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Solvation Properties of Penicillopepsin and Neuraminidase Crystal
Structures
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Solvation in macromolecular erystal structures was studied by analyzing X-ray diffraction
data of two proteins, penicillopepsin and neuraminidase. The quality of several solvent modeis
was assessed by complete cross-validation in order to prevent overfitting the diffraction data.
Radial solvent distribution functions were computed from electron density maps using phases
obtained from multiple isomorphous replacement and from the protein's atomic model
combined with the best solvent model. Distribution funetions were computed around
hydrophilic and hydrephobic groups on the protein’s surface. Averaging of the distribution
functions was performed in order to reduce the influence of noise. The first solvation shell is
characterized by a peak in the average distribution functions. At 1-8 A resolution, polar groups
show a sharp peak while non-polar groups show a broad one. The distinetion between
hydrophobic and hydrophilic solvation sites is lost when using lower resolution (2:8 A)
diffraction data. Higher-order solvation shells are not observed in the average distribution
funetions. We hope that site-specific radial distribution functions obtained from high-quality
diffraction data will produce a picture of macromolecular solvation consistent with available
experimental data and computational results.
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1. Introduction

Water associated with the solvation of macromol-
ecules plays an important role in biological processes
such as enzymatic reactions, specific and non-specific
macromolecular association and oligomerization, and
ligand-binding. In transecriptional control, for
example, water molecules can contribute to the
specificity of the interactions between proteins and
DNA. Water-mediated hydrogen bonds are found
between bases and side-chains in a number of
protein-DNA crystal structures (e.g. Otwinowski
et al., 1988, Hegde et al., 1992). Comparative analysis
of the water structure in the crystal structures of
complexed and free DNA irp operator indicates
several hydration sites in the free DNA that mediate
specific protein-DNA interactions (Shakked et al.,
1994). Bound water is also affected by osmotic and
hydrostatic pressure resulting in changes of specific
protein-DNA binding (Robinson & Sligar, 1994). 1t is
therefore not unreasonabls to consider bound water as
part of the macromolecule. This idea is supported by
theoretical studies of lyzozyme solvation of Venable &
Pastor (1988} who showed that simulated transla-
tional and rotational diffusion constants only agree
with experimental data if bound water is included as
part of the protein.
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Solvent constitutes a large portion of the volume
in macromolecular crystals (Matthews, 1968).
Fully occupied hydration sites, “bound” or
“ordered” water, only represent a small fraction of
the solvent. The remaining solvent is disordered
but not completely featureless (Lounnas ef al.,
1092).

A significant body of experimental and theoretical
work has been aimed at understanding the solvation
of macromolecules (Squire & Himmel, 1979; Teeter,
1984, 1991; Saenger, 1987; Venable & Pastor, 1988;
Levitt & Sharon, 1988; Thankiet al., 1989; Cloreetal.,
1990; Otting et al., 1991; Kossiakoff et al., 1992;
Lounnas et al., 1992, 1994; Steenivasan & Axelsen,
1992; Kuhn et al., 1992; Parak ef al., 1992; Komeiji
et al., 1993; Steinbach & Brooks, 1993; Brunne ef al.,
1993; Clore et al. , 1994). The predominant experimen-
tal techniques to study macromolecular solvation are
X-ray crystallography and solution NMR spec-
troscopy. The former method can give structural
information, while the latter can provide both
structural and dynamical insight (Levitt & Park,
1993). An X-ray crystal structure represents a time
and spatial average of the electron density distri-
bution, se observed electron density represents a
probability of an atom residing at a particular
position. A fully occupied hydration site thus
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Table 1
van der Waals radii used for solvent
mask calculations

Atom type Radius (&)
Carbonyl and ring carbon 2-1
Other carbons 2-3
Nitrogen 1-6
Oxygen 1-6
Sulfur 19

represents a high probability for the presence of a
water molecule, and not necessarily a continuous
presence. Residence times of bound water molecules
were observed by NMR spectroscopy and were
generally found to be in the sub-nanosecond range
(Otting et al.. 1991; Clore et al., 1994).

To compute an image of the electron density in the
crystal, observed intensity data must be augmented
with phase information. Experimental phase infor-
mation obtained by multiple isomorphous replace-
ment {MIR1) is often prone to errors because of
non-isomorphism of the derivative crystals, Thus, it is
commonplace to provide phases through an appropri-
ately chosen model, especially at the later stages of the
structure determination process.

One approach to modelling solvent is atomistie,
using individual scattering atoms for each solvent
molecule. While this approach is reasonable for
modelling fully occupied hydration sites is it less
appropriate for the bulk solvent regions which are
largely disordered. Furthermore, atomistic modelling
of solvent introduces a large number of adjustable
parameters, increasing the danger of overfitting the
data (Bringer, 1992¢). For example, Parak et al.
(1992) refined a Monte Carlo derived configuration of
water molecules in the unit cell of myoglobin erystals.
The achieved improvement of the fit to the diffraction
data must be viewed with caution since the refinement
was carried out without cross-validation.

It is more appropriate to use continuzous models of
electron density to describe disordered solvent. The
simplest possible model comes from the simplest
possible assumptions, that scatterers in bulk solvent
are positioned with equal likelihood everywhere,
giving rise to constant, or flat electron density outside
the macromolecule. Implementations of this “Hat”
model use Babinet’s principle (Frager et al., 1978;
Moews & Kretsinger, 1975) or the molecular surface
to define a “solvent mask” (Phillips, 1980). In the
vicinity of the solvated macromolecule one expects
deviations from this flat model. A more detailed
“radial shell” model divides the solvent volume into
shells of constant (but possibly different) electron
density extending outward from the macromolecular
surface (Cheng & Schoenborn, 1990). It indicated the
presence of two radial solvation shells in a neutron
diffraction structure of myoglobin. The radial shell

T Abbreviations used: MIR, multiple isomorphous
replacement; NMR, nuclear magnetic resonance; rm.s.,
root-mean-square.
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Figure 1. Schematic illustration for the 4 solvent models
that were tested; flat model, radial shell model, difference
map model and density modification model. The models are
described in detail in the text.

model was devised to minimize the number of
adjustable parameters by radial averaging. However,
the surface of a macromolecular is normally
anisotropic both in terms of shape and chemical
composition. Badger & Casper (1991) attempted to
model the resulting anisotropic solvent distribution
through an iterative difference map procedure. This
approach suggested non-random arrangements of
water molecules extending several layers from the
first solvation shell in a erystal structure in insulin. It
must be remembered that all these observations are
at relatively low electron density levels, close to the
noise limit of the data, so overfitting is a definite
possibility if precautions are not taken.

