum energy pathways of a reaction using the elastic band
methods.13,14 The elastic band methods employ a term involving
the best-fit RMSD between neighboring states in a pathway, which
contributes to producing an elastic chain of states between a
reactant and a product. Reference 13 provides an argument based
on symmetry, for the gradient of the RMSD, which has been
implemented in the program CHARMM15 in a form identical with
ours. The gradient is used in this context to calculate elastic forces,
and it is noted that in the (rare) occasion when the optimal rotation
becomes degenerate, that is, when there are two different rotations
producing similar fit between the structures, the degeneracy can
result in arbitrary force fluctuations. To prevent that, an ad hoc
continuation method is introduced13 to switch from one branch to
another when singular values cross. If one employs the quaternion
approach, it is easily seen that at the degeneracy the quaternions of
the two equivalent rotations are simply a basis of the invariant
subspace corresponding to a degenerate eigenvalue. As such, any
linear combination provides another quaternion (and, conse-
quently, a rotation) that gives the same residual. In this way, the
switching between branches may be accomplished accurately and
efficiently.

The gradient of RMSD is also useful in studies involving
biomolecular structures in reduced representations. Reduced pro-
tein folding models often capture essential features without invok-
ing computationally expensive full atomic coordinates. Reduced
models are also frequently used in protein structure prediction
algorithms at earlier stages of prediction before final refinement
with full atomic details. The computations can be sped up by
reducing the number of degrees of freedom in the model by setting
various quantities such as bond lengths and angles at canonical
fixed values. Using the analytical expression for the gradient
makes it possible to efficiently obtain the optimal reduced model
structure, given a target structure.

The organization of the paper is as follows. The residual
minimization is carried out in Section 2 where the quaternion-
based derivation is contrasted to the SVD approach of Kabsch. The
proof of the equivalence is provided in Section 3, where we also

discuss issues related to chirality and degeneracy. A formula for
the gradient of RMSD is derived in Section 4, and an example of
using the gradient to find the best-fit reduced model to a target
structure is presented. The procedure to compute RMSD and its
gradient is summarized in Section 5. Finally, brief conclusions are
given in Section 6. An overview of quaternions and their properties
is presented in Appendix B. A FORTRAN 90 code used to
generate the results in Section 4, with an implementation of RMSD
and the RMSD gradient, is available at http://dillgrou-
p.ucsf.edu/rmsd/.

The Optimal Rotation

We now find the optimal rigid body motion to minimize the
residual E given by eq. (1),

E :�
1

N �
k�1

N

��xk � r � yk�2. (2)

Considering variations in r first, we find that for an extremum:

�
k�1

N

��xk � r � yk� � 0

so that

r � y� � �x� :�
1

N �
k�1

N

yk � �
1

N �
k�1

N

xk. (3)

Shifting the two sets, {xk} and {yk}, to their respective
barycenters x� and y� , we introduce:

x̃k :� xk � x� , ỹk :� yk � y� .

Below we drop the tildes (i.e., we will assume that both sets have
been shifted to bring their respective barycenters to the origin), and
then the residual becomes:

E �
1

N �
k�1

N

�x�k � yk�2 (4)

where we set x� :� �x.
In the sequel we will make use of the 3 � N matrices � and

� where the kth column of � is the vector xk, and similarly for �.
Throughout we write ajk for the jth component of the kth vector,
ak.

Minimal Residual through SVD

A method proposed in 1976 by Kabsch2 produces the residual in
terms of the SVD of the correlation matrix, � � ���T, where
� and � are the matrices of left and right singular vectors,
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respectively, and � is the positive semidefinite diagonal matrix of
singular values16 of the matrix

� :� ��T � �
k�1

N

xkyk
T 3 Rij � �

k�1

N

xikyjk, i, j � 1, 2, 3, (5)

with xik denoting the ith component of xk, and likewise for yjk.
The minimal residual is found as

Emin �
1

N �
k�1

N

�xk�2 � �yk�2 �
2

N
��1 � �2 � ��3�

where � � sgn(det �) and �i is the ith singular value of �, with
�1 � �2 � �3 � 0. The rotation matrix that brings the model to
optimal superposition with the target is

� � ��1
1

�
��T.

