The Structure Determination Language of the

Crystallography and NMR System

Axel T. Brunger®*, Paul D. Adams?, Warren L. DeLano®, Piet Gros?,
Ralf W. Grosse-Kunstleve'?, Jian-Sheng Jiang®, Navraj S. Pannu®,
Randy J. Read”, Luke M. Rice?, Thomas Simonson®

1 The Howard Hughes Medical Institute and ? Department of Molecular Bio-
physics and Biochemistry, Yale University, New Haven, CT 06511, phone: 203-
432-6143, FAX: 203-432-6946, email: brunger@Ilaplace.csb.yale.edu

3 Graduate Group in Biophysics, Box 0448, University of California, San Fran-
cisco, CA 94143, FAX: 415-225-3734

4 Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research,
Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, FAX: +31
30 2533940

5 Protein Data Bank, Biology Department, Brookhaven National Laboratory,
Upton, NY 11973-5000, USA, FAX: 516-344-5751

6 Department of Mathematical Sciences, University of Alberta, Edmonton, Al-
berta T6G 2G1, Canada, FAX: (403) 492-7521

" Department of Medical Microbiology and Immunology, University of Alberta,
Edmonton, Alberta T6G 2H7, Canada, FAX: (403) 492-7521

8 Laboratoire de Biologie Structurale (C.N.R.S.), .G.B.M.C., 1 rue Laurent Fries,
67404 Illkirch (C.U. de Strasbourg), France, FAX: +33 3 88 65 32 01

* corresponding author

Introduction

We have developed a new and advanced software system, termed Crystallography
and NMR System (CNS), for crystallographic and NMR structure determination
(Brunger et al., 1998). The goals of CNS are: (1) to create a flexible computa-
tional framework for exploration of new approaches to structure determination,
(2) to provide tools for structure solution of difficult or large structures, (3)
to develop models for analyzing structural and dynamical properties of macro-
molecules, and (4) to integrate all sources of information into all stages of the

structure determination process.

To meet these goals, algorithms were moved from the source code into
a symbolic structure determination language which represents a new concept in
computational crystallography. The high-level CNS computing language allows
definition of symbolic target functions, data structures, procedures, and modules.
The CNS program acts as an interpreter for the high-level CNS language and in-
cludes hard—wired functions for efficient processing of computing—intensive tasks.
Methods and algorithms are therefore more clearly defined, and easier to adapt to
new and challenging problems. The result is a multi-level system which provides
maximum flexibility to the user (Fig. 1). The CNS language provides a common
framework for nearly all computational procedures of structure determination. A
comprehensive set of crystallographic procedures for phasing, density modifica-
tion, and refinement has been implemented in this language. Task—oriented input
files written in the CNS language, which can also be accessed through an HTML

graphical interface (Graham, 1995), are available to carry out these procedures.

CNS Language

One of the key features of the CNS language is symbolic data structure manipu-
lation, e.g.

(1)

xray

do (pa=-2#(amplitude(fp)~2 + amplitude(fh)"2 - amplitude(fph)~2)

*amplitude (fp) *real (fh)/(3*v"~2 + 4x(amplitude(fph) ~2+sph~2)*v))
(acentric)

end

which is equivalent to the following mathematical expression for all acentric in-
dices ﬁ,
7 7 7 7\ () (R)
(6 (R + 18 (B)2 — [fon (F)) £y () | B 150
=2 . = 2 =
3u(h) 4+ 4(Ifpn (R)|* + spn(h)) x v(h)

where f, (“fp” in Eq. 1) is the “native” structure factor array, f,;, (“fph” in Eq.

pa(ﬁ) = 2_

(2)

1) is the derivative structure factor array, spn (“sph” in Eq. 1) the corresponding
experimental o, v is the expectation value for the lack—of-closure (including lack—
of-isomorphism and errors in the heavy atom model), and f;, (“th” in Eq. 1)
is the calculated heavy atom structure factor array. This expression computes
the Ajgo coefficient of the phase probability distribution for single-isomorphous
replacement described by Hendrickson & Lattman (1970) and Blundell & Johnson
(1976).

The expression in Eq. 1 is computed for the specified subset of reflec-
tions “(acentric)”. This expression means that only the selected (in this case all

acentric) reflections are used. More sophisticated selections are possible, e.g.,

(3)

(amplitude(fp) > 2 * sh and amplitude (fph) > 2 * sph and d >= 3)

selects all reflections with Bragg spacing d greater than 3 A for which both na-
tive (fp) and derivative (fph) amplitudes are greater than two times their corre-
sponding o values (“sh” and “sph”, respectively). Extensive use of this structure
factor selection facility is made for cross—validating statistical properties, such as
R-values (Brunger, 1992), o4 values (Kleywegt & Brunger, 1996; Read, 1997),
and maximum likelihood functions (Pannu & Read, 1996; Adams et al., 1997).