Here, two X-ray crystal structures are chosen as
test cases in order to assess the quality of several
solvent models and to analyse the solvent distribution
around selected hydrophilic and hydrophobic groups.
The crystal structure of penicillopepsin at 1-8 A by
James & Sielecki (1983) is selected because the
observed MIR phases were of exceptionally high
quality, which is useful for the validation of the
solvent models. The crystal structure of neu-
raminidase from the N3 subtype of influenza virus at
22 A resolution {Tulip ef al.. 1991) is chosen because
of the presence of large, 20 A-wide, solvent pockets in
the unit cell which allows us to investigate solvent
distributions far away from the protein crystal lattice.

Solvent model quality is assessed by using the
cross-validated of free R value and by evaluating the
difference between model and MIR phases. In our
original definition of K., 10% of the data are left out
of the refinement process and later used to validate
the model {Briinger, 1992a, 1993). At low resolution,
however, statistical fluctnations become large due to
a deminished number of reflections. We therefore use
complete cross-validation {Brunger et al, 1993),
repeating the process ten times to measure the pre
dictability of all reflections.

Radial distribution functions are a powerful tool for
analysing the structural properties of liquids in the
bulk phase and around solutes obtained from X-ray
scattering experiments and computer simulations
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Table 2
Least square minimization of p, and B, for
the flat solvent model using penicillopepsin
diffraction data

Cyele o B, - Eyih

0 1-000 0-00 0-631 (884
1 0-791 761 0-871 0-960
7 0-378 36-37 0-971 1004
8 0-375 3625 0-964% 1-004

(Allen & Tildesley, 1987). Site-specific solvation at the
macromolecular surface, obtained by computer
simulation, was analysed by using a proximity
criterion for de-composing the radial distributions
{Mehrotra & Beveridge, 1980). We apply this
approach to the observed electron density maps.
Since the electron density in a crystal structure obeys
crystallographic symmetry we generalize Mehrotra &
Beveridge's method by taking into account all
symmetry mates of the macromolecule. Averaging
over many sites on the protein’s surface will reduce the
amount of noise present in the distribution functions
and allows one to determine if a particular feature is
statistically significant.

In the Materials and Methods section we
summarize pertinent information about the diffrac-
tion data of penicillopepsin and neuraminidase. In
the Theory section we describe the various solvent
maodels, the method of complete cross-validation, and
the algorithm used for computing the site-specific
solvent distribution functions. In the Results and
Discussion section we compare the quality of the
solvent models and analyse the average distribution
functions around selected hydrophobic and hy-
drophilic atoms on the protein’s surface,

2. Materials and Methods

(a) Penicillopepsin

The first test case was the crystal structure of
penicillopepsin from Penricillium junthinellum consisting of
323 amino acid residues and 320 ordered water molecules.
It was solved by James & Sielecki (1983) with diffraction

o

(symmetry)

g, =p at r=min(ry,fo}

Figure 2. Radial distribution function g, in the presence
of symmetry operations. The solvent density point p
contributes to g, (r} at r = min(r,,r,), where | r, are the
distances between p and the centers of the two
symmetry-related atoms A and A', respectively.

data collected to 1-8 A resolution by Hsu et al. {1977). The
space group is 02 with unit cell dimensions @ = 97-37 A,
b=46-64 A,¢c = 6547 A, f = 115-4°. The crystals contained
38% (v/v) =olvent and were grown from a 1-4 M (NH,),80,
solution which corresponds to roughly 15805 and
30 NH; ions per asymmetric unit. Observed diffraction
data were available up to 1'-8 A resolution, 95% complete
between 2 and 23 A resolution, and 99% complete between
6 and 23 A resolution. All observed reflections with
[Fopsl = 20 were used for our studies. Phase accuracy of
atomic and solvent models was assessed by using the
experimental phases to 2:8 A obtained from MIR using
eight heavy-atom derivatives {Hsu et al., 1977) with an
overall figure of merit of 0-9.

About half of the ordered water molecules in the
deposited pencillopepsin  crystal structure were only
partially occupied (186 water molecules with oceupancy
g<0-75 and 134 with ¢ > 0-75). We omitted all partially
occupied water molecules with g<0-75 from our calculations
because they were not hydrogen-bonded to protein atoms
or other water molecules and the corresponding electron
density values for the oxygen atoms were quite weak.

(b) Neuraminidase

The second test case was the crystal structure of
neuraminidase from the N9 subtype of influenza virus
consisting of 388 amino acid residues, several asparagine
MN-linked monosaccharide and mannose ligands, and 94
fully-occupied ordered water molecules (Tulip ef al., 1991).
The space group is cubic {(/432) with unit cell dimension
a=185-1A. The crystals contained 62-5% (v/v) solvent
and were grown from 1-9 M phosphate solution which
corresponds to about 95 ions per asymmetric unit.
Observed diffraction data were 69-7% complete over the
observed range between 2:21 and 76 A, with nearly
complete data at low resolution. All observed reflections
with |F | > 26 were used for our studies. MIR data were
unavailable for this crystal structure since it was solved by
difference Fourier techniques.

(c) Computations

All mask calculations, solvent refinements, electron
density map calculations and solvent distribution analyses
were carried out with a developmental version of X-PLOR
{Briinger, 1992b) which will be made available in a future
release through established procedures, Requests should be
sent to A.T.B.