It is the rotation that aligns the right and left singular vectors of �
when the determinant of � is positive, while it antialigns the third
pair of singular vectors w3, v3, otherwise. Cases where an im-
proper rotation, that is, a rotation combined with a reflection, is
desired are also easily treated.

A simple derivation of the result, apparently first formulated by
Schöneman1 in Factor Analysis studies (see also the text by Horn
and Johnson,16 p. 431), is as follows:

NE � �
k�1

N

�x�k � yk�2 � Tr���� � ��T���� � ��	 � Tr��T��

� Tr�T� � 2Tr�T�� � �
k�1

N

�xk�2 � �yk�2 � 2Tr�T��

Using well-known properties of the trace:

Tr�T�� � Tr�T�� � Tr��T� � Tr��.

From the singular value decomposition of �, we get:

Tr�T�� � Tr���T� � Tr��T�� � �
i�1

3

�iwi
T�vi

� �
i�1

3

�iTii,

where we introduced the orthogonal matrix � � �T��. Because
�Tii� � 1, we see that

Tr�T�� � �
i�1

3

�i

The minimal residual is found when the above expression for the
trace is maximized, that is, when the matrix � reduces to the
identity, that is,

� � ��T.

However, this matrix represents an improper rotation if the singu-
lar vector matrices, � or �, have opposite chirality, that is, if det
� 
 0. In that case, it can be easily shown, for example, by using
Euler angles to express the rotation from � to �, that the best
proper rotation gives �vi � �wi with the � sign for i � 1, 2
and 
 for i � 3, so that the rotation matrix is as given above. That
is, the optimal alignment of � and � by a proper rotation brings
the sets of right and left singular vectors of � to coincidence if det
� � 0 while it aligns the first two pairs of singular vectors and
antialigns the third if det � 
 0. In similar fashion, it can be shown
that all the extrema of the residual are found as:

NEs � �
k�1

N

�xk�2 � �yk�2 � 2 �
i�1

3

�is�i, s � 1, 2, 3, 4

with �1s�2s�3s � sgn det �. The relationship between s � 1, 2,
3, 4 and the �is, i � 1, 2, 3 is defined in Table 1. The
corresponding rotation operators are given by

�s � ���1s

�2s

�3s

� �T.

Degeneracy is possible for the optimum rotation if det � 
 0 and
�2 � �3 because then �1 and �2 give the same minimal residual.
In this case, it turns out that there is a 1-parameter family of
rotations that also give the same minimal residual. In fact, in this
case the singular vectors corresponding to the equal singular
values form a subspace, any orthonormal basis of which would
serve equally well to form the rotation matrix. The relationship
among these is easier to uncover in terms of quaternions, as we
shall see in the next subsection. In the negative correlation case, a

Table 1. The � Factors for Extrema.

det � s �1 �2 �3

� 1 1 1 1
� 2 1 
1 
1
� 3 
1 1 
1
� 4 
1 
1 1

 1 1 1 
1

 2 1 
1 1

 3 
1 1 1

 4 
1 
1 
1
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rotation–reflection will always give a better fit. Indeed, it is easy to
see that the improper rotation �� � 
�4 will produce the least
residual. We postpone discussion of higher degeneracy because
this and related issues are easiest to classify when this method is
contrasted to the quaternion method of the next subsection.

Minimal Residual through Quaternions

We now promote xk and yk to pure quaternions (see Appendix B),
xk :� (0, xk) with xk

c � 
xk and similarly for yk. The rotation
�(q) on xk is then written as

�0, ��q�xk� � qxkq
c.

