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ABSTRACT

Motivation:

The function of an unknown biological sequence can often
be accurately inferred if we are able to map this unknown
sequence to its corresponding homologous family. Currently,
discriminative approach which combines support vector ma-
chine and sequence similarity is recognized as the most ac-
curate approach. SVM-Fisher and SVM-pairwise methods
are two representatives of this approach, and SVM-pairwise
is the most accurate method. However, these methods only
encode sequence information into their feature vectors and
ignore the structure information. In addition, one of their
major drawbacks is their computation inefficiency. Based on
this observation, we present an alternative method for SVM-
based protein classification. Our method, SVM-I-sites, uses
structure similarity instead of sequence similarity for remote
homology detection. Our studies show that SVM-I-sites
is much more efficient than both SVM-Fisher and SVM-
pairwise while achieving a comparable performance with
SVM-pairwise.

Result: We adopt SCOP 1.53 as our dataset. The result
shows that SVM-I-sites runs much faster and is able to out-
perform many state-of-the-art sequence-based methods such
as PSI-BLAST, SAM and SVM-Fisher, and comparable to
SVM-pairwise.

Availability: I-sites server is accessible through the web at
http://www.bioinfo.rpi.edu. Programs are available upon
request for academics. Licensing agreements are available
for commercial interests. The framework of encoding local
structure into feature vector is available upon request.
Contact:houyuna@comp.nus.edu.sg, bystrcQrpi.edu

1. INTRODUCTION

Proper identification of homologous relationships in proteins
is important in advancing our understanding of the functions
of biological sequences. While the amount of discovered bi-
ological sequences has increased at an unprecedented pace,
the rate of analyzing, mapping, and understanding these se-
quences remains unacceptably slow. As a result, more and

more molecular biologists have turned to computation meth-
ods to help in the analysis of these data.

Much research has been focused on protein homology de-
tection. Dynamic programming based alignment tools such
as Smith—Waterman [24] and their efficient approximations
such as BLAST [1] and FASTA [21] have been widely used to
provide evidence for homology by matching a new sequence
against a database of previously annotated sequences. How-
ever, these approaches can only detect homologous proteins
that exhibit significant sequence similarity. In order to de-
tect weak or remote homologies, one can utilize the concept
of protein family or superfamily, which denotes a group of se-
quences sharing the same evolutionary origin. One can build
a statistical model for each family or superfamily and then
compare a new sequence to a collection of models. Compu-
tational method that relates a sequence to such superfamily-
based models often allow the computational biologists to in-
fer nearly three times as many homologies as simple pairwise
comparison methods [20]. Profiles [7] and hidden Markov
models [13, 3] are two methods for representing these mod-
els. These probabilistic models are often called generative
because the methodology involves building a model for a
single protein family and then evaluating each candidate se-
quence to see how well it fits the model. If the “fit” is above
some threshold, then the protein is classified as belonging to
the family.

By gleaning the extra information of unlabeled protein se-
quences in large databases, iterative methods such as PSI-
BLAST [2] and SAM [12] improve upon profile-based meth-
ods by iteratively collecting homologous sequences from a
large database and incorporating the resulting statistics into
a central model.

Most recently a new approach called discriminative method
gains additional accuracy by modelling the difference be-
tween positive and negative examples explicitly. In this ap-
proach, there are two steps: converting a given set of pro-
teins into fixed-length vectors, and training an SVM from
the vectorized proteins. The most successful work in this
approach includes SVM-Fisher [11] and SVM-pairwise [15].
The two methods differ only in the vectorization step. In the
SVM-Fisher method, a protein’s vector representation is its
gradient with respect to a profile hidden Markov model; in
the SVM-pairwise method, the vector is a list of pairwise se-
quence similarity scores. SVM-pairwise method is currently
the most accurate method for detecting remote homologies.



One major drawback of SVM-pairwise method is its com-
putational inefficiency. SVM-pairwise method is inefficient
in the vectorization step. As the database grows quickly,
the slow speed of SVM-pairwise will be impractical to use.
In this paper, we provide a more efficient way of vector-
ization step while getting a comparable performance with
SVM-pairwise.

