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The field of structural biology is becoming increasingly important as new tech-

nological developments facilitate the collection of data on the atomic structures
of proteins and nucleic acids. The solid-state NMR method is a relatively new
biophysical technique that holds particular promise for determining the structures
of peptides and protes that are located within theell membrane. This method
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providesinformation on the orientation of the peptide planes relative to an exter-
nal magnetic field. In this article, we discuss some of the mathematical methods
and tools that are useful in deriving the atomic structure from these orientational
data. We first discuss how the data are viewed as tensors, and how these tensors
can be used to construct an initial atomic model, assuming ideal stereochemistry.
We then discuss methods for refining the models using global optimization, with
stereochemistry constraints treated as penalty functions. These two processes, ini-
tial model building followed by refinement, are the two crucial steps between data
collection and the final atomic model.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

This article discusses some recent developments in protein structure determi-
nation from nuclear magnetic resonance (NMR) data, particularly with regard
to solid-state NMR of aligned samples and the observation of anisotropic NMR
observables such as dipolar couplings and chemical shifts. These methods give
orientational restraints rather than the distance or torsional restraints familiar from
solution NMR.

Sdid-state NMR is particularly promising as an aid for solving membrane
protein structures using techniques such as uniformly aligned membrane
protein samples in lipid bilayersCfoss ad Quinge 2000. Membrane pro-
teins form about 30% of many genomé#/dlin and Von Heijne 1998, but
only 0.5% of known structures. This paucity of structural information is
due largely to the difficulty in obtaining membrane protein crystals for x-ray
crystallography and in obtaining isotropic solutions for solution NMR. The
techniques most appropriate for membrane proteins do not have the same
long history of methods development, being newer techniques than crystallo-
graphy.

This article has two parts. We first describe the mathematical tools useful in
the interpretation of anisotropic NMR data. We also describe an algorithm that
can help in the construction of an initial molecular model from this data. Most of
these mathematical tools are useful in the analysis of both solution and solid-state
NMR data. In the second part of the article we discuss computational methods that
can be used to improve on or refine the initial model. Atomic refinement is com-
monly applied by x-ray crystallographers as a means of incorporating the x-ray
diffraction data into the model building process. This computational methodology
can be adapted to solid-state NMR. The computations involve nonlinear restrained
optimization in which a structural model is derived that is consistent with both
the experimental data and withpriori understanding of the molecular geom-
etry of the components of macromolecules, based on studies of simpler model
systems.
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2. STRUCTURE OF PROTEINS AND NMR RESTRAINTS

In this section we describe an algorithm for obtaining a structure of a long poly-
mer or protein from the orientations of a sequence of bonds. This discussion is use-
ful for establishing the mathematical framework for using orientational restraints.

2.1. Protein structure and discrete curves. A protein structure can be repre-
sented as a collection of atoms together with their coordinates in three-dimensional
spaceJR3. This maybe a list of all atoms in the protein, or a list of the ones that
can be observed. Thus, N atoms are listed with coordinates we have a vector

in (R®N. Two dructures are the same if one can be transformed into the other
by a sense-preserving Euclidean motionElfs the group generated by rotations
and translations, it can be thought of as acting on all the coordinates listed, and a
structure is an element gR3)N /E.

The prdein molecule is a sequence of amino acids of 20 different kinds. The pep-
tide bond links into a polymeric backbone individual amino acids with 20 types of
side-chains. It is convenient to think of a protein as a collection of discrete curves.
This is useful both in understanding the torsion angle description of protein struc-
tures and the method of using orientational restraints and dynamicS€séen
3.3.9 to deermine protein structures.

A discrete curve is a sequence of points, . .., pn in three-dimensional space.
These points can be thought of as atoms and the line segments joining atoms in the
sequence can be thought of as covalent bonds. The backbone of a protein is a dis-
crete curve consisting of points representing the atontsN-&C,—C— proceeding
from the N-terminus to the C-terminus. By putting the atoms in sequential order,
side-chains can also be made into a discrete curve. Thinking of a protein as a curve
allows us to abstract some ideas from differential geometry to study the structure.

2.1.1. Frenetframes. A Frenet brmalism for discrete curves will be described
briefly. The idea of a Frenet frame, or moving frame, for differentiable space curves
can be modified for use with discrete space curves. Let

Sj = [Pj+1— Pjl
and define a unit tangent vectormgt j =0,...,n—1, by
Pj+1 — Pj
= 2= 1
= (1)

The points of the curve can be reconstructed up to translation from the sequences
{tj} and{s;j} by

k-1
Pk—Po= Y _Sjtj. (2)
=0
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Figure 1. Atoms forrmg the peptide plae, and the vectorty andnj of the Franetframe
that span the plane.

If t;_, andt; are not parallel, binormal and normal vectors can be given by

_ tj_l X tj

| = , nj = bj x t; 3
j 1% ] j IRy ®)

and a right-handed orthogonal frame by
Fij = (tj, nj, by). 4

This will be referred to as the Frenet framepat (Vectors are column vectors, and a
frame is a sequence of three linearly independent vectors considered as columns of
anonsingular 3x 3 matrix. Orthogonal frames correspond to orthogonal matrices
and right-handed orthogonal frames to rotation matrices.)

The Fenet frames can be thought of as molecular frames along the molecule.
The planeformed by the tangent and the normal vector at a point contains the
point together with the previous and the subsequent points. At a nitrogen atom in
the protein backbone, the vectarandn span the peptide plan€iy. 1) andb is a
peptide plane normal.