Graphical display was carried out using an interface
between X-PLOR and the AVS graphics system (Advanced
Visuals, Tne.) written by Warren L. DeLano {(unpublished
results).

3. Theory
(a} Combined refinement of macromolecule and
solvent
The structure factor .. (h) of a macromolecular

structure is expressed as:

Fc-a]r(h) = qu(:r(x(h) + ‘Fbound(h) + Jrf'l)u]k(h): (])

where F_,...() is obtained from the atomic model of
the macromolecule, F\ ., is computed from all bound
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Figure 3. Partitioning of the solvent volume by proximity to specific solute atoms. The solute consists of a leucine-serine
dipeptide. [t is placed in a monoclinic unit cell and P2, symmetry is imposed. (a) Radical shells surrounding the solute
and all its symmetry mates. (b) Partitioning of the available space into regions closest to the nitrogen atoms (in black) and
the remaining space. One of the nitrogen atoms is fully solvent exposed while the other is almost completely buried.
{c) Fractions of the solvent shells that are elosest to the nitrogen atoms. Radial shells and proximity maps are computed

up to 5 A away from the surface of the solute.

water molecules and Fy,(h) is obtained from an
appropriate mode! for disordered solvent.

We refined parameters of the macromolecular
model, of the bound water molecules, and of the
disordered solvent in three stages:

Stage 1: Thesolvent model for digordered solvent was
generated in the presence of the macromolecular
model and bound water molecules, and its parameters
were refined.

Stage 2: The placement of ordered water
molecules was checked by using a conservative
criterion: the difference density map had to exhibit a
peal with several standard deviations above the

mean, the peak had to be within hydrogen bonding
distance from a polar or charged group on
the macromolecular surface or from another
water molecule, and the refined thermal factor of
the placed water oxygen atom had to be less than
50 A%, Water molecules were added or removed if
necessary.

Stage 3: Atomic positions and thermal factors for the
macromolecular model and the bound waters were
refined against the whole resolution range of the
observed diffraction data. The bound water molecules
stayed in the vicinity of the initial positions during
the simulated annealing stage, so it was not necessary
to restrain their positions.
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Figure 4. Optimization of r4,, for the flat model using
the penicillopepsin diffraction data. (a) B and R{mPee
obtained by complete cross-validation at 23 to 6A
resolution versus 1.y (b} Model’s phase difference to the
MIR phases at 23 to 6 A resolution versus Tenrink - FOT each
value of rp. the p, and B, parameters equation (2) were
refined by alternating least-squares optimization of
equation (11) and position refinement of the macromolecule
and its bound water.

The initial models eonsisted of the crystal structures
of penicillopepsin and neuraminidase (see Materials
and Methods). No change in the placement of ordered
water molecules occurred during stage 2. If a change
had oceurred it would have been necessary to repeat
the above procedure.

Figure 5. A 1 A slice through the penicillopepsin crystal
structure. The solvent mask {thick lines) was computed
using the van der Waals radii listed in Table 1, 7., = 1-0 A
and 7y = 1-1 A. Covalent bonds of the penicillopepsin
molecules are indicated by thin lines. Empty regions
vepresent solvent. A number of small solvent cavities were
found within the protein.

Figure 6. A 1 A slice through the neuraminidase crystal
structure. The solvent mask was computed usging the van
der Waals radil listed in Table 1, r

e = 140 A and
Fame = 1'1 A, Covalent bonds of the neuraminidase
molecules are indicated by thin lines. Empty regions
represent solvent, A number of small solvent cavities were
found within the protein.

(b) Solvent mask

To distinguish between “protein” and “solvent”
regions, a boundary separating the two must be
defined. This problem is closely related to the
computation of accessible and molecular surface
areas (Richards, 1985). We defined the molecular
surface and a corresponding solvent “mask” through
the following procedure:

Setup: A map M is defined on a grid that covers an
asymmetric unit of the crystal. The map values are
restricted to 0 and 1. The grid size is chosen to be small
enough to avoid Fourier series truncation errors. By
trial and error, we found that 1/4 of the high
resolution limit is sufficient (0-45 A in the case of
penicillopepsin). Smaller grid sizes did not change the
results. All grid points of M are initially set to 1.
Accessible surface: All grid points of M within a
distance of #; around atom ¢ of the atomic madel and
its symmetry mates are set to 0. The atomic mode!
includes the macromolecule and bound water
molecnles. #;1s defined as the sum of the van der Waals
radius 7,4, of atom 1 and the probe radius 7. The
var der Waals radius is defined as half the distance at
which the Lennard-.Jones potential energy function
reaches its minimum (Table 1).

Contact and re-entrant surface: All grid points of M
marked 0 are tested to see if they fall within a distance
i fTOM 2 grid point set to L. It this is the case, the
tested grid point is set to L. This procedure shrinks the
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Figure 7. Assessment of the quality of solvent models for
the penicillopepsin erystal structure. {a) B and REV at
23 to 1-8A resolution. (b) {(mAdyu) (model’s phase
difference to the MIR phases) at 23 to 2-8 A resolution. The
following cases are shown: no solvent model; inclusion of
ordered water molecules; additional modelling of disordered
solvent by the flat model, radial shell model, difference map
model, and density modification model. The solvent mask
parameters were set to Tpope = 1-0 A and Fenrink = 171 A.
Solvent and atomic model parameters were refined as
out-lined in the Theory section. For the radial model, Ny,
was set to 8.

accessible surface area. The resulting boundary
between solvent and macromolecule is a combination
of contact and re-entrant surface areas (Richards,
1985). The grid points of M marked 1 comprise the
solvent regions whereas those marked 0 are associated
with the atomic model and its symmetry mates. The
resulting map M is referred to as the solvent mask.

The definition of the solvent mask M includes two
adjustable parameters, 7., and 7. Optimization
of these parameters is discussed in the Results and
Discussion section.