Similar operations exist for electron density maps, e.g.,

xray
do (map=0) (map < 0.1)

end

is an example of a truncation operation: all map values less than 0.1 are set to 0.
Atoms can be selected based on a number of atomic properties and descriptors,
e.g.,

(5)

do (b=10) (residue 1:40 and

(namecaorna.menornamecornameo))

sets the B—factors of all polypeptide backbone atoms of residues 1 through 40 to
10 A”.

Operations exist between data structures, e.g., real, reciprocal space ar-
rays, and atom properties. For example, Fourier transformations between real

and reciprocal space can be accomplished by the following CNS commands

xray
mapresolution infinity 3.
fft grid 0.3333 end
do (map=ft(f_cal)) (acentric)

end

which computes a map on a 1 A grid by Fourier transformation of the

“f_cal” array for all acentric reflections.

Atoms can be associated with calculated structure factors, e.g.,

associate f_cal (residue 1:50)

This statement will associate the reciprocal space array “f_cal” with the
atoms belonging to residues 1 through 50. These structure factor associations

are used in the symbolic target functions described below.

There are no predefined reciprocal or real-space arrays in CNS. Dynamic
memory allocation allows one to carry out operations on arbitrarily large data sets
with many individual entries (e.g., derivative diffraction data) without the need
for re-compiling the source code. The various reciprocal structure factor arrays
must therefore be declared and their type specified prior to invoking them. For

example, a reciprocal space array with real values, such as observed amplitudes,

is declared by the following expression,

declare name=fobs type=real domain=reciprocal end

Reciprocal space arrays can be grouped. For example, Hendrickson & Lattman
(1970) coefficients are represented as a group of four reciprocal structure factor

arrays

(9)
group type=hl object=pa object=pb object=pc object=pd end

where “pa”, “pb”, “pc”, and “pd” refer to the individual arrays. This group state-
ment indicates to CNS that the specified arrays need to be transformed together
when reflection indices are changed, e.g., during expansion of the diffraction data

to spacegroup P1.

Symbols and Parameters

The CNS language supports two types of data elements which may be used to
store and retrieve information. Symbols are typed variables such as numbers,
character strings of restricted length, and logicals. Parameters are untyped data
elements of arbitrary length that may contain collections of CNS commands,

numbers, strings, or symbols.

Symbols are denoted by a dollar sign ($) and parameters by an ampersand
(&). Symbols and parameters may contain a single data element, or they may
be a compound data structure of arbitrary complexity. The hierarchy of these

data structures is denoted using a period (.). Figures 2a and b demonstrate how

crystal lattice information can be stored in compound symbols and parameters,
respectively. The information stored in symbols or parameters can be retrieved by
simply referring to them within a CNS command: the symbol or parameter name
is substituted by its content. Symbol substitution of portions of the compound
names (e.g., “&crystal_lattice.unit_cell.§para”) allows one to carry out conditional

and iterative operations on such data structures, such as matrix multiplication.

Statistical Functions

The CNS language contains a number of statistical operations, such as bin—wise
averages and summations. The resolution bins are defined by a central facility in
CNS. At present, equal-volume reciprocal bins of specified width are possible. It

is planned to provide other bin—wise partitioning schemes in the future.

Figure 3 shows how o4, oa, and D (Read, 1986, 1990) are computed
from the observed structure factors (“fobs”) and the calculated model structure
factors (“fcalc”) using the CNS statistical operations. The first five operations are
performed for the reflections in the test set while the last three operations expand
the results to all reflections. The “norm” function computes normalized structure
factor amplitudes for the specified arguments. The “sigacv” function evaluates
o4 from the normalized structure factors. The “save” function computes the

statistical average
w
_ 2 Jrkle

Do hkl W

where w is 1 and 2 for centric and acentric reflections respectively, and € is

save(f) (10)

the statistical weight. The averages are computed bin—wise and the result for a

particular bin is stored in all selected reflections belonging to the bin.

Symbolic Target Function

One of the key innovative features of CNS is the ability to symbolically define
target functions and their first derivatives for crystallographic searches and refine-
ment. This allows one to conveniently implement new crystallographic method-

ologies as they are being developed.