In addition, all of these above works detect remote homol-
ogy using only sequence information. Remote homology
detection depends on sequence information can reveal ho-
mology accurately if the proteins are closely related. One
important observation in remote homology detection is that
for a set of proteins that are hypothesized to be homol-
ogous, their three-dimensional structures are conserved to
a greater extent than are their primary sequences. Based
on the above observation, we encode structure information
into feature vectors instead of using sequence similarity for
remote homology detection. In our work, structure informa-
tion is indicated by the probability that the protein contains
certain local structure, as predicted by a library of sequence-
structure motifs I-sites library [5]. Experimental results on
SCOP1.53 databases show that the accuracy is comparable
with the state-of-the-art method SVM-pairwise and outper-
forms methods such as PSI-BLAST, SAM and SVM-Fisher.

2. SYSTEM AND METHODS
2.1 Overview

Figure 1 gives the overview of the proposed method. It con-
sists of two phases: (a) the training phase which constructs
support vector classifiers, and (b) the testing phase which
use a support vector machine to determine if the protein
belongs to some known protein classes. Both phases require
the extraction of features from the proteins and represent
them in some suitable form.

Hence, the critical issue in this general framework of homol-
ogy detection lies in the feature extraction and represen-
tation. The difference between our work with SVM-Fisher
and SVM-pairwise is the feature extraction and representa-
tion procedure. In SVM-Fisher method, a protein’s vector
representation is its gradient with respect to profile hidden
Markov model; in SVM-pairwise method, the feature vector
corresponding to a protein X is Fx=/fz1, fz2,...,fzn, where n
is the total number of proteins in the training set and f,; is
the E-value of the Smith-Waterman score between sequence
X and the ith training set sequence. Both of SVM-Fisher
and SVM-pairwise methods are the most successful work in
detecting remote homology. However, both of them ignore
the structure information when encoding the feature vector.
In our work, we encode the local structure information into
the feature vector. By encoding the local structure infor-
mation, we seek to develop an approach that has a natural
biological interpretation which can capture parts of the “sig-
nature” of the three-dimension structure.

We create a feature vector for the protein under investigation
by scoring a set of local structure motifs generated from the
given protein. At the end of the scoring process, we obtain a
high-dimensional feature vector corresponding to the protein
under investigation.

During the training phase, we transform the proteins in
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Figure 1: Overview of the approach




the protein database into high-dimensional feature vectors.
These high-dimensional feature vectors are separated into
two classes: the positive examples (which refer to those fea-
ture vectors that belong to the protein classes) and the neg-
ative examples (which refer to those feature vectors that do
not belong to the known protein classes). A support vec-
tor machine is subsequently constructed to discriminate the
positive and negative examples. This process is repeated for
all protein classes under investigation. The output from the
training phase is a set of support vector machines, one for
each protein class.

During the testing phase, the protein under investigation is
first transformed into the high-dimensional feature vector.
Each of the trained support vector machines is then queried
to determine whether the given protein belongs to the par-
ticular protein class in which the support vector machine is
trained for. A positive answer will suggest that the protein
under investigation has a homologous relationship with the
corresponding protein class.

2.1.1 Feature Extraction and Representation

As mentioned earlier, while sequence information does pro-
vide important hint to the presence of homologous relation-
ship, it is not sufficient to encompass all the homologous re-
lationships. In fact, there exists a large number of proteins
that are homologous but whose sequences are only remotely
related. For these remote homology, we observe that their
three-dimensional structures share many common charac-
teristics. Thus, capturing these common three-dimensional
structures and representing them in a form suitable for the
subsequent training and testing of support vector machine
algorithms forms one major contribution of our work to the
remote homology detection problem.

Since three-dimensional structures are conserved to a greater
extent than are their primary structures, the most direct
way to combine structure information for homology detec-
tion is to encode the three-dimensional structure informa-
tion into the features. However, three-dimensional protein
structures still can not be accurately predicted directly from
sequences. An intermediate but useful step is to predict the
protein secondary structure, which is a way to simplify the
prediction problem by projecting the very complicated 3D
structure onto one dimension, i.e. onto a string of secondary
structural assignments for each residue. Sequences which are
distantly related to each other but which have similar func-
tions, tend to have highly conserved patterns of secondary
structure [23]. A better 1D representation of proteins is the
generalized “local structure”, which includes two of the three
secondary structure types (helix and strand) but reclassifies
the loop states to one of several different loop types, such
as the Schellman cap motif shown in Figure 2. These loop
motifs often have specific sequence signatures that are con-
served between remote homologs.