(e) Solvent models

We tested the four
schematically in Figure 1.

solvent models shown

(1) Flat model

The flat model assumes that solvent regions outside
the molecular surface show relatively little variation
in density as compared with the macromelecule
(Phitlips, 1980). The structure factor of the solvent
{Fiuk) 18 computed by Fourier transformation of the
solvent mask M.

F o h) = pexp( — B,sin® 8]A2)FT(M), {2)

where FT denotes the Fourier transformation. In
order to blurr the sharp boundary between
macromolecule and solvent as imposed by the mask,
resolution-dependent scaling in reciprocal space is
applied (represented by the factor in front of the
Fourier transformation). The two adjustable par
ameters p, and B, are refined as described below

(1) Radial shell model

The model by Schoenborn {1988) and Cheng &
Schoenborn (1990) defines shells of constant electron
density at certain distances perpendicular to the
molecular surface. The first shell is in contact with the
molecular surface of the atomic model and of its
symmetry mates. The last shell comprises the space
not covered by any other shell or the macromolecule.
Each shell requires two solvent parameters, a
scattering density p,, and a “liquidity” factor B,,. The
solvent structure factor is given hy:

Foo(h) = Z

n = Laghel

F,,(h} (3)

F.m(h) = paﬂexp( _BanSinQGIA'?)FT(Mn): (4)

where M, is a mask that is set to unity inside shell n
and to zero outside. The radial shell model reduces to
the flat model if n,., = 1.

Adjustable parameters are .o, Taheiaks Pons Ban» the
shell thickness d and the number of shells ng,;.  must
be wider than or equal to the grid size that is used to
sample the Fourier transformation in order to obtain
meaningful results. We used d = 0-6 A and ., was
set to 8 and 16 for penicillopepsin and neuraminidase,
respectively. Refinement of p, and B, is described
below.

(iii) Difference map model

Badger & Casper (1991) and Badger (1993)
proposed a model where an electron density map of
the solvent is obtained from a procedure analogous to
solvent flattening (Wang, 1985). This model is
obtained by iteration of the following steps: (1)
calculation of a conventional difference Fourier map
with |F .| = [P coefficients and F_,. phases, (2)
addition of the difference Fourier map to the phasing
model at grid-points within the solvent region, and (3)
caleulation of a new set of sclvent structure factors
(Fy) from this solvent-modified map followed by
update of F . (equation (1}). Step (2) can be carried
outinreciprocal space after inverse Fourier transform
(FT') of the masked difference Fourier map:

Fiow(h) = FT - [M(FT[AF(h)])
+ Poacrol 1 = M)}, (5)

where M is the solvent mask, p,,., is the mean density
in the difference mayp averaged over the macromolecu-
lar region and:

M‘J{h) = (lFol)s(h)l - |F-iak‘(h)l)exp(iq){:alc(h))' (6)
|

i.] and @ are the calculated amplitudes and
phases for the jth cycle, respectively:

F’{-aic(h) = }ﬂmm"m(h) + Iﬂb()un(l(h) + F{)qu(h)' (7)
The iteration is started by setting:

}‘gah-(h) = Fmavro(h) + Fbound(h)- (8)
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The difference map model has no adjustable
parameters except for those of the solvent mask (rygp.
and Tshrink)'

{iv) Density modification model

Here we propose a modification of the difference
map model which uses density modification. In the
difference map model, large positive and negative
peaks emerge which are related to noise and Fourier
series termination errors. As a consequence, the
difference map model overfits the diffraction data (see
Results and Discussion}. Application of both high and
low density truncation would hopefully dampen these
spurious peaks. This idea is supported by the work of
Shionoe & Woolfson (1992) who showed that
low-density elimination can improve protein phases.
Asin the case of the flat model, we have also blurred
the sharp boundary between the atomic model and
the solvent region by resolution-dependent scaling
using a thermal factor B, and a scale factor p,.

Fitvh) = pexp( - B,sin*6/1%)
xFT - {M(FT[AF(h)])], (9)

where AF'(h) has been defined as in equation (6} and
M' is a density modification function:

M(r) =
min{t, max(b.{p(r) — (pP)fe)) grid point r outside
protein
0 grid point r inside
protein

(10}

{p) is the average density in the solvent region and
¢ is the base level of the solvent density. The success
of the density modification model was fairly
independent of the precise choice oft, b, €. By trial and
error. we achieved good results with ¢ set to the
expected average solvent density of pure water
{0-33e~JA%), t set to 3 and b set to 1. In the presence
of ions the expected solvent density will be higher
than 0-33e¢~/A%). This effect is compensated by
application of resolution-dependent scaling (p,, B,
which are determined by least-squares optimization
against equation (14)). The only other adjustable
parameters are those of the solvent mask (v, and

Fshrink ) .

(d) Refinement of solvent model parameters

Adjustable parameters p of the various solvent
models were refined by least-squares optimization
against the target function:

G(p:k) = Z”Fnbs(h)l - lecalc(h!p)||2/E|F0bs(h)|2; (11)
h h

where the overall scale factor & was obtained by the
requirement that the first derivative with respect to
k of G(p.k) has to vanish resulting in:

k= ZlFuhs(h)||Iﬂca.lc(hsp)l/z‘,lﬁ‘cale(hsp)l?' (]2)
h h

Simultaneous refinement of & against solvent
parameters turned out to be ill-behaved even in the
simple case that:

Fralc(h) = me:ro(h) + ﬁ‘lmund(h)
+ pexp( - Bsin® 8/ATYFT(M), (13)

where M is the solvent mask. Straightforward
application of least-squares optimization using all
observed diffraction data produced numerical
instabilities, resulting in a poor fit against the low
resolution data (W 1. Weis & A. T Briinger,
unpublished results).