The residual is written, in terms of quaternions, as

Eq �
1

N �
k�1

N

�qxkq
c � yk��qxkq

c � yk�
c. (6)

Expanding and multiplying by N, eq. (6) becomes

NEq � �
k�1

N

��qxkq
c��qxkq

c�c � ykyk
c � �qxkq

c� yk
c � yk�qxkq

c�c

� �
k�1

N

� xkxk
c � ykyk

c � �qxkq
c� yk � yk�qxkq

c��, (7)

where use has been made of the normalization qqc � 1 and the
property of pure quaternions xc � 
x. Because qxkqc and yk are
pure, and for a, b pure we have ab � ba � 2(
a � b, 0) �
2([ab]0, 0), the last two terms in eq. (7) can be combined as:

�qxkq
c� yk � yk�qxkq

c� � 2�� yk�qxkq
c��0, 0�,

that is, only the 0th component is nonzero. We write yk(qxkqc) �
( ykqxk)qc using the associativity of quaternions, and define xk :�
ykqxk. The 4-vector form of zk, 	k, can be written as 	k �

L( yk)
R( xk)�, where 
L( yk) and 
R( xk) are defined as in eq.
(30). Putting these together,


2yk
T��q�xk � 2�yk�qxkq

c��0 � 2� zkq
c�0 � 2�zk0q0 � zk � q�

� 2�T	k � 2�T
L�yk�
R�xk��. (8)

Collecting results, we find that the residual can be written as

NEq � �
k�1

N

��xk�2 � �yk�2� � 2�T��, (9)

where

� :� 
�
k�1

N


L�yk�
R�xk�.

The explicit form of the matrix � in terms of the matrix elements
of the correlation matrix � (5), is

� � �
R11 � R22 � R33 R23 � R32 R31 � R13 R12 � R21

R23 � R32 R11 � R22 � R33 R12 � R21 R13 � R31

R31 � R13 R12 � R21 
R11 � R22 � R33 R23 � R32

R12 � R21 R13 � R31 R23 � R32 
R11 � R22 � R33

�. (10)

The problem has in this way been reduced to that of finding the
extrema of a quadratic form �T�� in the four variables qi, i � 0,
1, 2, 3, subject to the constraint �T� � 1. Note that here we are
using the vector �, so that the squared norm qcq is written
equivalently as �T�. �T�� is the standard Rayleigh quotient for
a symmetric matrix �, and the maximum value achieved by �T��
is equal to its largest eigenvalue. Thus, the desired minimization
leads to the eigenproblem

�� � 	�. (11)

We see that the extremum 	 is equal to one of the eigenvalues of
a 4 � 4 symmetric, traceless matrix, and the corresponding eig-
envector gives one of the candidate rotations that extremize the
residual, as sought. We are thus led to the following expression for
the best-fit RMSD eq:

eq � �min
�q��1

Eq � �¥k�1
N ��xk�2 � �yk�2� � 2	max

N
,

where 	max is the maximum eigenvalue of �. If a rotation
reflection is allowed, then the minimal eigenvalue 	4 must also
be considered. If 
	4 � 	1, then the improper rotation 
�(q4)
will give a better fit than the proper rotation �(q1) [see Appen-
dix B, eq. (33) for the construction of the rotation matrix �(q)
from the quaternion q]. This is easily seen, because the matrix
� is linear in both � and �; therefore, the substitution �3 
�
changes the sign of the eigenvalues. By examining the connec-
tion between the quaternion and SVD-based methods in the next
section, we will see how these cases relate to the sign of the
determinant of �.
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Chirality and the Relationship to Kabsch’s
Formula

A property, common to both the rotation matrix and quaternion
formulations, is that their parameters (rotation matrix coefficients
or quaternion components) appear quadratically in the expression
for the residual, thus leading to linear eigenvalue problems. In this
section we show that these two problems are equivalent and
exploit the connection to give a complete classification of the
various cases that may result in terms of the properties of the
correlation matrix. Kabsch2 finds the extremal of the residual to be
equal to

