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Introduction

X-ray crystallography contributes ever increasingly to an understanding of
the structure, function, and control of biological macromolecules. Over the
last decade, developments in molecular biology and X-ray diffraction data
collection have allowed nearly exponential growth of macromolecular crys-
tallographic studies. The analysis of diffraction data from these studies
generally requires sophisticated computational procedures including meth-
ods of phasing, density modification, chain tracing, refinement, and struc-
ture validation. Many of these procedures can be formulated as chemically—
constrained or restrained non-linear optimization of a target function, which
usually measures the agreement between observed diffraction data and data
computed from a model. This target function normally depends on several
parameters such as structure factor phases, scale factors between structure

factors, or atomic coordinates.

Here we focus on crystallographic refinement, a technique aimed at
optimizing the agreement of an atomic model with both observed diffraction
data and chemical restraints. Optimization problems in macromolecular
crystallography generally suffer from there being multiple minima, which
arise largely from the high dimensionality of the parameter space (typically
at least three times the number of atoms in the model). The many local
minima of the target function tend to defeat gradient—descent optimization
techniques such as conjugate gradient or least-squares methods [1]. These
methods are simply not capable of shifting the atomic coordinates enough

to correct errors in the initial model.



This limited radius of convergence arises not only from the high
dimensionality of the parameter space, but also from what is known as
the crystallographic “phase problem” [2]. With monochromatic diffraction
experiments on single crystals one can measure the amplitudes of the reflec-
tions, but not the phases. The phases, however, are required to compute
electron density maps, which are obtained by Fourier transformation of the
structure factor described by a complex number for each reflection. Phases
for new crystal structures are usually obtained from experimental methods
such as multiple isomorphous replacement [3]. However, electron density
maps computed from a combination of native crystal amplitudes and mul-
tiple isomorphous replacement phases are sometimes insufficiently accurate
to allow a complete and unambiguous tracing of the macromolecule. Fur-
thermore, electron density maps for macromolecules are usually obtained
at lower than atomic resolution and are therefore prone to human error
upon interpretation. A different problem arises when structures are solved
by molecular replacement, [4, 5] which uses a similar structure as a search
model. In this case the resulting electron density maps can be severely
“model-biased”, that is, they seem to confirm the existence of the search
model without providing clear evidence of actual differences between it and
the true crystal structure. In either case, initial atomic models usually

require extensive refinement.

This review addresses the common case in which experimental phases
are either unavailable or inaccurate. In the unusual case that very good
experimental phases are available, refinement is much more straightforward
[6]. Experimental phase information tends to increase the degree to which

the global minimum of the target function can be distinguished from local



minima. Its omission from the refinement process exacerbates the multiple
minima problem to a point that gradient descent methods have little chance

of finding the global minimum (Rice & Brunger, in preparation).

Simulated annealing [7, 8, 9] is an optimization technique particu-
larly well suited to the multiple-minima characteristic of crystallographic re-
finement. Unlike gradient—descent methods, simulated annealing can over-
come barriers between minima and thus can explore a greater volume of
the parameter space to find “deeper” minima. Following its introduction in
1987 [10], crystallographic refinement by simulated annealing (often referred
to as molecular dynamics refinement) was quickly accepted in the crystal-
lographic community because it significantly reduced the amount of human
labor required to determine a crystal structure. In fact, more than 75%
of all crystal structures published during the past three years were refined
by this method [11, 12, 13]. This review summarizes the theory, applica-
tions, and recent developments of crystallographic refinement by simulated

annealing.

Crystallographic Refinement

Before one attempts to understand the chemistry of the crystallized macro-
molecule, one has to correct any errors in the initial atomic model. Crys-
tallographic refinement can correct some of the errors. Crystallographic
refinement can be formulated as a search for the global minimum of the
target function [14]

E = Eem + Wxray Exray - (1)



Ehem comprises empirical information about chemical interactions; it is a
function of all atomic positions, describing covalent (bond lengths, bond
angles, torsion angles, chiral centers, and planarity of aromatic rings) and
non-covalent (Van der Waals, hydrogen bonding, and electrostatic) inter-
actions. FEy,, describes the difference between observed and calculated
diffraction data, and wy.,y is a weight chosen to balance the forces arising
from each term. Several algorithms have been developed to minimize E,
including least—squares optimization [15, 16, 17], conjugate gradient mini-

mization [14, 18], and simulated annealing refinement [10].

The crystallographic residual F,.,

The most common form of FE.,, consists of the crystallographic resid-
ual, defined as the sum over the squared differences between the observed
(|Fobs(h)|) and calculated (|Fcac(h)|) structure factor amplitudes:

Exray = Z(‘Fobs(h)‘ - k‘Fcalc(h)D2 (2)

h

where h = (h,k,l) are the indices of the reciprocal lattice points of the
crystal. The scale factor £ is usually obtained by minimization of Eq. 2.
This can be accomplished analytically by setting it to the value that makes
the derivative of Fy.,, with respect to k equal to zero. The structure factor

of the atomic model is given by

F.ac(h) = ZZQifi(h) exp(—B;(F* - h)2/4) exp(2mih - (O, - F -1; + t,)).
Z 3)

The first sum extends over all space group symmetry operators (O, ts)

composed of a rotation matrix O, and a translation vector t,. The second
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sum extends over all unique atoms 7 of the system. The quantity r; denotes
the orthogonal coordinates of atom i in A. F is the 3x 3 matrix that converts
orthogonal (A) coordinates into fractional coordinates; F* is its transpose.
B;, q; are respectively the atomic temperature factor and occupancy for
atom 7. The atomic form factors f;(h) are typically approximated by an

expression consisting of several Gaussians and a constant [19]:

fi(h) = 3" ay; exp(=bgi (F* - h)?/4) + ag;. (4)

The structure factor expression given by Eq. 3 is too computation
intensive for practical purposes. Approximations are usually made to make
crystallographic refinement feasible. One such approximation consists of
computing F . (h) by numerical evaluation of the atomic electron density
onto a finite grid, followed by Fast Fourier transformation of the electron
density. This speeds up the calculation by at least an order of magnitude
[20, 21]. Another approximation applied to the minimization process itself,
keeps the first derivatives of Fy,, constant during the refinement process
until any atom has moved by more than a specified small distance from the

position at which the derivatives were last computed [22].