The power of symbolic target functions is illustrated by two examples. In
the first example, a target function is defined for simultaneous heavy atom pa-
rameter refinement of three derivatives. The sites for each of the three derivatives
can be disjoint or identical depending on the particular situation. For simplicity,
the Blow & Crick (1959) approach is used, although maximum likelihood tar-
gets are also possible (see below). The heavy atom sites are refined against the
following target

Z (|Fn, + Fp| - thl)2 + (|Fn, + FP| - th2)2 + (|Fns + Fp| - th3)2 .
2v1 2 2v3

(11)

Rkl
Fy,, Fu,, Fy, are complex structure factors corresponding to the three sets

of heavy atoms sites, F|, represents the structure factors of the native crystal,
and |Fpp, |, |Fph,|, [Fphs| are the structure factor amplitudes of the derivatives,
and vy, v9, and w3 are the variances of the three lack of closure expressions.
The corresponding target expression and its first derivatives with respect to the
calculated structure factors are shown in Fig. 4a. The derivatives of the target
function with respect to each of the three associated structure factor arrays are
specified with the “dtarget” expressions. The “tselection” statement specifies
the selected subset of reflections to be used in the target function (e.g., excluding
outliers) and the “cvselection” statement specifies a subset of reflections to be
used for cross—validation (Brunger, 1992) (i.e., the subset is not used during

refinement but only as a monitor for the progress of refinement).

The second example is the refinement of a perfectly twinned crystal with

overlapping reflections from two independent crystal lattices. Refinement of the

model is carried out against the following residual

Z |F0bs| - \/|Fcaulcl|2 + [Feale|? (12)
hkl

The symbolic definition of this target is shown in Fig. 4b. The twinning operation
itself is imposed as a relationship between the two sets of selected atoms (not
shown). This example assumes that the two calculated structure factor arrays (
“fcalcl” and “fcalc2”) that correspond to the two lattices have been appropriately
scaled with respect to the observed structure factors and the twinning fractions
have been incorporated into the scale factors. However, a more sophisticated

target function could be defined which incorporates scaling.

A major advantage of the symbolic definition of the target function and
its derivatives is that any arbitrary function of structure factor arrays can be used.
This means that the scope of possible targets is not limited to least-squares tar-
gets. Symbolic definition of numerical integration over unknown variables (such
as phase angles) is also possible. Thus, even complicated maximum likelihood
target functions (Bricogne, 1984; Otwinowski, 1991; Pannu & Read, 1996; Pannu
et al., 1998) can be defined using the CNS language. This is particularly valuable
at the prototype stage. For greater efficiency, the standard maximum likelihood
targets are provided through CNS source code which can be accessed as functions
in the CNS language. For example, the maximum likelihood target function MLF
(Pannu & Read, 1996) and its derivative with respect to the calculated structure

factors are defined as follows

(13)

target = (mlf(fobs,sigma,(fcalc+fbulk),d,sigma_delta))

dtarget = (dmlf(fobs,sigma, (fcalc+fbulk),d,sigma_delta))

where “mlf()” and “dmlf()” refer to internal maximum likelihood functions, “fobs”
and “ sigma” are the observed structure factor amplitudes and corresponding ¢
values, “fcalc” is the (complex) calculated structure factor array, “fbulk” is the
structure factor array for a bulk solvent model, “d” and “sigma_delta” are the
cross—validated D and oa functions (Read, 1990; Kleywegt & Brunger, 1996;
Read, 1997) which are precomputed prior to invoking the MLF target function
using the test set of reflections. The availability of internal FORTRAN sub-
routines for the most computing—intense target functions and the symbolic def-
initions involving structure factor arrays allows for maximal flexibility and effi-
ciency. Other examples of available maximum likelihood target functions include
MLI (intensity—based maximum likelihood refinement), MLHL (crystallographic
model refinement with prior phase information (Pannu et al., 1998), and maxi-
mum likelihood heavy atom parameter refinement for multiple-isomorphous re-
placement (Otwinowski, 1991) and MAD phasing (Hendrickson, 1991; Burling et
al., 1996). Work is in progress to define target functions that include correlations

between different heavy—atom derivatives (Read, 1994).

Modules and Procedures

Modules exist as separate files and contain collections of CNS commands related
to a particular task. In contrast, procedures can be defined and invoked from
within any file. Modules and procedures share a similar parameter passing mech-
anism for both input and output. Modules and procedures make it possible to
write programs in the CNS language in a manner similar to that of a computing
language such as Fortran or C. CNS modules and procedures have defined sets

of input (and output) parameters that are passed into them (or returned) when

they are invoked. This enables long collections of CNS language statements to

be modularized for greater clarity of the underlying algorithm.

Parameters passed into a module or procedure inherit the scope of the
calling task file or module, and thus they exhibit a behavior analogous to most
computing languages. Symbols defined within a module or procedure are purely

local variables.

The following example shows how the unit cell parameters defined above
(Fig. 2b) are passed into a module named “compute_unit_cell_volume” (Fig. 5)
which computes the volume of the unit cell from the crystal lattice parameters

using well-established formulae (Stout & Jensen, 1989),

Qcompute_unit_cell_volume (cell = &crystal_lattice.unit_cell;

volume = $cell_volume;)

The parameter “volume” is equated to the symbol “$cell_volume” upon invocation
in order to return the result (the unit cell volume) from this module. Note that
the use of compound parameters to define the crystal lattice parameters (Fig. 2b)
provides a convenient way to pass all required information into the module by re-
ferring to the base name of the compound parameter (“&crystal lattice.unit_cell”)

instead of having to specify each individual data element.