Emin �
1

2 �
k�1

N

��xk�2 � �yk�2� � �
j�1

3

�j�
j,

where �j � �1 with �1�2�3 :� det � � �1. Here the 
j are the
eigenvalues of the symmetric, positive definite matrix ��T where
� is defined by eq. (5). The nine quantities appearing in matrix �
enter both in

��T � �R11 R12 R13

R21 R22 R23

R31 R32 R33

��R11 R21 R31

R12 R22 R32

R13 R23 R33

� (12)

and in the traceless matrix �(10). What is needed to show equiv-
alence of the methods is that the set of eigenvalues of �, 	i with
i � 1, 2, 3, 4, is the same as the set of values ¥j�1

3 �j
�
j. For

this to happen, the characteristic polynomial of ��T, P3( z) :�
¥0

3bjz
j, must be the resolvent cubic of P4(	) :� ¥0

4aj	
j, the

characteristic polynomial of �. It is well known that the quartic
equation in canonical form

	4 � 6p	2 � 4q	 � r � 0 (13)

has roots 	i, i � 1, 2, 3, 4, that can be expressed as

	i � �
k�1

3

�j�zk

with �j � 1 and �1�2�3 � sgn(q), provided the zk, k � 1, 2, 3
are the roots of the resolvent cubic

z3 � 3pz2 �
1

4
�9p2 � r� z �

1

4
q2 � 0. (14)

The proof of this classical result can be found, for example, in
Weisner,17 (pp. 140–143). The characteristic polynomial of (10)
clearly has the form (13) because the matrix � is traceless. With
the coefficients p, q, r of the quartic (13) defined in terms of the
entries of (10), it is a simple but tedious task, best carried out using
a computer algebra system, to verify that the characteristic poly-
nomial of (12) will then have the form of the resolvent cubic (14).
The verification of this fact, as well as detailed forms of the
coefficients of the two characteristic polynomials, computed with

the computer algebra system MAPLE are given in Appendix C. As
can be easily deduced

p :�
a2

6
� 


1

3
���F

2 ; q :�
a1

4
� 
2 det �

b2 � 
���F
2 ; b0 � 
�det ��2, (15)

while the forms of r :� a0 and b1 are quite complicated and will
not be given here. ���F

2 � ¥ij�Rij�
2 denotes the Frobenius norm.16

Given the form of the quartic, it is important to note that the
only term that is sensitive to a sign inversion of all the coordinates
(i.e., a point-reflection through the origin) is the linear coefficient.
Because that term is equal to 
8 det � we can relate the location
of the eigenvalues of � to the type of best fit. Indeed, because the
characteristic polynomial of �, P4(	) :� det(� 
 	�) �
�i�1

4 (	 
 	i) has the expansion:

	
i�1

4

�	 � 	i� � 	4 � � �
i�1

4

	i�	3 � � �
i�j�1

4

	i	j�	2

� � �
i�j�k�1

4

	i	j	k�	 � 	
i�1

4

	i

we have by comparing with eq. (13) and using eq. (15) that


4q � 8 det � � 	1	2�	3 � 	4� � 	3	4�	1 � 	2�.

Because the matrix � is traceless so that the sum of the eigenval-
ues must vanish, that is, 	1 � 	2 � 	3 � 	4 � 0, this can be
written

8 det � � �	1 � 	2��	3	4 � 	1	2�.

We can now relate the sign of det � to the eigenvalues of �.
Throughout we assume 	1 � 	2 � 	3 � 	4. Then, 	1 � 0 and
	4 
 0 unless 	i � 0, i � 1, 2, 3, 4. The following properties
are easily deduced:

1. If �	1� � �	4� then det � � 0 and we have the cases:
(a) 	2, 	3, 	4 
 0 while 	1 � 0
(b) 	4 � 	3 
 0 and 	1 � 	2 � 0. In this case 	1 � � � �,

	2 � � 
 �, while 	4 � 
� 
 r, 	3 � 
� � r, with
� � � � r � 0.