The Frenetframes are also related to the torsion angles used in the study of
molecular structure. The relationship of one Frenet frame to the next is given by

Fi+1 = FjRai(tj))R3(0j+1) (5)

whered; = arccost;_; - tj) is the exterior bond angle p§, andz; is the angle of
torsion about the bond directidn (Fig. 2). Here

1 0 0 cosd —si O
Ri6)=1]10 cos® -—sim R3(@) =] sind0 cos® O (6)
0 sind cosh 0 0 1

are rotation matrices. Thus the discrete curve can be reconstructed up to a
Eudidean motion from the sequencgs;} of bond lengths,{t;_, - tj} of bond
angle cosines, ang;} of torsion angles.
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Figure 2. The covalent bond angbe at p> and the angle of torsiom about the bond
diredion ty.

2.1.2. Sandard protein geometry. For finding and describing protein struc-
tures with limited structural data it is often assumed that bond lengths and angles
have standard (or ideal) values depending on the type of bon®Gésaimn 3.1.1L
With bond angles and bond lengths given, the above discussion shows how the
structure of the protein backbone can be determined given a torsion angle for each
bond.

2.2. RedraintsfromNMR. Since about 1957, the technique of nuclear magnetic
resonance (NMR) has been used to find the structure of peptides and, more recently,
of proteins. Today, there are two different methods, solution NMR and solid-state
NMR. In the soldion NMR method the molecules are tumbling in the solvent dur-
ing the experiment at a rate that is fast on the NMR timesé&alar{s 1995; in the
solid-state NMR method the molecules are rigid or they are restricted to anisotropic
motion. This dichotomy between isotropic and anisotropic motion is not absolute;
there is always some motion of the molecule and the motion may be more or less
restricted. An intermediate case is exemplified by the situation where residual
dipolar couplings are measured by means of solution NMR, as discussed later.

The difference between the NMR techniques of structure determination is in the
type of geometric information that can be obtained from the experiment. The
solution NMR method predominantly measures distance restraints and the solid-
state NMR method predominantly measures orientational restraints. A distance
restraint is an equation or inequality involving the distance between two atoms in a
molecule. An orientational restraint is an equation or inequality involving an angle
between the external magnetic field direction and the vector between two atoms in
the molecule. Often the atoms are covalently bonded and this angle is referred to
as a bond orientation angle. A hybrid distance/orientational restraint is given by
residual dipolar couplings in the solution NMR method.

The difference between orientational restraints and distance restraints can be
thought of in terms of groups of Euclidean motions. Distance information is the
only type of information invariant under the full growp of rigid body motions.

Let B be theunit direction of the magnetic field (usuallB has magnitude equal to

the strength of the field), and IEg be the subgroup leavirg fixed. The groupEg

can also be thought of as the group generated by translations and rotations about
the axisB. Orientational restraints are invariant under the gr&gp but not under

the full groupE.
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2.2.1. Didtance restraints. The kasic principles of distance geometry can be
expressed in terms of a distance matrix. For a sequence of gmjnts. , pn, the
distance matrixD is defined to be the matrix with entriep; — p;|>. For the
purpose of finding the structure, we may assume flgat= 0. We also define
the gram matrixG for the sequence of vectops, ..., p, to be the matrix with
entriesp; -p;. The identity|p; —p;j [ = |pi|*>— 2p; - p; + |p;|? shows that the gram
matrix can be computed from the distance matrix using row and column operations.
A set of coordinates for the points can be obtained by using the eigenvalues and
eigenvectors of the symmetric mat&to write

G=M'M (7)

whereM is a 3x n mdrix. The columns oM are then coordinates for the points

P1, ..., Pn. TO write G as the ‘square’ of a & n marix M as in (7), G must be
positive definite and rank 3 and this restricts which matrices can be distance matri-
ces Havel and Dressl993. So without perfect data, the gram matrix computed
from the data might have rank greater than 3, which would result in the coordinates
of the atoms being in some higher dimensional space.

2.2.2. Orientational restraints. While in principle it ispossible to determine
the structure using complete distance information, in practice such information is
rarely, if ever, available. The data is supplemented with tables of average bond
angles and lengths in peptides.

Mathematically, the method for obtang coordinates from orientational
restraints is similar to that for obtaining distance restrailser{neman and
Cross 1990 Ramamoorthyet al., 1995 in that matrices of dot products are used.

A complete gram matrix is not available because dot products are available only
for selected vectors. Average bond angles and lengths supplement the information
in the matrices.

Orientational restraints are easiest to obtain in the solid-state NMR method
for vectors joining covalently bonded atoms. To compute a structure from these
restraints, consider a discrete curve and suppose that the \&Juepresenting
bond lengths, and;_; - t;, representing the negatives of the cosines of bond
angles, are known. If orientatior - t; (cosines of angles of bonds with the
chosen direction of the magnetic field) are known and none of these values are
+1, then there are only a finite number of structures possible for the curve. Itis
sufficient to find coordinates for the unit vectdys These can be found recursively
(Quing 1999. Suppose, for example, thBt tj_;, B - tj, andt;_; - t; are given;
then

tj = T((ﬂj —KjKj,l)tj,l-i-(Kj —ﬂjKj,l)B-i-Sj\/g_jtj,l x B) (8)
1 Kjfl)
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Figure 3. lllustration of §). The sphere represents theg sf unit vectors. The equations
ko = B -tp andBo = t1 - t5 indicate that giveny, the \ectort; lies on both of two circles
aboutB andty. (a) If g» < O the circles daot intersect and theris no solution. (b) If
g2 = 0 then thecircles intersect at one point and there is only one possibilitysfofc) If
g2 > 0 then there are two possibilities far, distinguished by chiralitg,. The \ectort,

corresponds tey = —1 and tle vectort(zz) corresponds tey = 1.

where
KJ'=B-tJ' ,3j=tj_1-tj 8j=:|:1

and where

1 «j1 k

g; = det| «j_1 1 B

Kj Bj 1
Equation @) deermines the vectot; up to two possibilities depending an
(Fig. 3.