Pioneering work of protein secondary structure prediction
includes [6, 10, 26, 18, 9]. Unfortunately, almost all of these
methods have not identify the strong relationship between
the amino acid sequence and structure. Also, most of these
methods focused on three-state secondary structure predic-
tion, namely helix, stand and loop. So, these methods are
not appropriate for encoding secondary structure informa-

tion into feature vectors.

One of the most successful method of predicting local struc-
ture is Bystroff and Baker [5]. This is a method for lo-
cal structure prediction based on a library (I-sites library)
of short sequence patterns (profiles) that correlate strongly
with protein three-dimensional structure elements. I-sites
library is generated through finding correlations between
protein sequence and local structure that correlate strongly
with protein three-dimensional structural elements. In I-
sites library, there are 263 sequence-structure profiles each
of which corresponds to a unique structure motif which are
more specific than the three-state secondary structure. Fig-
ure 2 is an example of sequence-structure profile.
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Figure 2: This is one of the sequence profiles and its
corresponding local structure in I-sites library. (a) is
the sequence pattern for Glycine alpha-C-cap Type
1. Along the Y-axis are the 20 amino acids, arranged
roughly from non-polar on the bottom to polar on
the top, except that glycine and proline are on the
top and cystine is on the bottom. Along the X-axis
is the position in the motif, each column represents
one amino acid. The different color represents fre-
quency of occurrence. (b) is the three-dimension
element which has a strong correlations with the
sequence patterns of (a). In the Type 1 glycine
cap, an amphipathic helix is followed immediately
by a glycine and an aspartate beta-bend. The aspar-
tate is preferred in the position two residues after
the glycine. Conserved non-polar sidechains 1 and
4 residues after the glycine interact with two con-
served non-polar sidechains 4 and 7 residues before
the glycine.

To predict the local structure of any unknown protein se-
quence, sequence patterns (profiles) for each of the 263 clus-
ters of I-sites library were used to score all sub-fragments of
this unknown target sequence. Because of the differences in
length, the similarity scores of different clusters were not di-
rectly comparable; instead it compared the associated “con-
fidence” values. The confidence of a fragment prediction is
the probability that a sequence segment with a given score
has the predicted structure. Although accuracy is ultimately
the most important criterion, the I-sites method has sev-
eral other apparent advantages: first, secondary structure
is predicted throughout a sequence; second, each segment
prediction has an associated sequence confidence value that
accurately describes the probability that the prediction is

(b)Glycine alpha-C-cap Type 1



correct; and third, the method is extremely fast, since pre-
diction require only sequence-sequence profile comparisons.

In our problem, given any protein sequence, we use the fol-
lowing method to obtain its structure features: we first seg-
ment the given protein sequence into subsequences of length
ranging from 7 to 19. For each subsequence, we obtain the
probability (“confidence” value) of this subsequence belong-
ing to each of the 263 structure motifs. To minimize effect
due to mutation, we apply a threshold such that if the “con-
fidence” value falls below the threshold, it will be set to
zero. In addition, it is entirely possible that a protein se-
quence can occur multiple times. In such cases, a number of
heuristics can be used to account for multiple subsequence
occurrences. For example, we can take the maximum, the
sum, or the average of all the “confidence” value for that
protein sequence. We carry out experiments to determine
which is the more suitable heuristics and found that using
the sum value gives the best performance. Details of the
experiment are given in section 5.

By taking the sum value, we can transform a protein se-
quence into a vector of length 263 where each component
denotes the “confidence” value of the presence of the cor-
responding structure motif. Table 1 shows a sample of the
vector generated for the protein d9atcb2. Each value in
the vector denotes the sum “confidence” value of the corre-
sponding local structure occurring in the protein.

Local Structure | Feature value

N

B 4.76

= . 3.84

4.23

Table 1: A sample of the generated structure feature
values

2.1.2 Construction of SVM classifiers

Having obtained the feature vectors for the proteins, the
next step is to predict whether the given feature vector ex-
hibits homologous relationship with any of the known pro-
tein families. Classical machine learning techniques such
as naive bayes classifiers [14], neural networks [19], decision
tree classifiers [22] etc do not perform well in our remote ho-
mology detection problem because of their ineffectiveness in
achieving good generalization from relative sparse training
data in high dimensions.