The standard crystallographic residual (Eq. 2) incorporates infor-
mation about the amplitudes of the observed reflections only. However, a
penalty term (“phase restraints”) [23], based on the difference between ex-
perimental phases and those calculated from the model, can be added to
the residual:

Exray = Z (‘FObS (h)‘ o k|Fcalc (h)|)2 + Wp ; f(¢obs(h) - ¢calc(h))- (5)

h



Here w), is the weight given to the phase restraint, and f is a square-well
function with a width equal to the arccosine of the figure of merit (m(h))
for each reflection. Another possible form of E\.,, which we call the “vector
residual” does not use the amplitude residual at all but instead simultane-
ously restrains the real (A) and imaginary (B) parts of the structure factor

[24]. Tt has the form

Eray = Zhj m(h) [(Aobs (h) = kAcatc(h))? + (Bobs(h) — kBearc(h))?] . (6)

The chemical term Fg,p

A possible choice of Euerm is an empirical potential-energy function [25, 26,

27, 28, 29, 30]

Ehem = Y ko(r—ro)>+ > ko(6 — 6p) (7)
bonds angles
+ Y kgcos(ng+d)+ D> ku(w —wp)?
dihedrals chiral,planar

+ Z (CW'_12 +br %+ cr_l)

atom—pairs
Empirical energy functions were originally developed for energy-minimization
and molecular—-dynamics studies of macromolecular structure and function
(see [31], for an introduction). The parameters of the empirical potential
energy Fem are inferred from experimental as well as theoretical investi-
gations, in particular, vibrational spectroscopy and small-molecule crystal-

lography [25, 26, 27, 28, 29, 30].

Since these energy functions were designed for another purpose, it
is not surprising that they require some modification for use in crystallo-

graphic refinement. For example, empirical energy functions must be ex-
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tended to simulate contacts between molecules related by crystallographic
or non—crystallographic symmetry [22, 32]. Empirical energy functions also
behave poorly at the high simulation temperatures characteristic of simu-
lated annealing. They must also be modified to cope with the addition of
experimental restraints (Fy.y). To prevent distortions of aromatic rings,
peptide bonds, and chiral centers, certain energy constants kg, k, in Eq. 7
often need to be increased [23]. Furthermore, the energy constant k, for
the proline w angle can be decreased to enable cis to trans isomerizations.
(However, experience has shown [32] that this constant should be set to its
original value during the final stages of refinement in order to obtain ac-
ceptable geometry about these peptide bonds.) Finally, since bulk solvent
is usually omitted from refinement, the charged groups of Asp, Glu, Arg
and Lys residues have to be screened in order to avoid formation of artifi-
cial interactions with backbone atoms. This can be accomplished either by

setting the charges to zero [33, 34].

Apart from the modifications discussed above, crystallographic re-
finement is not very sensitive to the accuracy of the empirical energy func-
tion. Thus, the electrostatic term in Eq. 7 is sometimes purposely omitted
to avoid possible bias. Furthermore, one can use a “geometric” energy
function consisting of terms for covalent bonds, bond angles, chirality, pla-
narity, and nonbonded repulsion where the corresponding parameters are
derived from equilibrium geometry and root-mean-square (r.m.s.) devia-
tions of bond lengths and angles observed in a small-molecule data base
[36]. The differences between a geometric energy function and an empiri-
cal energy function mainly affect regions that are not well determined by

the experimental information. Little difference is observed for well-defined



structures. For instance, the r.m.s. difference for backbone atoms between a
structure of crambin refined at 2 A resolution by PROLSQ [16], a program
which effectively uses a geometric energy function, and the same structure
refined by conjugate gradient minimization using X-PLOR [37] was only
0.05 A [22]. Comparison of DNA structures refined by different programs
(NUCLSQ, TNT, and X-PLOR) and different parameter sets showed no
significant differences within the estimated error of the atomic positions

[35].

Additional restraints and constraints

Additional constraints or restraints may be used to improve the ratio of
observables to parameters. For example, atoms can be grouped so that
they move as rigid bodies during refinement, or bond lengths and bond
angles can be kept fixed [15, 38, 39]. The existence of non—crystallographic
symmetry in a crystal can be used to average over equivalent molecules
and thereby to reduce noise in the data. This is especially useful for virus
structures: non-crystallographic symmetry can be used to “overdetermine”
the problem, assisting the primary phasing and the subsequent refinement

[40, 41, 32].

Weighting

The weight wyray (Eq. 1) balances the forces arising from Eyp,y, and Eghem.
The choice of wyay can be critical: if wyay is too large, the refined structure

will show unphysical deviations from ideal geometry; if wyp,y is too small,



the refined structure will not satisfy the diffraction data. Jack and Levitt
[14] proposed that wyay be chosen so that the gradients of Echem and Eyray
have the same magnitude for the current structure. This approach implies
that wyr,y must be readjusted frequently during the course of the refinement.
Brunger et al. [22] developed an empirical procedure for obtaining a value
for wyray that can be kept constant throughout the refinement. It consists
of first performing a short molecular dynamics simulation with wy,y set to
zero, then calculating the final r.m.s. gradient due to the empirical energy
term Fhem alone. Next one calculates the gradient due to the experimen-
tal restraints Ey,y alone, and chooses wy,y to balance the two. A recent
correction to this procedure is to divide the resulting wy.,y by two; this
produces optimal phase accuracy as judged by the free R value (Brunger,

unpublished data).