Figure 6a shows another example of a CNS module: the module named
“phase_distribution” computes phase probability distributions using the Hen-
drickson & Lattman formalism (Hendrickson & Lattman, 1970; Hendrickson,
1979; Blundell & Johnson, 1976). An example for invoking the module is shown

in Fig. 6b. This module could be called from task files that need access to iso-

10

morphous phase probability distributions. It would be straightforward to change
the module in order to compute different expressions for the phase probability

distributions.

A large number of additional modules are available for crystallographic
phasing and refinement. CNS library modules include spacegroup information,
Gaussian atomic form factors, anomalous scattering components, and molecular

parameter and topology databases.

Task Files

Task files consist of CNS language statements and module invocations. The
CNS language permits the design and execution of nearly any numerical task
in X-ray crystallographic structure determination using a minimal set of “hard—
wired” functions and routines. A list of the currently available crystallographic

procedures and features is shown in Fig. 7.

Each task file is divided into two main sections: the initial parameter
definition and the main body of the task file. The definition section contains
definitions of all CNS parameters which are used in the main body of the task
file. Modification of the main body of the file is not required, but may be done
by experienced users in order to experiment with new algorithms. The definition
section also contains the directives that specify specific HTML features, e.g., text
comments (indicated by {* ... *}), user-modifiable fields (indicated by {===>1}),
and choice boxes (indicated by {+ choice: ... + }). Figure 8 shows a portion of
the “define” section of a typical CNS refinement task file.

The task files produce a number of output files (e.g., coordinate, reflec-

tion, graphing, and analysis files). Comprehensive information about input pa-

11

rameters and results of the task are provided in these output files. In this way,
the majority of the information required to reproduce the structure determina-
tion is kept with the results. Analysis data is often provided in simple columns
and rows of numbers. These data files can be used for graphing, for example,
by using commonly available spreadsheet programs. An HTML graphical output
feature for CNS which makes use of these analysis files is planned. In addition,

list files are often produced that contain a synopsis of the calculation.

HTML-Interface

The HTML graphical interface makes use of the HTML form language to create
a high—level menu—driven environment for CNS (Fig. 9a). Two compact and rel-
atively simple Common Gateway Interface (CGI) conversion scripts are available
that transform a task file into a form page, and the edited form page back into a

task file (Fig. 9b). These conversion scripts are written in the PERL language.

A comprehensive collection of task files are available for crystallographic
phasing and refinement (Fig. 7). New task files can be created or existing ones
modified in order to address problems that are not currently met by the dis-
tributed collection of task files. The HTML graphical interface thus provides a
common interface for distributed and “personal” CNS task files (Fig. 9b).

Example: Combined Maximum Likelihood and Simu-

lated Annealing Refinement

CNS has a comprehensive task file for simulated annealing refinement of crys-

tal structures using Cartesian (Brunger et al., 1987; Brunger, 1988) or torsion

12

angle molecular dynamics (Rice & Brunger, 1994). This task file automatically
computes cross—validated o4 estimates, determines the weighting scheme between
the X-ray refinement target function and the geometric energy function (Brunger
et al., 1989), refines a flat bulk solvent model (Jiang & Brunger, 1994) and an
overall anisotropic B—value of the model by least—squares minimization, and sub-
sequently refines the atomic positions by simulated annealing. Options are avail-
able for specification of alternate conformations, multiple conformers (Burling &
Brunger, 1994), non—crystallographic symmetry constraints and restraints (Weis
et al., 1990), and “flat” solvent models (Jiang & Brunger, 1994). Available tar-
get functions include the maximum likelihood functions MLF, MLI, and MLHL
(Pannu & Read, 1996; Adams et al., 1997; Pannu et al., 1998). The user can
choose between slow cooling (Brunger et al., 1990) and constant temperature
simulated annealing, and the respective rate of cooling and length of the anneal-
ing scheme. For a review of simulated annealing in X-ray crystallography, see

Brunger et al (1997).

During simulated annealing refinement the model can be significantly
improved. Therefore, it becomes important to recalculate the cross—validated
o4 error estimates (Kleywegt & Brunger, 1996; Read, 1997), and the weight
between X-ray diffraction target function and the geometric energy function in
the course of the refinement (Adams et al., 1997). This is important for the
maximum likelihood target functions which depend on the cross—validated o4
error estimates. In the simulated annealing task file, the recalculation of o4 values
and subsequently the weight for the crystallographic energy term are carried out
after initial energy minimization, and also after molecular dynamics simulated

annealing.