One way to avoid this problem is to make %
resolution dependent. We initially computed separate
scale factors Ry, , Ky, for diffraction data less than
and greater than a certain resolution cutoff (5 A),
respectively. Refinement was carried out against:

Gt(p-k) - Glow(p: klow} + Ghigh(pskhigh)ﬂ (14)

where G, and Gy, are the target, G, restricted to
reflections at resolution lower than and above the
cutoff, respectively. The scale factors ky,,, &y, were
obtained by equation (12}, The solvent parameters p
were determined by least-squares optimization of
equation {14). The process was repeated until
convergence was achieved at which point k,,, and &,
were approximately equal (illustrated in Table 2 for
penicillopepsin using the flat solvent model). Finally,
the two scale constants were replaced by a single
overall one for the calculation of £ values and density
maps. This procedure was used for the flat model and
the density modification model. For the radial shell
maodel we extended this procedure to refinement of an
overall liquidity factor B, =5, and refinement of
individual pg,, values. We refined an overall liquidity
value as opposed to individual ones because the
narrow spacing of the individual shells allows
adequate modelling of the electron density distri-
bation by the individual p,.

(e} Complete cross validation

The £ value is a measure of the fit hetween the
model and the observed diffraction data:

— Eh !an!s(h) - levalc(h)
& NI I
where the F,, denotes the set of observed structure
factor amplitudes, and the constant k is a scale factor.
The R value is a poor criterion for accuracy as it can
be made arbitrarily small by introducing an
inereasing number of parameters without improving
the information content of the model (Bringer,
1992a). This problem is avoided by cross-validation;
R;.. shows a higher correlation with the phase
accuracy of the model than B ( Briinger, 1992a, 1993).
Cross-validation congists of omitting a certain subset
or test set of the observed data, refining the model
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Figure 8. (a) R, {b) RF;::"’G"" and (e} {mAgy ;> versus resolution, d, for the penicillopepsin crystal structure (note the
reciprocal seale for d). R and RE™P** were computed at 23 to 1-8 A resolution while {mADy > was computed at 23 to 2.8 A
resolution. Black, no solvent model; orange, ordered water molecules included; green, ordered water and fiat model; yellow,
ordered water and radial shell model; blue, ordered water and difference map model; red, ordered water and density
modification model. Parameters are identical to those described in Figure 7.

against the remaining data, and evaluating the B
value from the test set.

R shows little dependence on the choice of the
test set az long as the selection is purely random and
the test set contains a sufficient number of data points
(Brunger, 1993). This is usually not a problem if one
isinterested in an overall value of R,,.. However, if the
diffraction data are broken down by resolution, B,
can show considerable variation at low resolution, i.e.
in the region where solvent shows a predominant
effect. In the light of this problem, using only a single

test set to assess the quality of a solvent model
(Badger, 1993) must be viewed with caution.

'To increase the reliability of Ry, at low resolution
we used complete cross-validation {compare Bringer
et al., 1993). The observed diffraction data set is
partitioned into ten test sets (T, . . ., Ty} where each
set contains a different 10% of the data. For each test
set T'y, a corresponding working set A, is defined of all
data excluding 7. Solvent parameter optimizations
and protein refinements are carried out ten times,
once for each of the working sets 4,. Structure factors
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are calculated for the test set T, and then merged to
produce the cross-validated structure factor F,,, i.e.
F..{h)=F_,.(h), where F,, is the calculated structure
factor obtained after refinement against the working
set A, with h¢ 4,. The free R value obtained by
complete cross-validation is defined as:

complete — Zh "I(’Ohs(h)l — leu(h)H
Ry NI

(f) Phase aceuracy

A second measure for the quality of solvent models
is given by the weighted mean phase difterence
{mAdyr> between the model’s phases and those
observed by MIR provided that the latter are of
sufficient accuracy The MIR data set for penicil-
lopepsin is of exceptional quality (figure of merit is
0-9) making this a reasonable approach. A figure-of-
merit (m) weighting scheme was applied to the phase
differences.

{g) Analysis of solvent density

The distribution of solvent density was analysed by
computing distribution funetions around specific
sites on the molecular surface. Difference density
maps were computed and the solvent distribution
analysed by using a proximity criterion.

(@) (b)

(i) Electron density maps

(zijﬂubsl = |Fcnlc|)exp(i¢’calc) maps were computed
with F . as described in equation (1) after refinement
of atomic and solvent model parameters. The
observed structure factor amplitudes |F,,] were
linearly scaled to the calculated ones. In the case of
penicillopepsin, a figure-of-merit weighted MIR map
was also computed; the map was obtained by Fourier
transformation of m|F . |exp{i¢yir). The grid size of
the electron density map was set to 1/4 of the high
resolution limit; smaller grid sizes did not change the
results.

(ii} Radial distribution functions

The solvent electron density distribution around
specific sites on the macro-molecule’s surface was
analysed by radial distribution functions using a
proximity criterion (Mehrotra & Beveridge, 1980,
Mezer & Beveridge, 1986; Lounnas ef af., 1994). The
proximity criterion partitions the solvent volume by
assigning each solvent molecule to the closest atom of
the macromolecule.

The original definition of the proximity criterion
did not account for crystallographic symmetry, so it
was expanded by taking the minimum distance » from
a particular solvent density point to the centers of a
solute and to those of its symmetry mates (Figure 2).