Since here is a choice of = +1 a each stage, and since these values cannot
be determined from the values Bf- t;, there are »-1 structures for this curve
compatible with the constraints. Since

&j :—signB-(tj_lxtj), (9)
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the structural elucidation requires the determination of chiralities. Knowledge of
the valuesB - t; ande; is equivalent to the knowledge of the coordinate€3ah
each Frenet frame and this determines the structure uin(p), and g).

Soméimes the coordinates & in a Frenet frame can be determined by obtaining
orientations of other vectors whose coordinates are known in the Frenet frame. At
an alpha carbon, for example, the four bond directions are known to have approx-
imate tetrahedral geometry. Choosing the alpha carbon and any three neighboring
atoms, i.e., any three of the four bonds, the sign of the scalar triple product of three
bond directions is known from the chirality (usually of the aminoacid. In this
case any of the four vectors can be written uniquely in the Frenet frame and so the
coordinates oB in the Frenet frame are known from the dot product8afith
any three of the four alpha carbon bond vectors.

The problem of obtaining chiralities is analogous to the phase problem in x-ray
crystallography, where a set of phases must be chosen and used with the diffraction
intensity data to obtain a structure.

Notethatg; is the determinant of the gram matrix of the sequence of ve&iprs
t;_1, tj, and as such should be non-negative. Problems in solving for the structure
occur if inconsistencies in the data cause this determinant to be negative. This is
similar to the situation in distance geometry when imperfect distance constraints
give gram matrices which are not of rank 3.

The expression 1- (B - t;_1)? in the denominator of§) alsocauses problems
in this method of solving structures from orientational restraints. The recursive
solution works only if none of the tangent vectors of the discrete curve are parallel
to B, in which case there can be an infinite number of structures consistent with
the data. This is because changing the single torsion angle around a bond vector
parallel toB will give a curve with the same sequence of valigs, {B - t;}, and
{tj_1 -tj}. The algorithm is also numerically unstable if any of the valBeg; is
close tot1, that is, if any of the vectorg are nearly parallel t&.

2.3. Obtaining orientational restraints. Orientational restraints are obtained
from the solid-state NMR method and can also be obtained from the solution
NMR method from residual dipolar couplings. In general, an NMR experiment
detects the radio-frequency precession of nuclear spins in a moldegle 4).

In quantum mechanics, this frequency represents a discrete difference in energy
levels and the energy levels are eigenvalues of a Hamiltonian matrix. The
strongest interaction affecting the energy is given by the Zeeman Hamiltonian,
H = Bgyl,, whereBy is the intensity of the magnetic fielg, is a gyromagnetic

ratio depending only on the type of the atom, dnds a spin matrix with the

Z axis being in the direction of the magnetic field. The Zeeman Hamiltonian
represents the effect of the magnetic field on the nuclear spin. Usingdehei’s
equation with the Zeeman Hamiltonian shows that in the absence of other inter-
actions the spin of a nucleus precesses at a frequBggyradians per second,

the Larmor frequency.
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Figure 4. NMR experiments detect the raftiequency precession about a magnetic field
Bg of the bulk magnetizatioM of nuclear spins oftams in a molecule.

What makes streture determination possible is that the spins in the molecule
interact, so the observed frequency differs from the Larmor frequency. In quantum
mechanics the interaction arises from other Hamiltonians added to the Zeeman
Hamiltonian. These Hamiltonians are functions of the orientation of the molecule
with respect to the magnetic field directiBn Thedependence of these interactions
on the orientation can be detected only if the molecules maintain some average
orientation with respect t®8 as in the solid-state NMR method. In the solution
NMR mehod the orientational dependence is typically averaged out due to
isotropic tumbling of the molecules.

The aientational restraints discussed can be thought of as tensors because they
are given as a quadratic expression in the coordinates of the unit magnetic field
direction. Any quadratic expressi@ix> + ay? + agaz® + 281Xy + 28p3yZ +
2a13Xz can be written as a symmetric matrix with entregs As a tensr, it can
be discussed in terms of its principal values and principal axis frame, and the latter
can be expressed in terms of the molecular (Frenet) frames we have discussed.

2.3.1. Thedipolar interaction. The most ommon interaction used to obtain
orientational restraints is the dipolar interaction. The effect of a spthatom
on another, for example, results in splitting the Larmor frequency into two fre-
guencies, a single peak becoming a douldég.(5). The difference of these two
frequencies is a function of the angle betwdzmnd the vector joining the two
atoms. This difference, representing a change in energ/given by

v= %(3@1 \B)2—1) (10)
whereu = r/r is the unit vector in the direction of a vectoijoining the centers

of the two atomsy; = Cy1y2/r3, y1 andy, are the gyromagnetic ratios of the two
atoms, andC is a constant. Only the absolute valwé of the dipolar coupling is
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Figure 5. A 2D PISEMA spectra (superimposed on a powder pattern). The vertical 1D
spectrum shows the dipolar splitting. The separation between the peaksTisepostion
of the peak on the horizontal spectrum indicates the chemicalshift

typically observed in solid state experiments. Problems in determining the sign of
v are discussed iBection 3.4.1

The experimentally measured value pf| is the simplest example of an orienta-
tional restraint. In many instances dipolar interactions between bonded atoms are
measured where the distancdetween them is known. Thug in equation {0)
is typically assumed constant, and the equation is solved up to a finite number of
possibilities foru - B, and the orientation of one bond direction with respect to the
magnetic field is constrained to a finite number of possible values.