13

Conclusions

CNS is a general system for structure determination by X-ray crystallography and
solution NMR. It covers the whole spectrum of methods to solve X-ray or solution
NMR structures. The multi-layer architecture allows use of the system with
different levels of expertise. The HTML-interface allows the novice to perform
standard tasks. The interface provides a convenient means of editing complicated
task files, even for the expert (Fig. 9b). This graphical interface makes it less
likely that an important parameter will be overlooked when editing the file. In
addition, the graphical interface can be used with any task file, not just the
standard distributed ones. HTML-based documentation and graphical output is

planned in the future.

Most operations within a crystallographic algorithm are defined through
modules and task files. This allows for the development of new algorithms and
for existing algorithms to be precisely defined and easily modified without the

need for source code modifications.

The hierarchical structure of CNS allows extensive testing at each level.
For example, once the source code and CNS basic commands have been tested,
testing of the modules and task files is performed. A test suite consisting of
hundreds of test cases is frequently evaluated during CNS development in order
to detect and correct programming errors. Furthermore, this suite is run on
several hardware platforms, in order to detect any machine—specific errors. This

testing scheme makes CNS highly reliable.

Algorithms can be readily understood by inspecting the modules or task
files. This self-documenting feature of the modules provides a powerful teach-
ing tool. Users can easily interpret an algorithm and compare it with published

methods in the literature. To our knowledge, CNS is the only system that pro-

14

vides the ability to symbolically define any target function for a broad range of
applications ranging from heavy-atom phasing, molecular replacement searches,

to atomic resolution refinement.

Acknowledgment

Support by the Howard Hughes Medical Institute and the National Science Foun-
dation to A.T.B. (DBI-9514819 and ASC 93-181159), the Natural Sciences and
Engineering Research Council of Canada to N.S.P., the Howard Hughes Medical
Institute and the Medical Research Council of Canada to R.J.R. (MT11000), the
Netherlands Foundation for Chemical Research (SON-NWO) to P.G., and the
Howard Hughes Medical Institute to L.M.R. is gratefully acknowledged.

15

References

Adams, P.D., Pannu, N.S.,.Read, R.J. & Brunger, A.T. (1997). Cross-validated
maximum likelihood enhances crystallographic simulated annealing refinement.

Proc. Natl. Acad. Sci. USA 94, 5018-5023.

Blow, D.W. & Crick, F.H.C. (1959). The treatment of errors in the isomorphous
replacement method Acta Cryst. 12, 794—802.

Blundell, T.L. & Johnson, L.N. (1976). Protein Crystallography, Academic Press,
London, pp. 375-377.

Bricogne,G. (1984). Maximum Entropy and the Foundation of Direct Methods.
Acta Cryst. A40, 410-445.

Brunger, A.T. (1988). Crystallographic refinement by simulated annealing: Ap-
plication to a 2.8 A resolution structure of aspartate aminotransferase, J. Mol.

Biol. 203, 803-816.

Brunger, A.T. (1992). The free R value: a novel statistical quantity for assessing
the accuracy of crystal structures, Nature 355, 472—474.

Brunger, A.T., Kuriyan, J., & Karplus, M. (1987). Crystallographic R factor

refinement by molecular dynamics, Science 235, 458—-460.

Brunger, A.T., Karplus, M., & Petsko, G.A. (1989). Crystallographic refinement
by simulated annealing: Application to a 1.5 A resolution structure of crambin,

Acta Cryst. A 45, 50-61.

Brunger, A.T, Krukowski, A., & Erickson, J. (1990). Slow—cooling protocols for
crystallographic refinement by simulated annealing, Acta Cryst. A 46, 585-593.

Brunger, A.T., Adams, P.D., & Rice, L.M. (1997). New applications of simulated

16

annealing in X-ray crystallography and solution NMR. Structure 5, 325-336.

Brunger, A.T., Adams, P.D., Clore, G.M., Gros, P., Grosse-Kunstleve, R-W.,
Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M.,
Simonson, T., Warren, G.L. (1998). Crystallography and NMR system (CNS):
A new software system for macromolecular structure determination, Acta Cryst.

D, in press.

Burling, F.T. & Brunger, A.T. (1994). Thermal motion and conformational
disorder in protein crystal structures: Comparison of multi-conformer and time—

averaging models, Israel Journal of Chemistry 34 165-175.

Burling, F.T., Weis, W.I., Flaherty, K.M., & Brunger, A.T. (1996). Direct ob-
servation of protein solvation and discrete disorder with experimental crystallo-

graphic phases, Science 271, 72-77.
Graham, 1.S. (1995). The HTML Sourcebook, John Wiley and Sons.

Hendrickson, W.A., & Lattman, E.E. (1970). Representation of phase probability
distributions for simplified combination of independent phase information. Acta

Cryst. B 26, 136-143.