(c)

% % 15
—— —
R o W oW
<L u:;.. 1% ﬂ 05
= 6 N 'm Y
QD — 0 —
A A
Aw = O
- = —=
O w Z O w
4 - _
o2 o) X 5 W%
\% v v
] [ @
o R s T o5 .
T T T S T 12 « s 8 7 T T T
r(A) r(A) r(A)
400 160
350 - 120 |
200 - 120
200 c 60
150 10 60
100 5 % -
50 - 20 -
[Pl 0 g -
1 2 3 ] 5 [ 7 1 H 3 [} 5 § i ! H 3 4 5 § 1
r(A) r{A) r{h)

Figure 9. Average solvent distribution functions around specific atoms on the surface of penicillopepsin. (a) {g.C(r)>,
(b) g  N{r)>, (e) (g, O{r)>. Unly those surface atoms were considered that had thermal factors less than 24 A% Distribution
functions were computed from (2|F,. | - |F...[Jexpli¢ ) maps. The computation of F,,. included ordered water molecules
and the density modification model {eqn {1)). Parameters for the refinement were identical to those described in Figure 7.
Error bars indicate the estimated error of the mean for the average distribution functions {eqn (17)). The sample size n(r)
for the computation of the average of g(r) at a particular distance 7 is shown in the corresponding bar plots. Averaging of

the distribution functions was carried out in (-4 A-wide bins.
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Figure 10. First solvation shell around penicillopepsin.
Shown is the electron density within 5 A around the protein
obtained from a3 A slice of a (2|F,,.] = [FoJexp(id...) map.
F\ . was oblained through the density modification model.
The contour level is 0-4 ¢~ A3 which corresponds to roughly
0-5 standard deviation above the mean.

The definition of the radial distribution funetion
g, can also be applied to a specific subset of
atoms.

The algorithm to compute radial distribution
functions is illustrated in Figure 3 for two nitrogen
atoms located on the surface of a dipeptide.
First, radial shells are computed for the
whole dipeptide (Figure 3(a)). Next. a proximity inap
is defined that indicated for each grid point the atom
whose centre is closest to the grid point. The
boundary between grid points belonging top the
nitrogen atonws and all other points is shown in
Figure 3(b}. Overlay of the radial shells and the
proximity map is used to identify arves that are
used for the computation of g, N(r) {thick lines in
Figure 3{c}). The average density in each are is stored
in g, N(r) after division by the volume of the are.
Normally radial distribution functions are computed
in dimensionless units. We elected to compute them
in eleetron density per volume units. instead. in order
to indicate the absolute electron density in the
crystal.

Weighted  averages  were  computed  for the
adial distribution  functions  around  selected
hydrophobic and hydrophilic sets of atoms. The
weight is given by the number of grid points in a
particular are at distance r around each selected
atom. The weighted average will be indicated by
angular brackets, e.g. {g N(r)> is the weighted
average radial distribution function around all

nitrogen atoms. The error of the average was
estimated by:

e(r) = UG V) = g VU inlr),  (17)

where n{r}is the sample size that is used to compute
g, N(r). nlr) is equal to the number of selected atoms
of the macromolecule (in this case nitrogen atoms)
that contribute to g, N(r) at distance r. The error of
the average e(r) is related to the root-mean-square
(r.m.&.) fluctuation by:

() = rms(g_,_x\-'(-r')}. (18)

Snlr)

(ili} Estimation of the average densify

In dilute solution. radial distribution functions
approach the average density of the solvent as r goes
to infinity. One would expect the same to be true for
large solvent-filled cavities i macromolecular
crystals. Distribution funetions that are computed
from electron density maps are only known up to an
additive constant. This constant is the mean of the
density map (Fuw Viven ) where Ve 15 the volume
of the unit cell. Since the F, term cannot be
measured it has to be estimated from a model that fits
the diffraction data.

We have estimated the £, term by

!JIIUII = (H(' + p~ lv\':il\'ﬂll ) ( 19)

where #, is the total number of X-ray scattering
electrons in the macre molecule and bound water
molecules (including those belonging to hvdrogens).
I geens 15 the volume of the solvent. and p, isthe solvent
electron density which was obtained by optimization
of equations (2) and (11},

4. Results and Discussion

(a) Optimization of solvent model paranmetfers

Nolvent models depend on the detinition of the
boundary that separates the bulk solvent regions
from the rest of the crystal volume. As discussed in
the Theory section this boundary is defined through
the molecutar surface of the macromolecule. The
molecule surface s in turn a function of the atomic
radii used for the macromolecule and the solvent
molecules. Furthermore. the definition of cavities
depends on the choice of atomic radii (Kleywegt &
Jones, 1004). The radii are associated with the
non-honded potential enerey function that describes
the van der Waals interaction between pairs of atoms.
Possible choices for atomic radii are half the value at
which the non-bonded potential energy function
assumes a minimum {(van der Waals radius) or half the
-alue at which the potential is zero (g value). Richards
{1985) concluded that both sets are physicaily
reasonable and that there may be no set of correct
alues.

Our solvent mask caleulations used the van der
Waals radii deseribed in the CHARMMI1Y foree field
of Brooks et al. (1983). A probe radius corresponding
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Figure 11. e.m s. fluctuations (rms{g(r)) = \/(<g(r) - {g(r)>F) of the solvent distribution functions around specific atoms
on the surface of penicillopepsin. (a) rms(g, C'(r}), (b). rms{g V(r}), (¢) rms(g, O{r)).

to the van der Waals radius of water oxygen atoms
{1-6 A) caused certain solvent cavities that contained
ordered water molecules to be excluded from the
solvent mask. This can be explaincd by the fact that
atoms can get closer to each other than their
combined van der Waals distance. By trial and error
the probe radius was reduced until all internal water
molecules were accounted forin the solvent mask, but
small cavities due to packing defects of the protein
were not. This resulted in 1. = 1 A.

The prebe radius and the atomic radii define the
accessible surface. The construction of the accessible
surface described in the Theory section is equivalent
to rolling a probe over the macromolecule and
defining the accessible surface through the collection

of all center positions of the probe. The solvent
volume must inelude the space between the probe
center and its surface. We aceounted for this volume
by reducing the accessible surface to the molecular
surface, a combination of contact and re-entrant
surface areas {Richards. 19853). We determined the
amount of this reduction (y4m.) by minimizing
Rpmelte (Figure 4(a)). This vielded ryum = 1-1 kY
which is very close to the value which optimizes the
mean phase difference to the MIR phases and the
conventional £ value {Figure 4{a) and (b))

The optimum choice of v . and 7y produced
solvent volumes of 38% and 58% for penicillopepsin
and neuraminidase, respectively The resulting
solvent masks are shown in Figures 5 and 6.