2. If �	1� 
 �	4�, then det � 
 0, and we have the cases:
(a) 	1, 	2, 	3 � 0, while 	4 
 0.
(b) 	4 � 	3 
 0 and 	1 � 	2 � 0. In this case 	1 � � � �,

	2 � � 
 �, while 	4 � 
� 
 r, 	3 � 
� � r, with
� � r � � � 0.

3. If �	1� � �	4�, then also �	2� � �	3�, and det � � 0.

In case (1), the best fit possible is given by the proper rotation
corresponding to q1, the quaternion-eigenvector of the leading
positive eigenvalue. In case (2), q1 still gives the best fit by a
proper rotation, but a reflection followed by a rotation by q4 would
give a better fit. In case (3), either a proper rotation by q1 or a
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reflection followed by a rotation by q4 would produce equally
good fits. The correlation determinant vanishes in this case. How-
ever, the point sets are not necessarily planar or mirror-symmetric,
so that if a chiral inversion is undesirable, such as in the case of
L-amino acid-based proteins, the chiral inversion associated with
applying q4 together with a reflection about the origin is not
allowed and the proper rotation associated to q1 is the only choice.

We examine now the various cases that arise when two eigen-
values of the matrix � become equal. The only case of possible
interest in applications is when the degeneracy occurs in the
leading eigenvalue, 	1, and we limit our attention to it. Comparing
the conditions in cases (1–3) we see that if the leading eigenvalue
	1 is degenerate, that is, 	1 � 	2, then either 
	4 � 	1 and det �

 0 (case 2) or 
	4 � 	1 � 
	3 � 	2 and det � � 0 (case 3).
In case (2a) it is also possible to have triple degeneracy, that is,
	1 � 	2 � 	3. It is easy to translate these cases to the properties
of the corresponding singular values. However, in the case of equal
eigenvalues, the quaternion method has a slight advantage, as it
gives an invariant subspace that is generated by any linear com-
bination of q1 and q2 (and q3, in case of a triple degeneracy). In
the SVD-based method, the rotation matrices do not form a linear
space and constructing a proper combination is not as readily
accomplished.

Gradient of the RMSD and Application to an
Optimization Problem

The gradient of the RMSD with respect to the model coordinates
is required in several applications. For simplicity here we work
with E � e2. It is well known13 that the gradient is equal to the
residual vector in the form,

�Xk E �
2

N
�xk � UTyk�. (16)

We give here a simple derivation using the quaternion formalism,
and present a calculation using the gradient to find the best-fit
reduced model to a target structure.

We consider the case in which the model coordinates xk are
functions of a parameter set �. The parameter set � could be an
energy parameter set that places xk(�) at the global energy min-
imum, or a set of geometrical variables that represents a reduced
structure model. By the chain rule,

�E

��i
� �

k�1

N �
l�1

3
�E

� xlk

� xlk

��i
,

where xlk is the lth component of xk, and �i is the ith component
of �. The derivatives �E/��i provide the direction of steepest
descent in the RMSD, which can be used in a search for the
optimal parameter set �. For the first factor �E/� xlk we use the
results derived in the previous section. Because

�E

� xlk
�

2

N �xlk �
�	max

�xlk
�, (17)

we need formulas for the quantities �	max/� xlk. From the general
results in Appendix A,

VT
��

� xlk
V �

��

� xlk
� A� � �A,

where the eigenvalue matrix �, the eigenvector matrix V, and the
generator matrix of rotation A are defined in Appendix A. Because
the diagonal elements of A� 
 �A vanish we have