It has been established that support vector machines is able
to exhibit excellent generalization performance (accuracy on
test sets) in practice and have strong theoretical motivation
in statistical learning theory [25]. The intuitive idea behind

support vector machine is to locate a hyperplane that maxi-
mizes the distance separation between the positive and nega-
tive examples thereby achieving the best generalization per-
formance. Figure 3 shows the two-dimensional case. Three
possible lines are drawn that are able to separate the positive
and negative examples. The highlighted line is the one cho-
sen by support vector machine as it maximizes the distance
separation between the positive and negative examples.
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Figure 3: Basic idea of Support Vector Machines

We first train the support vector machines to find such a
partitioning hyperplane. Then the support vector machine
can predict the classification of an unknown protein by map-
ping it into the feature space and determine on which side
of the hyperplane does the unknown protein lie. Appendix
A gives a brief description of the support vector machine
methodology.

In our implementation, we use the gist support vector ma-
chine software implemented by William Stafford Noble and
Paul Pavlidis [17]. At the heart of gist is a kernel function
that acts as the similarity score between pairs of input vec-
tors. The base kernel is normalized so that each vector has
length 1 in the feature space; i.e.,

XY

REY = oe v

The only significant parameters needed to tune a SVM are
the ‘capacity’ and the choice of kernel. The capacity allows
us to control how much tolerance for errors in the classifica-
tion of training samples we allow. Capacity therefore affects
the generalization ability of the SVM and prevents it from
overfitting the training set. We use a capacity equal to 10.
This choice of capacity guarantees the numerical stability of
the SVM algorithm and provides sufficient generalization.

The second tuning parameter is the kernel. The kernel func-
tion allows the SVM to create hyperplanes in high dimen-
sional spaces that effectively separate the training data. Of-
ten in the input space training vectors cannot be separated



by a simple hyperplane. The kernel allows transforming the
data from one space to another space where a simple hyper-
plane can effectively separate the data in two classes. We
primarily employ the Gaussian kernel for all classifiers. The
variance of the associated Gaussian Kernel is computed as
the median Euclidean distance (in feature space) from any
positive training examples to the nearest negative example.
The output of the SVM is a discriminant score that is used
to rank the members of the test set.

To determine whether an unlabelled protein belongs to a
particular protein class, we test it against the support vector
machine trained for that class. The support vector machine
classifier produces a ‘score’ representing the distance of the
the testing feature vector from the margin. The larger the
score, the further away the vector is from the margin, and
the more confident we are of the classifier’s prediction.

3. COMPUTATIONAL EFFICIENCY ANAL-
YSIS AND COMPARISON

Computational efficiency is one significant characteristic of
any homology detection algorithm. In this respect, SVM-I-
sites method is much more efficient than SVM-pairwise and
SVM-Fisher method. All of these methods include an SVM
optimization and vectorization step. In optimization step,
both algorithms take roughly O(n?) time, where n is the
number of training set examples. The vectorization step of
SVM-Fisher requires trainig a profile HMM and comput-
ing the gradient vectors. The gradient computation dom-
inates, with a running time of O(nmp), where m is the
length of the longest training set sequence, and p is the
number of HMM parameters. The vectorization step of
SVM-pairwise involves computing n? pairwise scores. Us-
ing Smith-Waterman, each computation is O(m?), yield-
ing a total running time of @(n*m?). In contrast, SVM-
I-sites requires computing the “confidence” value of each se-
quence containing a pre-defined secondary structure which
takes O(m) time, thus the total running time is O(mn).
Therefore, SVM-I-sites method is mn times fast than SVM-
pairwise and p times fast than SVM-Fisher method.

4. EXPERIMENTAL RESULTS

The experiment reported here compare the performance of
five algorithms: SVM-I-sites, PSI-BLAST, SAM, SVM-Fisher
and SVM-pairwise. We access the recognition performance
of each algorithm by testing its ability to classify protein
domains into superfamilies in the Structural Classification
of Proteins (SCOP)[16] version 1.53. Sequences were se-
lected using the Astral database (astral.stanford.edu [4]),
removing similar sequences using an FE-value threshold of
10725, The use of this database allows direct comparison
with previous work on remote homology detection method
SVM-pairwise. We use the same experiment setup with
SVM-pairwise method: for each family, the protein domains
within family are considered positive test examples, and the
protein domains outside the family but within the same su-
perfamily are taken as positive training examples. The data
set yields 54 families containing at least 10 family members
(positive train) and 5 superfamily members outside of the
family (positive test). Negative examples are taken from
outside of the positive sequences’ fold, and are randomly
split into train and test sets in the same ratio as the posi-