Hendrickson, W.A. (1979). Phase information form anomalous—scattering mea-

surements. Acta Cryst. A 35, 245-247.

Hendrickson, W.A. (1991). Determination of macromolecular structures from

anomalous diffraction of synchrotron radiation, Science 254, 51-58.

Jiang, J.-S. & Brunger, A.T. (1994). Protein hydration observed by x-ray diffrac-
tion: solvation properties of penicillopepsin and neuraminidase crystal structures,

J. Mol. Biol 243, 100-115.

Kleywegt, G.J. & Brunger, A.T. (1996). Checking your imagination: applications

17

of the free R value, Structure 4, 897-904.

Otwinowski, Z. (1991). in: Proc. CCP4 study weekend 25-26 January 1991 (W.
Wolf, P.R. Evans, A.G.W. Leslie, eds.), SERC Daresbury laboratory, 80-85.

Pannu, N.S. & Read, R.J. (1996). Improved structure refinement through maxi-
mum likelihood, Acta Cryst. A 52, 659-668.

Pannu, N.S., Murshudov, G.N., Dodson, E.J., & Read, R.J. (1998). Incorporation
of prior phase information strengthens maximum likelihood structural refinement.

Acta Cryst. D, in press.

Read, R.J. (1986). Improved Fourier coefficients for maps using phases from

partial structures with errors. Acta Crystallogr. A 42, 140-149.

Read, R.J. (1990). Structure—factor probabilities for related structures. Acta
Cryst. A 46, 900-912.

Read, R.J. (1994), Maximum likelihood refinement of heavy atoms. Lecture
notes for workshop on Isomorphous Replacement Methods in Macromolecular
Crystallography, Americal Crystallographic Association Annual Meeting, 1994,
Atlanta, GA, USA.

Read, R.J. (1997). Model phases: probabilities and bias. Meth. Enzymol. 278,
110-128.

Rice, L.M. & Brunger, A.T. (1994). Torsion angle dynamics: reduced variable
conformational sampling enhances crystallographic structure refinement, Pro-

teins: Structure, Function, and Genetics, 19, 277-290.

Stout, G.H. & Jensen, L.H. (1989). X-ray structure determination. Wiley Inter-

science, New York, pp. 33.

Weis, W.I, Brunger, A.T., Skehel, J.J., Wiley, D.C. (1990). Refinement of the

18

Influenza Virus Haemagglutinin by Simulated Annealing, J. Mol. Biol. 212,
737-761.

19

Figure Captions

Figure 1: CNS consists of five layers which are under user control. The high-level
HTML graphical interface interacts with the task—oriented input files. The task
files make use of the CNS language and the modules. The modules contain CNS
language statements. The CNS language is interpreted by the CNS FORTRANT77
program. The program performs the data manipulations, data operations, and

“hard-wired” algorithms.

Figure 2: Examples of compound symbols, compound parameters. (a) The “eval-

uate” statement is used to define typed symbols (strings, numbers, and logicals).

Symbol names are indicated in bold. (b) The “define” statement is used to de-

fine untyped parameters. Fach parameter entry is terminated by a semi—colon.

The compound base name “crystal_lattice” has a number of sub—levels such as

“space_group” and the “unit_cell” parameters. “unit_cell” is itself base to a num-
wy»

ber of sub-levels, such as “a” and “alpha”. Parameter names are indicated in

bold.

Figure 3: Example for statistical operations provided by the CNS language.
“norm”, “sigacv”, and “save”, and “sum” are functions that are computed inter-
nally by the CNS program. Bin-wise operations are indicated in italics (“sigacv”,
“save”, and “sum”). The result for a particular bin is stored in all elements be-
longing to the bin. The o4 (“sigmaA”) parameters are computed in bin—wise
resolution shells. The o (“sigmaD”) and D parameters are then computed from
o4 and bin-wise averages involving |F,|? and |F.|?. The bin-wise results are ex-
panded to all reflections by the last three statements. The last three operations
expand the bin—wise values to all reflections. “test” is an array that is one for all
reflections in the test set and zero otherwise. “sum” is a bin—wise operation on

all reflections with the same partitioning as used for the test set.

20

Figure 4: Examples for symbolic definition of a refinement target function and
its derivatives with respect to the calculated structure factor arrays. (a) Simul-
taneous refinement of heavy atom sites of three derivatives. The target function
is defined by the “target” expression. “f_h_1”, “f'h 2”, and “f.h_3” (indicated in
bold) are complex structure factors corresponding to three sets of heavy atoms
that are specified using atom selections (Eq. 7). The target function and its
derivatives with respect to the three structure factor arrays are defined sym-
bolically using the structure factor amplitudes of the native crystal “f p”, those
of the derivatives “f_ph_1”, “f_ph_2”, “f_ph_3”, the complex structure factors of
the heavy atom models “f_h_17, “f_h_2”, “f.h_3”, and the corresponding lack—
of-closure variances “v_1”, “v_2” and “v_3”". The summation over the selected
stucture factors (“tselection”) is performed implicitly. (b) Refinement of two
independent models against perfectly twinned data. “fcalcl” and “fcalc2” are
complex structure factors for the models that are related by a twinning opera-
tion (indicated in bold). The target function and its derivatives with respect to

the two structure factor arrays are explicitly defined.