�	max

�xlk
� �T

��

�xlk
�, (18)

where � � �max is the normalized eigenvector corresponding to
the eigenvalue 	max. To show that this formula leads to eq. (16) we
recall that qcykq � (0, �T(q)yk). Writing as above q � qmax for
the quaternion equivalent to the eigenvector �max, and fixing its
value in dealing with the gradient operator as a matter of algebraic
convenience we have, using eq. (8):

�xk	max � �T�xk�� � �xk�
�T
L�yk�
R�xk���

� �xk�yk
T��q�xk� � �xk�xk

T�Tyk� � �Tyk (19)

so that (17) is equivalent to (16).
Near a degeneracy in the leading eigenvalue (i.e., if 	1 � 	2 �

0), the one parameter family of rotations

��q�t�� :� ��cos tq1 � sin tq2�, 0 � t 
 2�

produces near minimal residual for all values of the parameter t.
Of course, at the point of degeneracy, all such rotations produce
equal, and minimal, residuals because q(t) is also a unit eigenvec-
tor of eigenvalue 	max. In this case, the precise choice of optimal
superposition needs to be kept in mind any additional requirements
inherent in a given situation. For example, in the Nudged Elastic
Band method13 the above form could serve as an optimal switch-
ing function between branches near a degeneracy that would avoid
large force fluctuations while remaining close to optimal superpo-
sition at all times.

We illustrate the use of the gradient of RMSD in an optimiza-
tion problem. We consider a case in which a reduced protein model
with only �–� degrees of freedom is desired, and bond angles,
bond lengths, and peptide torsion angles are fixed at canonical
values. If the backbone atoms are reconstructed with the original
�–� angles, but together with the canonical bond angles and bond
lengths, the structure deviates from the original structure signifi-
cantly depending on the chain length, as shown in column “Initial
RMSD” in Table 2. Top500 database of high resolution, nonre-
dundant protein structures18 are used as target structures for this
calculation. The peptide torsion angles are fixed at 180°, and the
bond lengths and angles are fixed at NC� � 1.45 Å, C�C � 1.52
Å, CN � 1.33 Å, �NC�C � 111.6�, �C�CN � 117.5�, and
�CNC� � 120.0�.

We optimized the �–� angles to fit to the target structure at the
canonical bond angles, bond lengths, and peptide torsion angles.
The optimization successfully reproduces the original structure
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with small RMSD, as shown in Table 2. The L-BFGS-B algo-
rithm19 is used for the minimization with a maximum gradient
tolerance of 10
3.

The Algorithm

The procedure of calculating the best-fit RMSD and the gradient of
RMSD, given the two sets of vectors xk and yk and the weights wk,
is summarized below.

1. Multiply xk and yk by the weights wk, and shift the coordinates
to the barycenters, and call them x̃k and ỹk.

2. Take the maximum eigenvalue 	max and the corresponding
eigenvector �max of the 4 � 4 matrix � given by eq. (10) in
terms of x̃k and ỹk.

3. The best-fit RMSD is then given by

e � �¥k�1
N �x̃k

2 � ỹk
2� � 2	max

N
,

and the rotation matrix �(qmax) is obtained from the quaternion
qmax using eq. (33).

4. The gradient of RMSD is

�xke �
1

Ne
�x̃k � �T�qmax�ỹk�.

Conclusion

We give a simple derivation of the optimal translation-rotation of
one rigid body to minimize the Cartesian RMSD to another such
body. We use quaternions. Our derivation of the RMSD is most
similar to that of Kearsley,7 and the results are equivalent. We also
prove the equivalence of our quaternion-based formula to the
widely used formula derived by Kabsch.2 We exploit the connec-
tion between the two formulas to elucidate issues related to chiral-
ity and degeneracy. In addition, we derive the gradient of the
RMSD with respect to model coordinates. Its simple quaternion-
based form can be used to solve optimization problems that in-
volve the RMSD in the objective function. Examples include
optimizing energy parameters in models of protein folding and

docking, using the elastic band methods to find reaction pathway,
or finding optimal geometrical parameters in reduced dimensions.
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Appendix A: Perturbations of Symmetric
Matrices

We review a simple calculation from matrix perturbation theory:20

Problem: Let M(t) be a symmetric matrix, whose coefficients
depend differentiably on the parameter t. Find expressions for the
variation of its eigenvalues and eigenvectors with respect to t, that
is, (	t, vt).