Simulated Annealing Refinement

Annealing denotes a physical process wherein a solid is heated until all par-
ticles randomly arrange themselves in a viscous liquid phase, and then it is
cooled slowly so that all particles arrange themselves in the lowest energy
state. By formally defining the target E (Eq. 1) to be the equivalent of the
potential energy of the system, one can simulate the annealing process [7].
Simulated annealing is an approximation algorithm: there is no guarantee
that it will find the global minimum (except in the asymptotic limit of an
infinite search) [8]. Compared to gradient descent methods where search
directions must follow the gradient, simulated annealing achieves more op-

timal solutions by allowing motion against the gradient [7]. The likelihood
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of counter-gradient motion is determined by a control parameter referred to
as “temperature”: the higher the temperature the more likely the optimiza-
tion will overcome barriers. It should be noted that the simulated annealing
temperature normally has no physical meaning and merely determines the

likelihood of overcoming barriers of the target function.

The simulated annealing algorithm requires a generation mechanism

to create a Boltzmann distribution at a given temperature 7’

—E(q,---,q)
o)) ©)

B(q1,--.,4q) = exp(

where E is given by Eq. 1, k, is the Boltzmann constant, and ¢i,...,¢;
are adjustable parameters, such as the coordinates of the atoms. Simulated
annealing also requires an annealing schedule, that is, a sequence of temper-
atures Ty > Ty > --- > T; at which the Boltzmann distribution is computed.
Implementations of the generation mechanism differ in the way they gener-
ate a transition or “move” from one set of parameters to another which is
consistent with the Boltzmann distribution at given temperature. The two
most widely used generation mechanisms are Metropolis Monte Carlo [45]
and molecular dynamics [46] simulations. Metropolis Monte Carlo can be
applied to both discrete and continuous optimization problems, but molec-

ular dynamics is restricted to continuous problems.

Monte Carlo

The Metropolis Monte Carlo algorithm [45] simulates the evolution to ther-
mal equilibrium of a solid for a fixed value of the temperature 7. Given the

current state of system, characterized by the parameters ¢; of the system,
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a “move” is applied by a shift of a randomly chosen parameter ¢;. If the
energy after the move is less than the energy before, i.e. if AE < 0, the
move is accepted and the process continues from the new state. If, on the

other hand, AF > 0, then the move may still be accepted with probability

P= exp(—kAb—?) (9)
where ky is Boltzmann’s constant. Specifically, if P is greater than a random
number between 0 and 1 then the move is accepted. In the limiting case
of T = 0, Monte Carlo is equivalent to a gradient descent method; the
only moves allowed are the ones that lower the target function until a local
minimum is reached. At a finite temperature, however, Monte Carlo allows

uphill moves and hence allowing for crossing barriers between local minima.

The advantage of the Metropolis Monte Carlo algorithm is its sim-
plicity. A particularly troublesome aspect concerns the efficient choice of
the parameter shifts that define the Monte Carlo move. Ideally, this choice
should in some way reflect the topology of the search space as characterized
by the variables ¢; [8]. In the case of a monoatomic liquid or gas, for ex-
ample, the coordinates of the atoms of the gas are essentially uncoupled so
that the coordinate shifts can be chosen in random directions. In the case
of a covalently connected macromolecule, however, random shifts of atomic
coordinates have a high rejection rate: they immediately violate geomet-
ric restrictions such as bond lengths and bond angles. This problem can
be alleviated in principle by carrying out the Monte Carlo simulation in a
suitably chosen set of internal coordinates such as torsions about bonds, or
normal modes of vibration, or by relaxing the strained coordinates through

minimization [47, 48, 49].

11



Cartesian molecular dynamics

A suitably chosen set of continuous (smoothly varying) parameters ¢; can
be viewed as generalized coordinates that are propagated in time by the

Hamilton equations of motion [50]

OH(p,q) _ _dpi

Here H(p,q) is the Hamiltonian (the sum of the potential and kinetic en-
ergy) of the system and p; are the generalized momenta conjugate to ¢;. If
the generalized coordinates represent the atomic coordinates of a molecu-
lar system, this approach is referred to as molecular dynamics [46]. If one
makes the assumption that the resulting trajectories cover phase space (or
more specifically, are ergodic) then they generate a statistical mechanical

ensemble [51].

Molecular dynamics can be coupled to a heat bath (see below) so
that the resulting ensemble asymptotically approaches that generated by
the Metropolis Monte Carlo acceptance criterion (Eq. 9). Thus, molecu-
lar dynamics and Monte Carlo are equivalent for the purpose of simulated
annealing, although in practice one implementation may be more efficient
than the other. Recent comparative work (Adams, Rice, & Brunger, in
preparation) has shown the molecular-dynamics implementation of crystal-
lographic refinement by simulated annealing to be more efficient than the

Monte Carlo one.

In the special case that the generalized coordinates ¢; represent the

Cartesian coordinates of n point masses and, furthermore, that momenta
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can be separated from coordinates in the Hamiltonian H, the Hamilton

equations of motion reduce to the more familiar Newton’s second law:

821'1' FZ(I')
m; 8t2 = —VZE— m; .