The dpolar restraint can be expressed more generally in terms of a tensor. Let
Fp be a principal axis frame for the tensor, an orthonormal frame with the third
vector, thez direction, in the directioru of a covalent bond along which a dipolar
interaction is measured. (X, y, z) are the coordinates & in this frame, then the
splitting (10) is equal to%(Szz— 1). SinceB is a unit vector, the splitting is equal to
4 (22 —x*—y?) and this can be thought of as the quadratic tensor given in its prin-
cipal axis frame-p by the diagonal matri@diag(z, —1, —1). This is a traceless
tensor and the corresponding function is harmonic, the zonal spherical harmonic.

2.3.2. Thechemical shift. The devigion from the Larmor frequency due to the
spins of neighboring orbiting electrons is called the chemical shift. The chemical
shift can also be expressed as a tensor, a quadratic expres#ornirtortrast to
the dipolar tensor it is directly proportional to the intensity of the magnetic field.
The pincipal values are not easily computed from quantum mechanics and must
be experimentally determine®éset al., 1987 Brenderet al., 2001 Leeet al.,

2001 Tenget al., 1992.

2.3.3. NMR tensors and the Frenet frame. The dructural significance of the
observed values of the NMR tensors depends on knowing, in addition to the
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Figure 6. The principal major axiga for the1®N chemtal shift tensor at atonA is often
in the gane of the three bonded atoms and is determined by an gnhfylem oneof the
unit bond vectors. By experimental characterization, one other majosgxis generally
in the plane with the third major axis parallelt@ x u, so 8 characterizes thEp with

respect to the Frenet frame.

principal values of the tensors, the relationship of the principal axis frames to the
Freret or molecular frame.

For the dipolar tensor, the unique principal axis is in the direction of a bond
vector, and this bond vector can be expressed in the Frenet frame using the local
geometry of the molecule.

The chemical shift tensor can also be expressed as a tensor in terms of a Frenet
frameF. The tensor is given by specifying the principal values and writing the
principal axis framé-p asFp = FR for some fixed rotation matrik. Due tothe
spatial geometry of the orbiting electrons in a peptide plane, this rotation matrix for
backbone atoms can often be given as a matrix of the Rs(8) for some angles
(Fig. 6). Both R and the principal values are measured by powder experiments
where a sample is studied with the molecules in random orientations. Often from
rotation patterns using a single crystal it can be deducedgtizatd the principal
values are constant for a given type of atom, e.g., a backbone nitrogen in a protein
structure Mai et al., 1993.

2.3.4. 2D NMR, PISEMA. Two-dimensional methods using NMR such as
PISEMA allow the measurement of both the anisotropic chemical shift and the
dipolar splitting from a single signaRamamoortit and Opella, 1995 Tianet al.,
1998 Ramamoorthyet al., 1999. This also provides added information in deter-
mining whethen = |v| or v = —|v|. This sign hdeterminacy is often a problem
in getting full structural information from orientation restraints. Froh®) (it
follows thatv is between-3 andv; and ® if v is greater thar) thenv = |v|.
Methods such as PISEMA give added information on the sign indeterminacy. The

possible valuego, v) of the chemical shift and dipolar splitting are given as an
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Figure 7. The powder pattern for the PISEMA experiment is sketched as the union of two
ellipse-shaped regionB and P*. The chemical shift, dipolar splitting paiKo, v) must be

in P. If (o, &|v]) are not inthe intersection of P and P* then the sign of is determined

by this fact.

p*

ellipse-shaped seR), related to the powder patterkif). 7). We also consider the
reflection P* of P consisting of all possible values ¢, —v). If the resonance
does not lie in the intersection of these sets, then the sigrcah be determined.

Another useful technique for resolving degeneracies with PISEMA is using the
characteristic two-dimensional patterns made by protein helices. This is related to
the concepts oPISA wheels (Marassi and Opella200Q Dennyet al., 2001) and
dipolar waves (Mascioni and Veglig2003 Mesleh and Opel|£2003.

2.4. Tensor averaging. All samples experience some form of motion. At one
extreme, isotropic motion, the observed tensors are averaged over all possible ori-
entations and the observed value is

1 1
AT = — / B'TBdA = ~TracqT),
4 B 3

whereB is considered as a point on the sphere of unit vectbfsis area measure

on the sphere, anflis the observed tensor. (Although the tensor is taking a random
orientation in the lab frame, it is easier to think Dfas fixed andB at a random
position in the principal axis frame df.)

2.4.1. Residual dipolar couplings. In the solution NMR method the observed
value of the dipolar coupling tensor is zero since it is a traceless tensor. Suppose,
however, that the motion is not perfectly isotropic, possibly due to diamagnetic
susceptibility of the molecules or to other large molecules hindering the motion,
and that the preference of certain orientations can be given by a weighting with a
symmetric quadratic tens&; so that he observed value of the tensbiis

1
AvsT = — /(BtTB)(BtSB) dA,
A B
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(seePrestegardet al., 1999. Computing in the principal axis frame &f suppose
S =diag(x1, x2, x3) andT = (t;;); then

1 + + +
AvsT = — | tir | x1 + X2 X3 +to(x2+ BT a +ta3(x3+ T X2
5 3 3 3 1)

(

If the tensoIT is tracelesst;1+to+t33 = 0), thenfrom (11) any scalar tensor can
be added t& without changing the average. Saan be assumed to be traceless
and (L1) becomes

2
AvsT = 1—5('[11X1 + tooxo + t33x3). (12)

Applying this to the dipolar tensofQ) it follows that
Vv
Avsv = EH(Uin + U3x2 + U3x3) (13)

where(us, Uy, Ug) are the coordinates of the bond direction vector the principal
axis frame ofS. Writing in spherical coordinates,

(U1, Uy, U3) = (SiNB cos¢, Sind sing, cosh)
the average tensor can also be written as
l)H .
Avgy = E((Xl — x2) SiN? 0 cos 2 + x3(3cog6 — 1)). (14)

The result of the above discussion is that the observed dipolar tensor under this
form of non-isotropic motion is not zero as is typical of solution NMR, but is given
by the absolute value of a traceless tensog Awith the principal axis frame the
same a that ofS. Theobserved absolute value of Av is referred to as eesidual
dipolar coupling.