Solution: We write

MV � V�,

where

� � diag�	1, 	2, . . . , 	N�,

and we assume 	i � 	j for i � j. The eigenvectors are orthonor-
mal, VVT � I. Because the columns of V form a complete,
orthonormal set, we can write:

dV

dt
� VA, (20)

for some matrix A, that is, the dvi/dt are written as linear combi-
nations of the vis. Because VTV � I we have

dVT

dt
V � VT

dV

dt
� 0 3 AT � A � 0,

so that the matrix A is skew, AT � 
A, which is to be expected
because A is the generator of a rotation. Then, from M � V�VT

we have

dM

dt
�

dV

dt
�VT � V

d�

dt
VT � V�

dVT

dt

� V
d�

dt
� A� � �AT�VT,

so that, finally:

VT
dM

dt
V �

d�

dt
� A� � �A. (21)

Table 2. Statistics of the Optimization Results.

No. residues No. proteins Initial RMSD (Å) Optimized RMSD (Å)

12–99 99 5.61 0.19
100–199 168 10.34 0.23
200–299 116 16.26 0.24
300–399 69 19.50 0.22
400–839 48 24.59 0.26

Initial RMSD and optimized RMSD are average RMS deviation of the
reduced model structures from the crystal structures after reconstructing
with the original and optimized �–�, respectively.
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Appendix B: Quaternion Notation and Properties

We review basic properties of quaternions below. We follow the
notes of Coutsias and Romero,21 and refer the reader to these notes
for more details. The book by Rappaport,22 which discusses
quaternions in the context of molecular dynamics, is also useful as
an introduction. We define a quaternion q as a 4-vector q � (q0,
q1, q2, q3) � (q0, q), where q � (q1, q2, q3), with the obvious
addition law and the fundamental multiplication law given by

a � �a0, a�, b � �b0, b�, a � b � �a0 � b0, a � b�,

ab � �a0b0 � a � b, a0b � b0a � a � b�, (22)

where the multiplication can be seen to be associative, a(bc) �
(ab)c, but not commutative, ab � ba, in general. We also define
the conjugate quaternion qc, the squared norm of a quaternion
N(q), and the inverse quaternion q
1 by

qc :� �q0, 
q�, �ab�c � bcac, (23)

N�q� :� qcq � qqc � q0
2 � q � q, (24)

q
1 :�
qc

N�q�
�

�q0, 
q�

N�q�
. (25)

An important class of quaternions is the pure quaternions,
which have the form q � (0, q). Pure quaternions can be consid-
ered as ordinary 3-vectors q � (q1, q2, q3), which have been
mapped to 4-vectors, (0, q) � (0, q1, q2, q3). Note for pure
quaternions a, b, eq. (22) and eq. (23) yield

a � �0, a�, b � �0, b�, ab � �
a � b, a � b�, (26)

ac � �0, 
a� � 
a. (27)

The quaternion product can be formulated as a matrix multi-
plication as follows:

pq �: 
L�p��, p operates on q from the left, (28)

qp �: 
R�p��, p operates on q from the right, (29)

where 
L( p) and 
R( p) are 4 � 4 matrices, and � � (q0, q1, q2,
q3)T is the column 4-vector representation of quaternion q. By
convention, the matrix multiplication form of the quaternion prod-
uct (the right-hand side of the above) is defined to act from the left
on a column 4-vector. For p � ( p0, p1, p2, p3) the matrices