1 H 3 § ] 7 1 ? k|

4
r(A)

r(A)

H § 7 1 ? 3 g T

s
r(A)

Figure 12. Average solvent distribution functions around specific atomns on the surface of penicillopepsin using

figure-of-merit, weighted MIR maps (mlF,lexplighan ). (a) <g. C1n, (b} <go ¥, (e} {9, O(r)). Error bars indicate the
estimated error of the mean for the average distribution functions (equation {17)). The sample size n{r) is shown in the

corresponding bar plots.
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Figure 13. Effect of resolution on average solvent distribution functions around specific atoms on the surface of

penicillopepsin. (a) (g, C'(r)3. {b) {g, . ¥{r)}. (e) g, O(r)y. Continuous line. (2|F,,.

- |F. g expli¢,,. ) map at 1-8 A resolution:

{2|F .l = |FeaicYexpiih, ) map at 2-8 A resolution; dotted line, figurc-of-merit weighted MIR maps (mF,, Jexpligy )} at
2-8 A resolution. The grid size sct to 0-45 A in all cases. Averaging of the distribution functions was carried out in 0-4 A-wide

bins.

{(b) Comparison of solvent models in penicitlopepsin

The quality of the various solvent models was
asgessed by complete eross-validation and by the
mean phase difference from the MR phases. Without
any  solvent  model R =26-2%  and
{mAdypy = 34-4°. Upon inclusion of 134 ordered
water molecules, Ko™ drops by 1-% accompanied
by a 1A% decrease of {(mAgyg>. If the flat
solvent model is added both quantities drop
further (1-7% and 2-3°, respectively}. The radial
shell model and the density modification model
produce a slight further improvement (around

0-5% and  0-2° respectively). The difference 0.50
map model. however. overfits the diffraction data 0.45 | complete
at high resclution. indicated by a lower B value hut ]
a higher free £ value compared to the radial 040
shell model. Figure 7 indicates that the fAat modet 0351
produces the most significant improvement of the 030 |
model’s phases and £ and that the more 0.95 |
sophisticated models produce only a slight further
improvement. 0201
The same conclusion can be drawn from the — 935
resolution-dependent break-down of R and 0.10
CmAgyy ) as shown in Figure 8. The unsatisfactory 0.05

performance of the difference map model is caused by
poorly fitting the low resolution data while overfitting
the high resolution data (compare Figure 8(a) and
(b)). /18 lower than any of the other models at high
resolution while ri™" i gimilar to the other models
at high resolution.

Complete cross-validation was essential to produce
the Riomr distributions. A single test set produced
fairly large fluctuations over several percent of the
free R value at low resolution.

{(¢) Nolvent distribution in penicillopepsin

Average solvent distributions around carbon,
nitrogen. and oxvgen atoms on the surface of
penicillopepsin are shown in Figure 9 using the
density modification model which had the best free i
value. The other two models (flat and radial shell)
with comparable free £ values produced very similar
results (not shown). The distribution functions
exhibit a pronounced first peak at hvdrogen bonding
distance (2:8 A} between water and nitrogen or

200 100 66 50 40 33 28 25

d (A)

Figure 14. I {broken lines) and RE2 (continuous lines)
distributions for neuraminidase cersus d {reciproeal scale).
Thin lines, refined protein, bound water and density
madification model. Thick lines. refined protein and bound
water without bulk solvent model: in this case. I?;l:,’e':]""“" wis
computed only between 6 and 2 A resolution beeause this
was the range that was used in the refinement of the
neuraminidase erystal structure,
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Figure 15. Average solvent distribution functions around specific atoms on the surface of neuraminidase. (a} (g, C'(»)),
{b) {g, N(r)y, (¢) <L O(r)>. Only those surface atoms were considered that had thermal factors less than 24 A2 Distribution
functions were computed from (2|F | — |Foacl)exp(i@ . ) maps. The computation of £, included ordered water molecules
and the density meodification model {cquation (1}). Parameters for the refinement were identical to those deseribed in
Figure 7 except that all calculations were carried out at 76 to 2-3 A resolution. Frror bars indicate the estimated error of
the mean for the average distribution functions (equation (17)). ’]‘uhe sample size n{r) is shown in the corresponding bar plots.
Averaging of the distribution functions was carried out in 0-4 A-wide bins.

oxygen atoms, and at roughly van der Waals distance
(4 A) between water and carbon atoms. The first
solvation layer consists of a highly connected network
of solvent density (Figure 10).

One can gain an estimate of the reliability of these
distribution functions by computing the estimated
error of the mean (indicated by the error bars in
Figure 9) and the sample size #(r) of the average. The
first peak of the distribution functions is statistically
significant while higher order features are probably
insignificant because of the small sample size at longer
distances.

Some fluctuation of the distribution functions
should be expected, as the distribution functions are
clearly context, or environment, dependent. The
rnt.s. fluctuation of the distribution functions are
fairly large (Figure 11).

Whether these fluctuations are due to differences
between individual distributions or due to noise
cannot be decided based on the available diffraction
data. It is interesting to note that the solvent
fluctuations around carbon atoms are nearly
distance-independent and that the magnitude of the
fluctuations is similar for all selected sets of atoms.
This observation suggests a strong noise component
in the individual distribution functions. Averaging
over many sites reduces the influence of the noise
{Figure 9).

Another estimate of the reliability of the
average radial distribution functions is provided
by using a model-free MIR map for the analysis

{Figure 12). The peaks of the nitrogen and oxygen
atoms are shifted to slightly longer distances while
the peak for carbon atoms has become significantly
more pronounced. This effect can be explained by
the lower resolution (2-8 ;\) of the MIR data. Indeed,
when computing the radial distribution functions
from a (2|Fnl,s|—LF(.BI(.i)exp(a‘cf)c,ah,) map with data
restricted to 2-8 A resolution, close agreement is
achieved with those computed from the MIR
map (Figure 13). Apparently lower resolution
blurs the distinction between individual hydration
sites and solvent density belonging to nitrogen or
oxygen atoms “bleeds” into that belonging to carbon
atoms.