Residual dipolar couplings give important orientational restraints and informa-
tion about the direction vectar of a bond, but the orientation is with respect to
the principal axis frame o®. Thisframe is not knowra priori but must le deer-
minedfrom the data, as must the principal valygs x», andys (Cloreet al., 1998
Tjandraet al., 2000. So, in addition to the structure, the traceless tefsoust be
found, which adds five new parameters to the ones that determine structure.

2.4.2. Magic angle spinning. In another tensor averaging procedure, called
magic angle spinning, the sample is spun at a high frequency about an axis making
an anglef with the magnetic field. To compute the averageTet (t;) be the
coordinates of a symmetric tensor in a frame whereztheis is along the axis of
the spinning sample. L& = (sind cosg, sind sing, cosh)!, then

TraceT) t3

1 2
AV,T = _/ B'TB d¢ = Sit6 + -3(3co26 —1).  (15)
27 Jo 2
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If the tensor is traceless and the sample is spun at the magic angle whef® 3-cos

1 =0, then the observed value of the tensor is 0. In the case of the dipolar splitting,
since the tensor is traceless, no splitting is observed in magic angle spinning, and
in this way other interactions can be more readily observed.

3. FORCE FIELDSAND ATOMIC REFINEMENT

The mehod described above for using orientational information to obtain atom
locations is useful in the determination of an initial protein structure. To improve
on this it is appropriate to refine the structure using all available data and all stere-
ochemical information asestraints rather thanconstraints. That is, réher than
strictly enforcing agreement of the model with the experimental data, one con-
structs a potential energy function consisting of a sum of stereochemical force
fields andpenalty functions for deviation from experimental data. Refinement then
consists of minimizing the energy function using a combination of global and local
minimization algorithms. In this section we first describe the components of the
energy function, and then the optimization strategies commonly applied to locate
the global minimum, which corresponds to the native conformation of the model
protein Anfinsen 1973. We then discuss how orientational information from
solid-state NMR can be used in refinement, and some of the mathematical proper-
ties of the orientational penalty functions.

3.1. Stereochemical force fields. Atoms within a protein are affected by two
types of interatomic forces: those due to covalent bonding and those due to
nonbonded interactions. Although these forces can be described with quantum
mechanical formulations, the vast majority of protein structure determinations
are made using simpler classical formulations. A number of different force field
sets have been developed for proteins and nucleic acids, parametrized for specific
ses d amino acids or nucleotides. We will focus on the CHARMM force field
set Brooks et al., 1983, since this is used in the popular atomic refinement
software packages X-Polar and CNBrifnger 1992ab; Briingeret al., 1998.

This was also used in the computer software TORC, developed for refinement
using orientational dat&etchemet al., 1997).

3.1.1. Bonded interactions. Cavalent bond lengths and angles are quite rigid
and predictable. Lengths range froal A for bonds involving H torv1.5 A for
all other bonds. Angles depend on the hybridization and thus the valence of the
atoms, with angles o109 for tetrahedral arrangements (e.g., bonds gtahd
angles of~12(Q for trigonal—-planar arrangements (e.g., bonds at carbonyl C and
amide N) MacKerellet al., 1998. The deviation from mean values is small, with
a standard deviation of less than 0.@for bond lengths ane:2° for bond angles
(Hendickson 1985. To restrain bond lengths and angles harmonic force fields are
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used, penalizing deviation from mean ‘ideal’ values:

Ebonds= Z Kb(b - bO)z (16)
bonds

Eangles= Z K@(Q - 90)2, (17)
angles

where summation is over all covalent bontg, 6, are the ideal bond lengths and
angles, anKy, K, are force constants. Values of these parameters depend on the
types of atoms and their locations in the protein main chain or side-chains. The
harmonic restraints are analogous to the restoring energy for two masses coupled

by a spring.
Torsion angles describe the ‘twisting’ of two bonds about a third. Consider four
atomsps, ..., p4 joined sequentially through covalent bondsg; 2). Leta =

p2 — P1, b = p3 — p2, ¢ = p4 — p3. Then the torsion angle abohtis the dihedral
angle between the plane spannedablg and the plane is spanned byc. Thus, it
is the angle between vectors normal to these plamesh andb x c, respectively.
A convenient formula for computing dihedral angles uses the argument of a 2D
vector (X, y), written as argx, y) with —180° < arg(x,y) < 18C. This is the
angle made by the vector with the positivaxis. The torsion angle abobis then

T = arg(—|bj’a-c+ (b-a)(b-c), |bla- (b x c)). (18)

The torson angle energy term is periodic, reflecting different hybridizations
about the bonded atoms:

Etorsion = Z K. cognt — 4§), (19)

wheren is an integer, ant;, n, § depend on the atoms forming the torsion angle.
Torsion angles formed by atoms in aromatic groups are restrained by a harmonic
energy function to maintain planarity, and a harmonic energy function is used to
enforce chirality about the peptide bond. These are sometimes c¢aibedper
angles:

Eimproper= Z Kimp(f - 770)2, (20)

improper

whererg is the ideal torsion angle value.