(11)

The quantities m; and r; are respectively the mass and coordinates of atom
1, F; is the force acting on atom ¢, and £ is the potential energy. In the con-
text of simulated annealing, E' denotes the target function being optimized
(Eq. 1), which contains “physical” energies such as covalent and nonbonded
energy terms as well as “non-physical” energies that correlate observed and
calculated diffraction data. The solution of the partial differential equations
(Eq. 11) is normally achieved numerically using finite-difference methods
[46]. Initial velocities are usually assigned from a Maxwell distribution at

the appropriate temperature.

Torsion angle molecular dynamics

Although Cartesian molecular dynamics places restraints on bond lengths
and bond angles, one might want to implement these restrictions as holo-
nomic constraints, i.e., fixed bond lengths and bond angles. This is sup-
ported by the observation that the deviations from ideal bond lengths and
bond angles are usually small in X-ray crystal structures. There are essen-
tially two possible approaches to solve Newton’s equations (Eq. 11) with
holonomic constraints. The first involves a switch from Cartesian coordi-
nates r; to generalized internal coordinates q;. Having thus redefined the
system, one would solve equations of motion for the generalized coordinates

analogous to the Cartesian ones. This formulation has the disadvantage
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that it is difficult (but not impossible) to calculate the generalized gradi-
ents. Since the gradients are functions of the generalized coordinates only,
however, conventional finite-difference integration schemes [46] can be used.
A second possible approach is to retain the Cartesian—coordinate formula-
tion so that the gradient calculation remains relatively straightforward and
topology independent [39]. In this formulation, however, the expression
for the acceleration becomes a more complicated function of positions and

velocities:
a(r,t) = M~ (r)Q(r,¥) (12)

where a represents the system acceleration vector, and M and Q denote
the (6 x 6) system inertia matrix and (6 x 1) generalized force vector, re-
spectively. This does not present insurmountable difficulties, but instead
requires different integration schemes such as a fourth order Runge Kutta

integration scheme [52].

The equations of motion for constrained dynamics in this formulation
are derived in complete generality by Bae and Haug [53, 54]. We have also
produced a slightly simpler derivation specific for fixed bond lengths and
bond angles [39]. What follows is a simple sketch of this one particular

implementation of molecular dynamics with holonomic constraints.

Consider two bodies, ¢ and j, connected by a bond of fixed length
|h;;|. Assuming that the only allowable relative motion between the two

bodies is a rotation about h;;, let r; and r; locate (with respect to an

YR
arbitrary inertial frame) the center of mass of body i and j respectively.
Let s;; (s;;) locate the endpoint of h;; on body 7 (j) with respect to its

center of mass. Thus, s;; is a vector from the center of mass of body 7 to
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the end of h;;. The position of the center of mass of body j with respect to
that of body 7 is simply r;; = r; — r;. Finally, the scalar ¢;; measures the

relative angle of rotation about the bond h;; (cf. [39] for more details).

The assumption that the only allowable relative motion between
the two bodies is a rotation about the bond connecting them implies a
relationship between the angular velocity w of their respective centers of
mass measured in an inertial (“lab”) frame:

Here ¢;; denotes the time derivative of the relative angle between the two

bodies and flij = ‘:” | is the unit vector along the bond connecting them.
ij

The expression for r; can be re-written:
r, = T;+7T (14)
= ri+si;+ |hylhi; — s,
This expression can be differentiated and then rearranged, resulting in an
expression for the center of mass velocity of body j in terms of that of body
i
;= i+ + hylhy — 8 (15)
= 1; +w; X s;; + |hy|w; x flij — W, X Sj;
= T; —S8; X W; — |hz~j\ﬁi]- X W; + Sj; X W; — (j,-jflij X Sji
= T — Ty X W; — (flzg X Sji) dij
Thus, assuming certain constraints act between atoms or groups of atoms,
one can obtain an expression for the velocity of one group in terms of an-
other. This relationship can be differentiated to give a relationship between

accelerations, and integrated to give a relationship between positions.
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The algorithm is recursive, so the equations of motion for two bodies
easily extend to many. In our implementation, atoms are grouped into rigid
bodies, allowing only torsion-angle motions between bodies. The connec-
tivity of these bodies defines a tree-like topology for a macromolecule, with
one arbitrarily chosen body identified as the base (or root). As with any
molecular-dynamics algorithm, the torsion angle one begins with required
positions, velocities, and forces for all atoms at the first step. Then center
of mass positions, velocities, and forces are computed for each rigid group.
Starting at the outer ends of the tree topology, each chain is 'reduced’ one
body at a time by solving for the relative acceleration between the tip and
the directly inner body. Then the tip’s inertial properties are mapped, or
aggregated, into the inner body’s, resulting in a chain that is effectively one
link shorter. This process continues until an expression for the accelera-
tion of the base body is obtained. After solving for the base’s acceleration
(which only requires inversion of a 6x6 matrix), the aggregation of bodies
is reversed. The acceleration of the body “outboard” of the base is deter-
mined by the base’s acceleration and the relative acceleration between the
bodies. This outward expansion is continued until the tree has been com-
pletely covered [see [39] for more details]. Then a Runge Kutta integration
step updates positions and velocities. Finally, new forces are calculated,
and the whole process begins anew. The formalism is a general one: several
tree—like topologies can be handled, as can closed topological loops such as

those formed by disulfide bonds.
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Temperature control

Simulated annealing requires the control of the temperature during molecu-
lar dynamics. The three most commonly used methods are velocity scaling,
Langevin dynamics, and temperature coupling. The current temperature
Tewrr is computed from the kinetic energy (Ey, = ?%mi(%)Q) of the

molecular dynamics simulation

2FExin

Tcurr = .
3nkb

(16)
Here n is the number of degrees of freedom and k; is Boltzmann’s constant.