The broad peak for the solvent distribution
function around ecarbon atoms (Figure 9(a)) is
remarkable since bound water molecules in
contact with exposed hydrophobic surfaces are
rarely seen in protein crystal structures, the water
molecules are only well-ordered (high occupancy
and low thermal factor) if the protein donates
anchor points in suitable hydrogen-bonding positions
(Jeffrey & Saenger, 1991). Tn fact, there are only
179 out of 492 surface carbon atoms close to
ordered water molecules and all of these are involved
in hydrogen bonds with neighbouring polar or
charged groups. On average there appears to be a
significant amount of electron density in the first
solvation shell around exposed carbon atoms despite
the absence of well-defined positions of high
occupancy.
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Figure 16. First solvation shell around neuraminidase.
Shown is the electron density within 5 A around the protein
obtained from ad A slice ofa (2[F,,,0 — [F g jex i) map.
Fye was obtained through the density modification model.
The contour level is 0-4 &~ /A" which corresponds to roughly
-5 standard deviation around the mean.

(d) Solvent distribution in neuraminidase

The R and Rp2v© distribution for the neu-
raminidase crystal structure (Figure 14) indicates
improvement of the fit to the diffraction data when
uging the density modification model. especially at
low to medium resolution (76 to 4 A). The solvent
distribution functions for neuraminidase show a
simitarly pronounced first solvation shell as in
peniciliopepsin  (Figures 15 and 16). There iz a
significant contribution from disordered water to the
first solvation shell because of the relatively small
number of observed bound water molecules. A slight
shift of the first peaks of the nitrogen and oxygen
distribution funetions to longer distances is observed.
This shift is caused by the lower resolution of the

neuraminidase crystal structure compared to that of

penicillopepsin {(compare Figure 13).

The large solvent pockets in the neuraminidase
crystal structure allowed us to compute solvent
distribution functions with a distance of more
than 12 A from the protein. No statistically
significant features emerged at distances greater
than 6 A (Figure 13{a), (1), {(c¢)). The radial
distribution functions that are obtained from
difference maps using phases obtained fromthe other
solvent. nodels (flat, radial shell and difference map
model) fall within the error bounds to those shown in
Figure 15. Thus, our conclusions are solvent-model
independent.

5. Conclusions

The simplest model that assumes nearly flat
electron density in the bulk solvent region works
suprisingly well. Some of the more elaborate models,
such as the radial shell model or the density
madification model only slightly improve the fit to the
diffraction data. The difference map model overfits
the diffraction data. The most prenounced effect on
the fit to the diffraction data is seen at low to medium
resolution as expected by the disordered character of
bulk solvent.

Although the flat solvent model fits the diffraction
data quite well the electron density in the solvent
region is not completely homogeneous. Fluctuations
of solvent density are observed, giving rise to
characteristic solvent distributions around polar and
non-polar atoms.

Detailed analysis of the solvent features in electron
density must be viewed with caution because of the
low level of solvent electron density that is observed.
Our approach was to use radial averaging over many
sites on the protein’s surface which will reduce the
amount of noise present in the distribution functions.
We only considered features that were statistically
significant in the radial distribution functions
(Figures 9 and 15). Solvent distribution functions
showed a well-defined first sclvation shell. No
statistically significant higher order solvation shells
emerged. The observation of a flat average electron
dengity distribution in the bulk solvent region
justifies the use ofsolvent flattening procedures which
are commonplace in macromolecular crystallography

The first solvation shell around hydrophobic
groups is fairly pronounced despite the absence of
ordered water molecules near most hydrophobic
groups. Solution NMR experiments indicate the
presence of bound but moving water molecules near
methyl groups (Clore ef al.. 1994). The motion of these
water molecules should define a diffuse or broad
solvation shell but relatively few well-defined peaks of
electron density, in agreement with our observations.

Our analysis tools. to compute site-specific radial
distribution functions, can be used to characterize the
solvation properties in active sites or binding pockets.
This might produce insight into the role of solvent for
binding specificities and catalytic mechanisms,

Complete cross-validation allowed the assessment
of the guality of solvent models. This method was
necessary because the free R value tends to show large
fluctuations at low resolution when only a single test
set is used. Complete cross-validation could have
applications in low-resolution diffraction or imaging
techniques where the data to parameter ratio is also
critical.

The best solvent models result in £ and free i
values around 15% and 19-5% for the penicillopepsin
crystal structure (Figure 7). This is significantly
higher than one might expect from the precision of the
intensity data, which is estimated to be a few percent.
Models of thermal motion do not resolve
this discrepancy {Burling & Bringer, 1994).
Thus, it is conceivable that the present models for
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solvation and thermal motion are incomplete.
Alterpatively, the intensity data might be affected by
systematic errors of unknown origin. The multi-wave-
length anomalous dispersion technique (Hendrick-
son, 1991) promises to shed some light on these issues.
In principle it should allow one to collect phases for
alt observed reflections to an unprecedented degree of
precigion and to obtain model-free electron density
maps (F T Burling, W. 1. Weis & A. T Briinger,
unpublished results). High resolution and high-pre-
cision data will also be required to observe
statistically significant differences between the
distribution functions {compare Figure 13).

Molecular dynamies simulations can be tested and
improved comparing observed and computed radial
distribution funetions. Qualitatively, there is reason-
able agreement between our observations and
molecular dynamics simulations (Komeiji ef af,, 1993:
Steinbach & Brooks, 1993; Lounnas ef al |, 1992;
Lounnas & Pettitt, 1994). High-precision diffraction
data collected for many proteins will be needed to
further improve the simulation technigues. Ulti-
mately, computer simulations could complement the
necessarily incomplete picture provided by X-ray
crystallography and solution NMR to provide
detailed insights about structural and dynamical
features of protein-water interactions.
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