3.1.2. Nonbonded interactions. In addition to covalent interactions, protein
atoms interact through van der Waals and electrostatic forces. The van der Waals
interaction between two atoms is repulsive for short distances due to overlap of
their electron clouds, and attractive for larger distances due to mutual induction of
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electrostatic dipoles formed from local fluctuations of electron density. The force
between the atoms is zero at the van der Waals contact distance, which has been
measured or determined from quantum calculations for different combinations
of atoms. The van der Waals interaction is often described by a Lennard-Jones

potential:
A B
B = (73~ 72 @1)
vdW

wherer is the interatomic distance arfg B are determined by the types of atoms
involved in the interaction.

Charged atoms produce electrostatic interactions with neighboring atoms,
described by

Eelec = (22)
i
whereq;, g; are charges on two neighboring atoms aRds the distance between.
The delectric constant is typically assumed to be constant, but in fact it varies
throughout the protein due to the nonuniform chemical environment. Partly for
this reason, and partly due to difficulties in assessing atomic charges, the electro-
static force field is often omitted, and the van der Waals interaction alone is used
to describe nonbonded interactions. The omission of an explicit electrostatic force
field may have serious consequences in a low dielectric constant environment, such
as within a lipid layer. In such cases, charged atoms are thought to play a particu-

larly important role in the tertiary structure.
3.2. Penalty functions. In principle, the sum of the stereochemical force fields

Echem = Ebonds+ Eanglest Etorsion + Eimproper+ Evaw + Eelec (23)

is sufficient to describe the interatomic interactions, and minimization of this
potential energy function should give the native conformation of the protein.
However, ouiknowledge of interatomic forces within a protein is incomplete, and
experience has shown that the stereochemical force fields alone are insufficient to
describe the protein. Instead, accurate atomic structures are determined using data
from x-ray crystallography or an NMR method. These data are used to restrain
atom locations by introducing the penalty function

Edata= Z(Sc - 50)2, (24)

data

wheres, is an experimental observable aids the corresponding quantity calcu-
lated from the model. Summation is over all data. This penalty term is weighted
by a factorw and added t&hem cOnpleting the potential energy function:

E = Echem+ wEdata (25)

The process of minimizing this function is calledomic refinement.
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The doice of the weightw applied to the experimental data is problematic.
Largew puts more emphasis on the data, which is incomplete and subject to error,
often leading to bad stereochemistry. Sma#mphasizes the stereochemical force
fields, which are only approximations to the interatomic forces. A good refinement
requires an appropriate balancing of stereochemical and experimental restraints.
The gproach taken in recent years is to remove a small fraction of the data from
the refinement process, and to use this as a tesBsénger 1992ab). Multiple
refinements are then performed, using a range of values fofhe weght that
gives the best agreement between the model and the test set is then used for the
final refinement; one discards other refinements.

3.3. Optimization techniques.

3.3.1. Cartesian refinement. A major obstacle to atomic refinement is global
minimization of 5), since the landscape defined by this function is studded with
local minima. When local minimization algorithms such as steepest descent or
conjugate gradient are used, the structure often gets trapped in local minima far
from the global minimum, so these may be of limited use in atomic refinement.
The method used most often is molecular dynamics with simulated annealing. The
dynamics is described by Newton’s second law:

2
m; % =—-V;E (26)
wherem; andx; are the mass and location of atdmrespectively. Simulated
annealing Kirkpatrick et al., 1983 introduces a computational temperature, which
is a measure of kinetic energy. At high temperature there is a great deal of kinetic
energy, allowing the system to escape local potential energy minima. At low tem-
perature the conformational search is more restricted by potential energy barriers.
There areseveral approaches to temperature conBaliiger and Ricel997), one
of which will be described here.

Thecomputational temperature is defined as

T - 2Exin
3nkb

(27)

wheren is the number of atom&g is Boltzmann'’s constant, arff, is the kinetic

energy of the system:
n 2
1 dXi
Exin = ;zl Emi (E) . (28)

With the velocity scaling approach to temperature control, the atom velocities are
periodically and uniformly scaled so that the computational temperature of the
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system matches a target temperat(iig):

dXi

Vi = Tigt/ T, (29)

wherev; is the new or scaled velocity of atom After scaling, the integration

of (26) is restarted with the current atom positions and the scaled velocities. In
simulated annealing, the target temperature is started at a high value (hundreds or
thousands of kelvins) and slowly lowered. The annealing schedule describes the
starting temperature and the rate at which temperature is lowered. The success of
annealing depends largely on the schedule, and different annealing schedules seem
to work best for different proteins. Following annealing, one typically applies a
local minimization method such as the conjugate gradient one to move the system
into the nearest local minimum.

3.3.2. Torsion angle refinement. The chiefdisadvantage of Cartesian molecu-
lar dynamics is the large number of independent variables, three times the number
of atoms. Since proteins typically contain more than 1000 and often more than
10,000 atoms, this leads to two problems. First the large system is computationally
expensive to integrate. Second, and more importantly, the ratio of data to vari-
ables can be small. This can lead to overfitting of the model to the available data,
analogous to the overfitting of a high-degree polynomial to a small number of data
points. The key to overcoming these problems is the observation that covalent bond
lengths and angles are relatively inflexible, unlike the torsion angles that define the
secondary and tertiary structures of the protein. This observation led to the devel-
opment oftorsion angle dynamics, where the equations of motion are written in
terms of torsion angles rather than Cartesian coordin&tsmpnd, 1971 Mazur
and Abagyan1989 Rice and Bunger 1994. The equations of motion become
(Vaidehi and Goddard2007)