Velocity scaling consists of periodic uniform scaling of the velocities

v;, 1.e.,
new _ 8I'Z' T
! at TCUI‘I‘

for all atoms ¢ where 7 is the target temperature. The numerical integration

v (17)

of the equations of motion needs to be restarted using the new velocities

new

Vi

and current coordinates r;.

Langevin dynamics incorporates the influence of a heat bath into the
classical equations of motion,

621‘,' 81'1'
m; 8t2 = _viEtotal - mi’YiE + R(t)a (18)

where +; specifies the friction coefficient for atom 7 and R(t) is a random
force. R(t) is assumed to be uncorrelated with the positions and velocities
of the atoms. It is described by a Gaussian distribution with mean of zero
and variance

< R(t)R(t") >= 2m;;kT6(t — t') (19)

where k is Boltzmann’s constant and (¢ — ¢') is the Dirac delta function.
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The temperature coupling method of Berendsen [55] is related to
Langevin dynamics except that it does not use random forces and it applies
a temperature dependent scale factor to the friction coefficient:

82r,~
gapr

8I‘i T

= —ViEtOtal - mz’)/a(l — T ) (20)

The second term on the right hand side of Eq. 20 represents positive friction
if Tewrr > T, thus lowering the temperature; it represents negative “friction”

if Ty < T, thus increasing the temperature.

Annealing Schedule

The success and efficiency of simulated annealing depends on the choice
of the annealing schedule [56], that is, the sequence of numerical values
T, > Ty > --- > T, for the temperature. Note that multiplication of the
temperature T by a factor s is formally equivalent to scaling the target F by
1/s. This applies to both the Monte Carlo as well as the molecular dynamics
implementation of simulated annealing. This is immediately obvious upon
inspection of the Metropolis Monte Carlo acceptance criterion (Eq. 9). For
molecular dynamics this can be seen as follows. Let E be scaled by a factor

1/s while maintaining a constant temperature during the simulation,

0%r; E
i—a = —V;— 21
m ot? S (21)
"1  Or
Eyin = ; imi(a—l;)z = const. (22)
This is equivalent to
82rl~
o = ViE 23
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| 8rz~
By = Z 5”%(%)2 = $Eyin (24)

7

with ¢’ = %, i.e., the kinetic energy and, thus, the temperature T, is

scaled by s.

The equivalence between temperature control and scaling of E sug-
gests a generalization of simulated annealing schedules where in addition to
the overall scaling of F, relative scale factors between or modifications of
the components of the target E are introduced, i.e., simulated annealing is
carried out with a adjustable target function. In this case, the annealing
schedule denotes the sequence of scale factors or modifications of compo-
nents of E. A particular example of this type of generalized annealing sched-
ule is the use of a “soft” van der Waals potential during high-temperature
molecular dynamics followed by a normal van der Waals potential during

the cooling stage [39].

Annealing control

The analogy of simulated annealing with the physical annealing of solids can
be more formally expressed through a connection to statistical mechanics.
Both Monte Carlo and molecular dynamics simulations can create statistical
mechanical ensembles [51]. Approximately, at least, one can use a statistical
mechanical language to describe the progress of simulated annealing. For
example, changes in the degree of the order of the system can be viewed
as phase transitions. They can be detected by finding large values of the

specific heat ¢ during the simulation,
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_ (E@) - (E®)))*)
c= T2 (25)

where the brackets <> denote the mean computed over appropriate inter-
vals of the simulation. It has been suggested [7] that the cooling rate be
reduced at phase transitions since the system is in a critical state where fast
cooling might trap the system in a meta-stable state. The observed fluc-
tuations in E are relatively small during simulated annealing refinement,
however, indicating local conformational changes rather than global phase
transitions [33]. Thus, control of the annealing schedule by monitoring ¢ has
not yet been attempted and annealing schedules consisting of a pre-defined

sequence of temperatures and modifications of Egenm are used.

Commonly used annealing schedules

The two early implementations of simulated annealing refinement made use
of the equivalent methods of temperature scaling [10] or energy scaling [57].
The influences of the temperature—control method, energy—term weighting,
cooling rate, and duration of the heating stage were studied [33], and it was
found that the temperature coupling method by Berendsen and co—workers
[55] is preferable to velocity scaling since velocity scaling sometimes causes
large temperature fluctuations at high temperatures. Temperature coupling
also outperformed Langevin dynamics in the context of simulated annealing
since the always positive friction of Langevin dynamics tends to slow atomic
motions. Slow—cooling protocols (typically 25K temperature decrements
every 25 fsec) produced lower R values than faster—cooling protocols. Con-

stant temperature dynamics represents the extreme limit of slow-cooling
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annealing with an infinitely long cooling rate. Thus, constant temperature

protocols can outform slow—cooling ones [39].

A typical constant—temperature protocol consists of a high—temperature
molecular dynamics stage at 5000K over a period of 2-4 psec, followed by a
fast cooling stage at 300K over a period of 0.1 psec. The more robust torsion
angle molecular dynamics algorithm outlined above allows conformational
sampling at much higher temperatures than are possible with conventional
unconstrained molecular dynamics. For refinements of o amylase inhibitor
at 52 A resolution, torsion angle dynamics at 10,000 K produces better
results than at 5,000K. However, more testing is required to establish the
generality of this observation at different resolution ranges and data qual-
ities. Thus, at the present stage, a certain amount of experimentation is
required to find the optimal annealing schedule and temperature for each
specific refinement problem. Choice of temperature is most influenced by

model quality and resolution.