Figure 5: Use of compound parameters within a module. This module computes
the unit cell volume (Stout & Jensen, 1989) from the unit cell geometry. Input
and output parameter base names are indicated in bold. Local symbols, such as
$cabg.1 are defined through “evaluate” statements. The result is stored in the

parameter “&volume” which is passed to the invoking task file or module.

21

Figure 6: Example of a CNS module (a) and the corresponding module invocation
(b). Input and output parameters are indicated in bold. The module invocation
is performed by specifying the “@” character followed by the name of the module
file and the module parameter substitutions. The ampersand (&) indicates that
the particular symbol (e.g., “&fp”) is substituted with the specified value in
the invocation statement (e.g., “fobs” in the case of “&fp” in (b)). The module
parameter substitution is performed literally and any string of characters between

the equal sign and the semicolon will be substituted.

Figure 7: Procedures and features available in CNS for structure determination

by X-ray crystallography.

Figure 8: Example of a typical CNS task file: a section of the top portion of the
simulated annealing refinement protocol which contains the definition of various
parameters that are needed in the main body of the task file. Each parameter
is indicated by a name, an equal sign, and an arbitrary sequence of characters
terminated by a semicolon (e.g., “a=61.76;"). The top portion of the task files
also contain commands for the HTML—interface embedded in comment fields
(indicated by braces ”{ ... }”). The commands that can be modified by the user
in the HTML form are indicated in bold.

Figure 9: (a) Example of a CNS HTML form page. This particular example
corresponds to the task file in Fig. 8. (b) Use of the CNS HTML form page
interface, emphasizing the correspondence between input fields in the form page

and parameters in the task file.

22

(CNSprogram)«

(CNSsource~—————————- -

evaluate
evaluate
evaluate
evaluate
evaluate
evaluate
evaluate

define

(

$crystal lattice

$crystal lattice

.space_group
$crystal lattice.

unit cell.a

.unit cell.b
$crystal lattice.
$crystal lattice.unit cell.alpha

unit cell.c

scrystal lattice.unit cell.beta

$crystal lattice.unit cell.gamma

&crystal lattice.space group =
&crystal lattice.unit cell.a =

&crystal lattice.unit cell.b

&crystal lattice.unit cell.c =

&crystal lattice.unit cell.alpha
&crystal lattice.unit cell.beta
&crystal lattice.unit cell.gamma

"P2(1)2(1)2(1)"
61.76

40.73

26.74

90

90

90

P2(1)2(1)2(1) ;

61.
= 40.
26.

90
90
90

Fig. 2

—_ — ~— ~—

(@)

~

(b)

do
do
do
do
do

do
do
do

(ecbs=norm(amplitude (fobs)))
(ecalc=norm(amplitude (fcalc)))
(sigmaA=sigacv(eobs,ecalc))
(51gmaD sqgrt (save (amplitude (fobs))”*2 (1-sigmaA™2)))
(D= sigmaA * sqrt (save(amplitude (fobs))”®2 /

save (amplitude (fcalc) *2)))

(sigmaA=sum(sigmaA*test)/ max (1, sum(test)))
(sigmaD=sum(sigmaD*test)/ max (1, sum(test)))
(D=sum(D*test)/ max(l, sum(test)))

Fig. 3

test set
test set
test set
test set

test set
all)

all)
all)

Fig. 4a

associate £ h 1 <atom-selection-1>
associate £ h 2 <atom-selection-2>
associate £ h 3 <atom-selection-3>

target=(
(abs(f_h 1+f p)-f ph 1)%2 / (2*v_1)
(abs(f h 2+f p)-f ph 2)%2 / (2*v_2)
(abs (f h 3+f p)-f ph 3)72 / (2*v_3)

dtarget (£ h 1)=
(
2* (abs (f h 1+f p)-f ph 1)
* (£ h 1+f p)/abs(f h 1+f p) / (2*v_ 1)
)

dtarget (£ h 2)=
(
2* (abs (f h 2+f p)-f ph 2)
* (£ h 2+f p)/abs(f h 2+f p) / (2*v_2)
)

dtarget (£ h 3)=
(
2* (abs(f h 3+f p)-f ph 3)
* (£ h 3+f p)/abs(f h 3+f p) / (2*v_3)

tselection=<selection>
cvselection=<selection>

associate fcalel <atom-selectionl>
associate fcalec2 <atom-selection2>

target=(abs (fobs) - sqrt(abs(fcalcl) *2+abs (fcalec2)”2))