M ()% 4+ C(z, t) = F(1) (30)

for the g x 1 vector of torsion angles, typically about 10 of the total num-

ber of Cartesian degrees of freedoRidge and Buinger 1994. HereM is the

g x g mass matrixC is theq x 1 Caiolis force vector, andr is theq x 1 vector

of interatomic forces. Althougly is small compared to the Cartesian degrees of
freedom, BO) is dill a large system with a dense mass matrix. Thus, even with
the simplification introduced with torsion angle dynamics, atomic refinement with
molecular dynamics is a computationally expensive procedure. However, another
advantage of torsion angle refinement is that the radius of convergence to the global
minimum appears to baiger than that for Cartesian refinemediti(nger and Rice

1997).
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34. Refinement with orientational data. The aientational data provided by
solid-state NMR (ssNMR) measurements can be used as restraints in the potential
energy function5), allowing for refinement with this type of data alone or in com-
bination with other data types. One software package, TORC, uses a Monte Carlo
approach with simulated annealing for the refinem&et¢hemet al., 1997). This
program has the advantage that chirality moves are built in, which may be desir-
able when refining with orientational data. More recently, software was developed
(Bertram et al., 2000 in the form of a module for the CNS refinement package
(Bruingeret al., 1998, allowing Cartesian or torsion angle refinement implemented
with molecular dynamics. This softwaiis faster than DRC, and hashe extra
advantage that it can be used to simultaneously refine against ssSNMR data in con-
junction with other data types.

For the one-dimensional ssSNMR method, the dipolar coupling and chemical shift
restraints are treated independently. More recently, correlated chemical shift and
dipolar data has been used in the ssSNMR metfRair{amoortit and Oglla, 1995
Tianet al., 1998 Dennyet al., 200]). Recently developed software uses this corre-
lated data in refinemenBértramet al., 2003. One benefit of the two-dimensional
ssNMR method is that many of the dipolar sign degeneracies can be resolved by
correlation with the chemical shift. We will first discuss the 1-D ssNMR restraints,
then discuss how 2-D ssNMR could be used to construct better restraints.

3.4.1. Onedimensional solid-state NMR restraints. Anisotropic chemical
shift measurements (denoted hereoycan be used to restrain the refinement by
adding the harmonic penalty function

Eess = Z(Uc - 0'0)27 (31)

whereo, is the chemical shift computed directly from the model, and summation is
over all*3C and'®N anisotropic chemical shift measurements. A harmonic penalty
function can also be used to restrain against dipolar coupling measurements. Sum-
mation is over all measurements, and tlie term in the penalty function is

kil

E. . — (lve| — vo)? if vo < 5
dp.i = (Ve — Vo)? if L <vy<v
c o 2 o=V

(32)
wherevg, v, are theith calculated and observed dipolar couplings, defined by
Ve = %(3 cod, — 1) (33)
Vo = %(3 cog6, — 1), (34)

and whered is the angle between the magnetic field vector and the appropriate
covalent bond vector. This angle can be computed directly from the model to
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give 6., but tre angle 6, can only be inferred from the dipolar coupling measure-
mentv,. Thus, there are two degeneracies involved in the determinatiég af
sign degeneracy due to the absolute value i84), and aquadratic degeneracy due

to the squaring of the cosine. The absolute valug®) is a refection of the sign
degeneracy, since observed dipolar couplings are always postyewhile the
spherical harmonie. ranges from—% tov). If v < % then he model agrees
with the data iflyc| = vo, Orif ve = £vg. If ”—2” < vo < vy, then br agreement with
the datav. = v, and there is no degeneracy.

For nuclei with spin greater than/2, such as deuterium, the distribution of
charged particles generates an electric quadrupole moment. Quadrupolar inter-
actions produce quadrupolar splittings of NMR peaks, similar to those produced
by dipolar interactions. The restraining function is often similar to that for dipolar
coupling, with the quadrupolar coupling const@QCQ replacingy:

(lvel — Vo)2 if vy < gQCC

35
(Ve — Vp)? if 3QCC < v, < 2QCC (35)

Eqai =

3.4.2. Correlated orientational restraints. As described irSection 2.3.4if the
anisotropic chemical shift and dipolar coupling measurements are correlated, many
of the sign degeneracies in dipolar coupling can be resolved. One way to make
this correlation is to obtain both measurements from the same signal, the method
known as PISEMA. Alternatively, one can obtain separate measuremenisnaf
v corresponding to the same nitrogen atom, and then form the ordere@ pajr
Regardess of how the ordered pair is obtained, one can plot the pair as a point
in the ov plane. If the point falls in the primary ellips, but not the reflected
ellipse P* (seeFig. 7), thenv, = |v|. If it falls in the reflected ellipse, but not
the primary ellipse, then, = —|vg|. Only if it falls in the intersection of the two
ellipses does the sign degeneracy remain unresolved. Thus, an improved dipolar
coupling restraint is

(lvel = vo)?  if unresolved
Bap.i = {(vc — V)2 if resolved (36)

We will see that resolving the dipolar degeneracy greatly simplifies the dipolar
energy landscape.

3.4.3. Dipolar energy landscape. The energy landscape for a protein is
extremely complex, and direct visualization is not possible. However, since the
dipolar coupling energy has a simple angle dependency, one can gain insight into
how this type of restraint affects refinement by performing a simple graphical
examination of the dipolar energy function or landscape. The quadrupolar energy
landscape is similar. It is convenient to interpfgj, as a family of curves
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Figure 8. Three members of the family of dipolar coupling energy curves [equ&idn (
corresponding t6o = 10°, 3(°, and7(°. In each case| = 2.

parametrized by,, the actual angle between the magnetic field vector and the
appropriate covalent bond vector. For a givgrone can compute, using @34),

and from this the dipolar coupling energy [usir@R)] as a function ofu. or 6..
Energyalso depends omy. Thus, Eqp = Eqp(6c; 6o, vy), Wheref, andy; are
parameters. In what follows we assume that the dipolar and chemical shift data
have not been correlated, and use the restrai)t (

Three membies of the Ey, family of curves are shown iffrig. 8, corresponding
to 6, = 10°, 3C¢°, and7C°, each withy; = 2. The curveEq,(6¢; 10, 2) has two
zeros, ab. = 10° andg. = 170.