Radius of Convergence

A number of realisitic tests on crambin [22], aspartate aminotransferase
[23], myohemerythrin [58], phospholipase A2 [34], thermitase complexed
with eglin ¢ [57], and immunoglobulin light chain dimers [59] have shown
that simulated annealing refinement starting from initial models (obtained
by standard crystallographic techniques) produces significantly improved
overall R values and geometry compared to those produced by least-squares

optimization or conjugate-gradient minimization.
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In recent tests [39], arbitrarily “scrambled” models were generated
from an initial model of a-amylase inhibitor built using experimental phase
information from multiple isomorphous replacement diffraction data [60].
Scrambling of this initial model was obtained by increasingly long molecular
dynamics simulations at 600K computed without reference to the X-ray
data. Errors were thereby distributed throughout the structure and are
probably typical of those found in molecular replacement models or in poorly
built initial models. In order to compare the power of refinement techniques,
a series of these models was refined using two standard ones: conjugate

gradient minimization and slow-cooling simulated annealing.

Results are presented in Fig. 1, which depicts the backbone atom
r.m.s. coordinate deviations before and after refinement for a number of
different refinement methods. A similar graph for a perfect refinement tech-
nique would be a straight line along the horizontal axis: regardless of the
initial errors, the final model would be in good agreement with the crystal
structure. Clearly this is not the case for conjugate gradient minimization,
or even for Cartesian simulated annealing, although Cartesian simulated
annealing is a more powerful refinement technique than conjugate gradient
minimization. For refinements carried out between 5 and 2 A, slow-cooling
simulated annealing can correct backbone atom r.m.s. coordinate deviations

of around 1.3 A.

Constant-temperature torsion—angle refinements (Fig. 1) outperform
the slow-cooling Cartesian protocol on average, dramatically so if one only
considers the best model from each series. The torsion angle refinements are

able to correct backbone atom r.m.s. coordinate deviations of at least 1.65
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A. Clearly, the backbone atom r.m.s. coordinate deviation is only available
if one knows the crystal structure in advance. Fig. 2, however, shows the
strong correlation between Ry.e. [42, 43, 44] and backbone r.m.s. coordinate
deviations. Thus in practice R... can be used to identify the best models

from a series of refinements (see chapter by Brunger in this volume).

Simulated annealing has made crystallographic refinement more ef-
ficient by automatically moving sidechain atoms by more than 2 A, by
changing backbone conformations, or by flipping peptide bonds without di-
rect human intervention. Figure 3 shows a representative case where simu-
lated annealing refinement has essentially converged to a manually refined
structure of the enzyme aspartate aminotransferase [23]. The imidazole
ring of the histidine sidechain has undergone a 90° rotation around the x;
bond during simulated annealing refinement. This rotation was accompa-
nied by significant structural changes of the backbone atoms. This resulted
in convergence of the refined structure to the manually refined structure.
Conjugate gradient minimization could not arrive at an equally good model
without rebuilding. Large rigid-body like corrections of up to 10° resulting

from simulated annealing refinement were observed by Gros et al. [57].

Simulated annealing refinement is most useful when the initial model
is relatively crude. Given a well-refined model, it offers little advantage over
conventional methods, with the possible exception of providing information
about the accuracy and conformational variability of the refined structure
[61]. However, when only a crude model is available, simulated annealing
refinement is able to reduce significantly the amount of human intervention

required. The initial model can be as crude as one that is obtained by
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automatic building based on C* positions alone [62].

In spite of the success of simulated annealing refinement, the im-
portance of manual inspection of the electron density maps after simulated
annealing refinement cannot be over-emphasized. Manual inspection is es-
sential for the placement of surface sidechains and solvent molecules, for
example, and for checking regions of the protein where large deviations
from idealized geometry occur. Figure 4 illustrates a problem that occurred
during simulated annealing refinement of influenza virus hemagglutinin [32].
A poorly defined tryptophan sidechain moved into strong density belonging
to N-linked carbohydrate that was not included in the model used in the
first round of simulated annealing refinement (Fig. 4a). Simulated anneal-
ing can move atoms far enough to compensate at least partially for missing
parts of the model. The model was rebuilt manually in this region, and
the missing carbohydrate was added. In subsequent rounds of simulated
annealing, proper model geometry and fit to the electron density map was

maintained (Fig. 4b).

Simulated annealing refinement can produce R values in the twen-
ties for partially incorrect structures. For example, after refinement of the
protease from human immunodeficiency virus HIV-1 a partially incorrect
structure [63] produced an R value of 0.25 whereas the correct structure

produced a R value of 0.184 [64] with comparable geometry.
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Why Does It Work?

The goal of any optimization problem is to find the global minimum of a
target function. In the case of crystallographic refinement, one searches
for the conformation or conformations of the molecule that best fit the
diffraction data at the same time that they maintain reasonable covalent and
non-covalent interactions. As the above examples have shown, simulated
annealing refinement has a much larger radius of convergence than gradient
descent methods. It must therefore be able to find a lower minimum of
the target E (Eq. 1) than the local mimimum found by simply moving
along the negative gradient of E. Paradoxically, the very reasons that make
simulated annealing such a powerful refinement technique (the ability to
overcome barriers in the target energy function) would seem to prevent it
from working at all. If it crosses barriers so easily, what allows it to stay in

the vicinity of the global minimum?