L( p) and 
R( p) are given by


R� p� � �
p0 
p1 
p2 
p3

p1 p0 p3 
p2

p2 
p3 p0 p1

p3 p2 
p1 p0

�, 
L�p�

� �
p0 
p1 
p2 
p3

p1 p0 
p3 p2

p2 p3 p0 
p1

p3 
p2 p1 p0

�. (30)

Quaternions provide a natural coordinate system for 
�(3), the
group of proper rotations of 3-space. Thus, they can describe
rotations without the singularities of, say, the Euler angles rotation
matrices. For the 3-vector r� obtained by a rotation of the vector r
via the orthogonal rotation matrix � we have

r� � �0, r��, r � �0, r�, r� � qrqc, (31)

�0, r�� � �q0, q��0, r��q0, 
q� � �0, ��q�r�. (32)

Using the notation of eq. (30), we can express the rotation matrix
as a product of two matrices, each depending linearly on a unit
quaternion q (qqc � 1):

�1 0T

0 ��q�� � 
L�q�
R�qc�.

The 3 � 3 rotation matrix � is given by

��q�

� �
q0

2 � q1
2 � q2

2 � q3
2 2�q1q2 � q0q3� 2�q1q3 � q0q2�

2�q1q2 � q0q3� q0
2 � q1

2 � q2
2 � q3

2 2�q2q3 � q0q1�

2�q1q3 � q0q2� 2�q2q3 � q0q1� q0
2 � q1

2 � q2
2 � q3

2� .

(33)

Because � is orthogonal we have �
1 � �T. Note that by its
construction, �(q) is a proper rotation whose angle � and axis c
are seen in the form of q:21,22

q � �q0, q� � �cos��/2�, sin��/2�c�.

It is easy to see that {�, c} and {
�, 
c} produce the same
quaternion q and, hence, the same rotation. Also, q and 
q
produce the same rotation, a fact easily deduced from the form of
the rotation matrix �(q).

Appendix C: The Polynomial Coefficients

We give here the MAPLE script that was used for the verification
of the two methods, as well as some of the polynomial coefficients;
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We note that the last three lines of output provide the verifi-
cation that the characteristic polynomial of � is indeed the resol-
vent cubic for the characteristic polynomial of �, while the ex-
pression for P41 shows that 4q � 
8 det �.
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the expressions for the other coefficients are lengthy and were
omitted.

� with (LinearAlgebra):
� R:�Matrix([[R11,R12,R13], [R21,R22,R23],[R31,R32,R33]]):
� S3:�R.Transpose(R):
� P3 :� CharacteristicPolynomial(S3,z):
� P33:�coeff(P3,z,3);

P33:�1
� P32:�coeff(P3,z,2);

P32:� 
R122 
 R332 
 R312 
 R322 
 R232 
 R222 
 R212 
 R132 
 R112

� P31:�coeff(P3,z,1):
� P30:�coeff(P3,z,0):
� S4:�Matrix([[R11�R22�R33, R23
R32,R31
R13,R12
R21],
� [R23
R32, R11
R22
R33,R12�R21,R13�R31],
� [R31
R13,R12�R21,
R11�R22
R33,R23�R32],
� [R12
R21,R13�R31,R23�R32,
R11
R22�R33]]):
� P4:�CharacteristicPolynomial(S4,y):
� P44:�coeff(P4,y,4);

P44:�1
� P43:�coeff(P4,y,3)/4;

P43:�0
� P42:�coeff(P4,y,2)/6;

P42:� 
1
3
(R132 � R212 � R312 � R122 � R232 � R322 � R112 � R332 � R222)

� P41:�coeff(P4,y,1)/4;
P41:� 2 R11 (R23 R32 
 R22 R33) 
 2 R12 (R23 R31 
 R21 R33) � 2 R13 (R22 R31 
 R32 R21)

� P40:�coeff(P4,y,0):
� exp2:�P32
3*P42;

exp2�0
� exp1:�simplify(P31
(9*P422̂
P40)/4);

exp1:�0
� exp0:�simplify(P30�P412̂/4);

exp0:�0
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