Function compute_ROC_score

Input: SVM scores of the positve test sequences and negative
test sequences

Output : ROC score

Sort the SVM scores of the test sequences and
get a sorted list of classlabels (1 or -1) in asingle column

tp=0 /* Initiadlize true positive */
fp=0 /* Initialize false positive */
roc=0 /* Initialize ROC score */

for each of the sorted label
if label=1
tp=tp+1
else
fp=fp+1
roc=roc+tp
end if
end for
if tp=0
roc=0
else
if fp=0
roc=1
else
roc/=tp*fp
end if
end if

Figure 4: Algorithm to compute ROC score

Function compute_medianRFP_score

Input: SVM scores of the positve test sequences and negative
test sequences

Output : Median RFP score

1. Sort the SVM scores of the positive test sequences

2. Compute the median of the SVM score of the positive test
sequences

3. Median RFP=ratio of negative test sequences which score
above or equal to the median value

Figure 5: Algorithm to compute median RFP score

tive examples.

For comparison, we also include the result of PSI-BLAST,
SAM and SVM-Fisher methods presented in SVM-pairwise
paper. The details of the setup of these methods, please
refer to SVM-pairwise paper [15].

Two different scores: receiver operating characteristic (ROC)
scores and the median rate of false positives (RFP) are used
as the measurements to compare these methods. The ROC
score is the area under the receiver operating characteris-
tic curve — the plot of true positives as a function of false
positives [8]. A score of 1 indicates perfect separation of pos-
itives from negatives, whereas a score of 0 denotes that none
of the sequences selected by the algorithm is positive. The
algorithm to compute ROC score is shown in Figure 4. The
median RFP score is the fraction of negative test sequences
that score as high or better than the median-scoring positive
sequence. The algorithm to compute median RFP score is
shown in Figure 5.
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primary methods compared in this study: SVM-
pairwise and SVM-I-sites

Table 2 summarizes the average ROC score for the 54 SCOP
families of using different heuristics to account for multiple
subsequence occurrences as described in Section 2.1.1. Table
2 shows that the sum heuristics gives the best performance.

Heuristic methods | Average ROC score
for the 54 SCOP families

Maximum 0.88
Sum 0.89
Average 0.86

Table 2: Results of the experiments to determine
the best heuristics

The comparison of the five methods are summarized in Fig-
ure 6. The two graphs rank the five homology detection
methods according to ROC and median RFP scores. In
each graph, a higher curve corresponds to more accurate
homology detection performance. Using either performance,
SVM-I-sites performs significantly better than PSI-BLAST,
SAM and SVM-Fisher methods. From the two graphs, we
can see that the performance of SVM-I-sites is compara-
ble to SVM-pairwise method. SVM-pairwise adopt pairwise
scores as feature values and Smith-Waterman algorithm is
recognized the most sensitive pairwise comparison method.
While constructing features with local structure probabili-
ties, SVM-I-sites can be an alternative and complimentary
method to SVM-pairwise method. This also can be shown
from the performance summary Figure 6. Figure 7 is a
family-by-family comparison of the 54 ROC scores computed
for each method. This figure also suggest SVM-I-sites and
SVM-pairwise are two complimentary methods for detection
remote homolgy.

‘%@ 5. DISCUSSION

The inference of homology relationship in proteins with known
structure and/or function is a core problem in computational
biology. Sequence comparison is the most commonly used
approach to determine homology. However, remote homol-
ogous proteins tend to have little sequence similarities. As
such, they are often statistically undetectable using conven-
tional sequence comparison methods. Homology or common
ancestry in such cases needs to be inferred from their com-
mon three-dimensional structures and functions.

The main novelty of our work is investigating how local
structure information can help remote homology detection.
By using local structure features, we seek to develop an ap-
proach that has a natural biological interpretation. Also, we
have developed an integrated framework to construct feature
vectors that encode structure information. The local struc-
ture is encoded into the feature vector so that parts of the
three-dimension “signature” is captured. The use of support
vector machine also enables learning to take place in high
dimensional feature space. Our experiment results confirm
that it is important to incorporate structure information in
the feature space.

Efficiency is another advantage of SVM-I-sites compared to
SVM-pairwise. SVM-I-sites is much more efficient in the
vectorization step, thus making it a more practical solution
for large databases.

Current work ignores the local structure order. This may re-
sult in proteins containing the same local structure but with
different orders being classified into the same superfamily.
Ongoing work includes investigating how the local structure
order influence the remote homology detection performance.
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