The answer lies in the temperature coupling. By specifying a fixed
kinetic energy, the system essentially gains a certain inertia which allows
it to cross energy barriers. The target temperature must be low enough,
however, to ensure that the system will not ”climb out” out from the global
minimum if it manages to arrive there. While temperature itself is a global
parameter of the system, temperature fluctuations arise principally from
local conformational transitions - for example from an amino acid sidechain
falling into the correct orientation. These local changes tend to lower the
value of the target E, thus increasing the kinetic energy, and hence the
temperature, of the system. Once the temperature coupling has removed

this excess kinetic energy, the reverse transition is very unlikely, since it
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would require a localized increase in kinetic energy where the conforma-
tional change occurred in the first place. Temperature coupling maintains
a sufficient amount of kinetic energy to allow local conformational correc-
tions, but does not supply enough to allow escape from the global minimum.
This explains the directionality of simulated annealing refinement, i.e., on
average the agreement with the data will improve rather get worse. It also
explains the occurrence of small spikes in F during the simulated annealing

process [33].

If the temperature of the simulated annealing refinement is too
high, numerical instabilities can result in unreasonably large conformational
changes. By suppressing high-frequency bond vibrations, torsion angle dy-
namics has significantly reduced the potential for this to happen. In fact,
one may now use much higher temperatures than previously possible with

the Cartesian molecular dynamics implementation [39].

Refinements at 3—4 A Resolution

There are two related issues concerning initial models and crystallographic
refinements: convergence and determinacy. For example, it is possible to
have high resolution data but a very poor initial model, in which case the
refinement is well-determined but may encounter problems of convergence,
or searching. It is equally possible to have an excellent starting model but
only low to medium resolution data. Refinement under these conditions
does not have a severe search problem in that the initial model lies close

to the correct one, but it is hampered by the fact that the correct answer
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may not be well determined by the limited experimental data. The question
therefore arises: when is it appropriate to use torsion angle refinement, and

when do Cartesian methods suffice?

In order to address this question, a series of refinements were car-
ried out at progressively lower resolution (Fig. 5). The crystal structure
coordinates of the a-amylase inhibitor were subjected to ten constant tem-
perature torsion angle refinements and ten constant temperature Cartesian
molecular dynamics refinements at resolutions of 5-2.5 A, 5-3.0 A, 5-3.5 A,
5-4.0 A, 5-4.5 A. For the refinements at 5-2.5 A resolution, the two meth-
ods yield more or less equivalent results, but at resolutions below 3 A the
torsion angle method shows considerable advantage. Thus for good initial
models, Cartesian methods are sufficient if data better than 3 A resolution

are available. Torsion angle dynamics should be used otherwise.

The free R value shows a high correlation with the model’s accuracy
as assessed by the r.m.s. difference and phase difference between the low—
resolution refined model and the 2 A crystal structure (Fig. 5) except for the
refinement at 5-4.5 A resolution where the differences in free R values are
very small. However, in the latter case the free R value has nearly reached
the limit for a random distribution of atoms in non—centric spacegroups

(57%), indicating divergence of refinement at 4.5 A resolution.

The poorer performance of Cartesian molecular dynamics below 3 A
resolution is a consequence of the under—determinacy of refinement at that
resolution (the number of reflections is half the number of coordinates).
Restricting refinement to torsion angles makes the search more efficient and

it improves the representation of the model at low to medium resolution. For
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example, at 3 A resolution, torsion angle dynamics is superior to Cartesian
dynamics. If the torsion dynamics is followed by a very brief Cartesian slow-
cooling stage starting at low temperature, the performance is even better at
resolutions around 3 A (not shown). Thus, torsion angle dynamics acheives
a better search, but once the structure has reached the vicinity of the global
minimum, adjustment of all parameters (including bond lengths and bond

angles) may be beneficial, even at 3 A resolution.

Simulated—Annealing Omit Maps

Simulated annealing refinement is usually unable to correct very large errors
in the atomic model or to correct for missing parts of the structure. The
atomic model needs to be corrected by inspection of a difference electron
density map. In order to improve the quality and resolution of the difference
electron density map, the observed phases are often replaced or combined
with calculated phases as soon as an initial atomic model has been built.
These combined electron—density maps are then used to improve and to
refine the atomic model. The inclusion of calculated phase information
brings with it the danger of biasing the refinement process towards the
current atomic model. This model bias can obscure the detection of errors
in atomic models if sufficient experimental phase information is unavailable.
In fact during the past decade several cases of incorrect or partly incorrect
atomic models have been reported where model bias may have played a role

[66].

Difference electron density maps phased with simulated-annealing
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refined structures often show more details of the correct chain trace [23].
However, the omission of some atoms from the computation of a difference
electron density map does not fully remove phase bias towards those atoms
if they were included in the preceeding refinement. More precisely, small re-
arrangements of the included atoms can bias the phases towards the omitted
atoms [67]. Thus, the structure needs to be re-refined with the questionable
region omitted before the difference electron density map can be computed.
Simulated annealing is a particularly powerful tool for removing model bias
[68]. The improved quality of simulated annealing refined omit maps has
been used to bootstrap about 50% of missing portions of an initial atomic
model of a DNase-Actin complex [69]. It should be noted that this is a
rather extreme case for the amount of omitted atoms. Usually, omit maps

are computed with about 10% of the atoms omitted.

In general, the improvement of the electron density map achieved in
simulated annealing refinement is a consequence of conformational changes
distributed throughout the molecule. This is a reflection of the fact that
the first derivatives of the crystallographic residual (Eq. 1) with respect to
the coordinates of a particular atom depend not only on the coordinates of
that atom and its neighbors but also on the coordinates of all other atoms

including solvent atoms in the crystal structure.