The curveEqp(6c; 30, 2) also has two zeros (8@nd 150), but row there is more
concavity near each. This will lead to stronger restraint on the angle during refine-
ment, sincghe angle is now penalized more severely for small deviations from the
energy minima. Finally, the curvq,(6¢; 70, 2) has four zeros¥42, 70, 110,
and~138). Thus, even though the actual angle made with the magnetic field is
6, = 70, the nodel can make angles ef42, 70, 110, or ~138 and satisfy
the dipolar data equally well, due to the degeneracies inherent in the uncorrelated
dipolar coupling measurement.

As shown inFig. 8, with small6, angles there are two minima &f;,. Forthese
anglesy, > v;. Thereis a bifurcation at, ~ 35°, wherev, = v;. Sincethis
bifurcation reflects the sign degeneracy, we denote this anglgyas

Bsign = arccos,/2/3). (37)

Fig. 9a) shows two members of tH&;, family for 6, on either side 0fsign. At
Bsign @ Nnew minmum emerges & = 90°, and splits into two minima symmetric
about 90 for 6, > Osign. Thus, for6, = 36° there are four minima.

Another bifurcation occurs wher = 0, themagic angle, Omagic

Omagic = arccos,/1/3) ~ 54.7°. (38)

At the magic angle the leftmost and rightmost pairs of minima coalesce, only to
split again for larger values &, [Fig. 9b)]. The qualitative change in the energy
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Figure 9. (a) Two members of tHgy, family of curves, on either side of the bifurcation at
fsign ~ 35°. (b) The Egp curve at the magic angle bifurcatiofipagic ~ 54.7°, and two
other members of thEyp, on either side of the bifurcation.

function is rather mild at the magic angle bifurcation, in contrast to the bifurcation
at Osign.

The gructure of minima for theEq, family of curves and the bifurcation points
are best illustrated with circle diagramBiq. 10). For6, = 10° there are two
minima, represented by filled circles in the top left circle diagraénis the angle
between the vertical line (magnetic field direction) and a point on the unit circle.
The minmum connected by a line to the center is at the actuahgle,fd,. For
larger6,, the mnima move along the circle towards°9t 6sign @ new mhimum
is born, and has bifurcated 8y = 36°. Thenew and old minima approach one
another for largef,, and at the magic angle they coalesce. For laégéhe minima
move pasbne another and &= 90° there is yet another coalescence.

Taken bgether,Figs. 8-10 illustrate that the dipolar coupling energy landscape
is quite complex when the sign degeneracy in the dipolar coupling is not resolved.
However, when the degersmy can be resolved, perhaps by correlating data, the
landscape becomes much simpler. This is illustrateBign 11, wherenow the
equation for the energy function is

Edp = (Ve — Vo)z- (39)

As in Fig. 8curves are plotted fof, = 34°, 36°, 45°, 55°, and65°. While the
curves for6, = 34° and 53 are identical to those ifrig. 8 all other curves
differ. When the sign of the dipolar coupling is resolved there are no derivative
discontinuities as irFig. 8 While the Eqp(6c; 65, 2) curve is relatively flat for

0. € (3, 150°) when the degneracy has not been resolved, it is flat over the
muchsmaller interval60°, 120°) when the degneracy has been resolved. In terms
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Figure 10. Unit circle diagrams illustrating the location of minima for several members of
the Eqp family of curves.

1 1 1

1 1
0 30 60 90 120 150 180

0, (degrees)

Figure 11. Dipolar coupling energy curves when sign ambiguities have been resolved. The
curves deform continuously & is increased through (aign ~ 35° and through (b)
Omagic ~ 54.7°. Conpared toFig. 9, the cures are more suitable for restraining the
angle during refinement.

of Fig. 10, the extra pair of minima born afsig, will not occur if the sign degener-
acy is resolved.

In summary, there are two reasons that it is important to resolve sigh degeneracies
in the dipolar coupling. First, there are fewer local minima in the energy function,
directly reflecting resolution of degenerate solutions. Second, when degeneracies
are resolved the energy landscape is less complex and is better suited to restrain-
ing the bond angles during refinement. Correlating the chemical shift and dipolar
measurements is an effective way to resolve many of the degeneracies.
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4. CONCLUSIONS

The use obrientational information from solid-state NMR has great potential for
the structure determination of membrane proteins. This technique is still quite new,
but alrady great experimental and theoretical progress has been @ade 4nd
Quing 2000 Quine and Cros000. We have discussed many of the mathemat-
ical issues involved in the interpretation of NMR data, and how this orientational
data can be used to describe the atomic structure of the protein backbone. An
algorithm was discussed for creating an initial atomic model, assuming standard
stereochemistry of covalently bonded atoms, and the process of atomic refinement
using orientational data was described. Further development of these two proce-
dures, initial model building and subsequent atomic refinement, will help assure the
best use of solid-state NMR data as it becomes available for the many membrane
proteins whose structure has not yet been determined. The development of two-
dimensional NMR is an extremely important recent step for the solid-state NMR
method, and correlating orientational measurements is, as we show here, important
from a computational perspective.
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