Refinement with Phase Restraints

As demonstrated throughout, simulated annealing has a large radius of

convergence. The use of torsion-angle molecular dynamics combined with
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a repeated high-temperature annealing schedule significantly increased the
radius of convergence compared to a slow-cooling Cartesian protocol at
relatively high resolution. However, for refinements at lower resolution (;,
3A), no significant extension of the radius of convergence was observed
when refining against structure factor amplitudes alone [39]. Convergence
at this resolution range can be sparse: the limited resolution drastically
reduces the number of reflections (observables) and can result in a severely

underdetermined search problem.

This adverse observable to parameter ratio can be improved using
experimental phase information, for example phases obtained from multi-
ple isomorphous replacement diffraction data. Use of phase restraints (Eq.
5) improves the radius of convergence somewhat, and the vector residual
(Eq.6) shows a significantly increased radius of convergence [39]. Figure 6
summarizes convergence for refinements at 5 to 3A resolution, again using
backbone atom r.m.s. coordinate deviations from the crystal structure as
a measure of convergence. As for high resolution refinements, torsion an-
gle refinements consistently outperform slow—cooling Cartesian refinement
(Fig. 6). These refinements were performed without cross-validation be-
cause the phase accuracy could be assessed by direct comparison with the
experimental phases [44]. There is, however, a strong correlation between
the R value and backbone atom r.m.s. coordinate deviations. This is not
the case in general, since R values for medium resolution refinements per-
formed without phase information do not distinguish as well between good

and bad models (Fig. 5b).
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Conclusions

Simulated annealing has improved the efficiency of crystallographic refine-
ment significantly. However, simulated annealing refinement alone is still
insufficient to refine a crystal structure automatically without human inter-
vention. Thus, crystallographic refinement of macromolecules proceeds in a
series of steps, each of which consists of simulated annealing or minimization
of E (Eq. 1) followed by manual re-fitting the model to difference electron
density maps using interactive computer graphics [62]. During the final
stages of refinement, solvent molecules are usually included, and alternate

conformations for some atoms or residues in the protein may be introduced.

With currently available computing power, tedious manual adjust-
ments using computer graphics to display and move positions of atoms of
the model in the electron density maps can represent the rate-limiting step
in the refinement process. Further automation of refinement by judicious
combination of reciprocal and real-space refinements should be possible.
However, all automation attempts will ultimately have to address the prob-
lem of pattern recognition of macromolecular features in noisy electron den-
sity maps. The human brain appears to be highly efficient at solving this
problem whereas computer algorithms have been rather slow in achieving
this ability. Thus, for the near-term future, the main goal should be to elim-
inate tedious book—keeping and computer graphics-bound intervention by
automating all aspects of refinement that do not require significant pattern

recognition.
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Figure Captions

Figure 1: Radius of convergence of conjugate-gradient minimization, Carte-
sian slow—cooling, and torsion—angle simulated annealing. Convergence is
measured by the final backbone atom r.m.s. coordinate deviation to the
crystal structure. Thin lines show the result from one conjugate gradient
minimization (dashed) or one slow-cooling simulated annealing refinement
(solid). The thick dot-dashed line shows the average backbone atom r.m.s.
coordinate deviation obtained from ten high-temperature torsion-angle re-
finements at 5000K, and the thick solid line shows the backbone atom r.m.s.
coordinate deviation achieved by the torsion angle refinement with the low-

est free R value.

Figure 2: Free R value vs. backbone atom r.m.s. coordinate deviation for
torsion-angle constant—temperature refinements using a-amylase inhibitor

[60] as a test case.

Figure 3: The segment consisting of residues Cys-192 and His-193 of the 2.8
A resolution structure of a single site mutant of aspartate aminotransferase
[23]. Superimposed are the initial structure (dotted lines) obtained by fitting
the atomic model to a multiple isomorphous replacement map, the struc-
ture obtained after several cycles of rebuilding and restrained least-squares
refinement (thick lines), the structure obtained after simulated annealing
refinement (thin lines), and the structure obtained after conjugate gradient

minimization (dashed lines).
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Figure 4: Simulated annealing refinement can move atoms far from their
initial positions to compensate for missing model atoms. Residue Trp 222
of influenza virus hemagglutinin, which has weak sidechain density, moved
into strong N-linked carbohydrate density in the first round of simulated
annealing refinement, before carbohydrate was added to the model. The
electron density maps were computed from (2Fops — Feare) amplitudes using
F,,c phases corresponding to the atomic models at 3.0 A resolution. Tt
shows density corresponding to missing atoms as well as the current model.
The electron density maps are displayed as a “chicken wire” which repre-
sents the density at a constant level of one standard deviation above the
mean. The maps have been averaged about the 3-fold non-crystallographic
symmetry axis. (a) Electron density and coordinates after round 1, show-
ing missing density for Trp 222 C?. (b) as in (a), showing properly built
N-linked carbohydrate and Trp 222.

Figure 5: Cartesian and torsion angle refinements at low to medium res-
olution. Averages over ten refinements are shown. The crystal structure
of the a-amylase inhibitor was refined against artificially truncated sets of
the original diffraction data [60]. (a) Atomic r.m.s. differences and phase
differences between the models refined at the specified resolution range and

the deposited crystal structure. (b) Free R and R values.
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Figure 6: Convergence of medium resolution slow—cooling (starting at
5000K, dashed line) and constant temperature torsion angle (10,000K, solid
line) refinements against the vector residual (Eq. 6) at 5-3 A of increasingly
worse models for amylase inhibitor [60]. Convergence is measured by back-
bone atom r.m.s. coordinate deviations from the crystal structure, taking
the best structure from a series of ten independent refinement obtained by
using different initial random velocities for simulated annealing. The best

models can be identified by a low free R value [39].
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