)=(4% (
abs (fobs-sqgrt (abs (fcalcl) “2+abs (fcalec2) "2))
s (fcalel) / (sqrt (abs (fcalel) *2+abs (fcalc2)

)=(4% (
abs (fobs-sqgrt (abs (fcalcl) “2+abs (fcale2) *2))
s (fEcalc2) / (sqgrt (abs (fcalcl) *2+abs (fcalc2)

tselection=<selection>
cvselection=<selection>

Fig. 4b

A

2)

"2))

“2))

module { compute unit cell volume }

(
&cell;
&volume;

evaluate (
evaluate (

evaluate (
evaluate (

evaluate (
evaluate (

evaluate (

Scabg.
Ssabg.

Scabg.
$sabg.

Scabg.

Ssabg

l=cos (&cell.alpha))
l=sin(&cell.alpha))

2=cos (&cell.beta))
2=s5in (&cell .beta))

3=cos (&cell.gamma))
.3=sin(&cell.gamma))

&volume=&cell.a * &cell.b * &cell.c *

sqgrt (1+2*S$Scabg.1*$Scabg.2*Scabg. 3
-$cabg.1"2-%cabg.2"2-$cabg.3%2)

Fig. 5

)

Fig. 6a

module { phase distribution }
(
&fp; {input: native data}

&sp; {input: native sigma}
&sel; {input: selection of structure factors}
&fh; {input: name of heavy atom structure factors}

&fph; {input: name of derivative data array}

&sph; {input: name of derivative's sigma array}

&var; {input: lack-of-isomorphism plus measurement errors}
&pa; {output: Hendrickson and Lattman A array}

&pb; {output: Hendrickson and Lattman B array}

&pc; {output: Hendrickson and Lattman C array}

&pd; {output: Hendrickson and Lattman D array}

)

do (&pa= (cos(centric phase) * (
- (abs (&fh+combine (abs (&fp) ,centric phase)) -abs (&fph)) "2/ (2*&var)
+ (abs (&fh-combine (abs (&fp) , centric phase)) -abs (&fph)) "2/ (2*&var)))
(centric and &sel)

do (&pb=(sin(centric_phase) * (
- (abs (&fh+combine (abs (&fp) ,centric phase)) -abs (&fph)) “2/ (2*&var)
+ (abs (&fh-combine (abs (&fp) ,centric phase)) -abs (&fph)) *2/ (2*&var)))
(centric and &sel)

do (&pc=0) (centric and &sel)
do (&pd=0) (centric and &sel)

do (&pa=-2 * (amplitude (&fp)”2 + amplitude (&fh)”"2 - amplitude (&fph) ™2)
* amplitude (&fp) * real (&fh)/
(3 * &var™2 + 4 * (amplitude (&fph)*2+&sph™2) * &var))
(acentric and &sel)

do (&pb=-2 * (amplitude (&fp)”2 + amplitude (&fh)”"2 - amplitude (&fph) ™2)
* amplitude (&fp) * imag(&fh)/
(3 * &var™2 + 4 * (amplitude (&fph)“2+&sph”2) * &var))
(acentric and &sel)

do (&pc=-amplitude (&fp)”"2 * (real (&fh)”2 - imag(&fh)”*2) /
(3 * &var™2 + 4 * (amplitude (&fph) "2+&sph”2) * &var))
(acentric and &sel)

do (&pd=-2 * amplitude (&fp)”"2 * real (&fh) * imag(&fh) /
(3 * &var™2 + 4 * (amplitude (&fph) “2+&sph”2) * &var))
(acentric and &sel)

Fig. 6b

ephase distribution
(
&fp=fobs;
&sp=sigma;
&sel=(d > 3.);
&fh=f heavy;
&fph=f deriv;
&sph=s deriv;
&var=variance;
&pa=pa;
&pb=pb;
&pc=pcC;
&pd=pd;

Fig. 7

Experimental Phasing

heavy atom (Patterson) searches

Patterson refinement

multiple-isomorphous replacement phasing and site refinement
multi-wavelength anomalous dispersion phasing and site refinement

Molecular Replacement

Patterson real-space and direct rotation searches
Patterson-correlation refinement
fast FFT-translation search

Density Modification

creation of envelopes
solvent-flattening
density averaging
histogram matching

Refinement
maximum likelihood targets
torsion-angle molecular dynamics
Cartesian molecular dynamics
conjugate gradient minimization
composite annealed omit map

Other
Protein Data Bank deposition file generation
mmCIF file creation

Fig. 8

{+ file: anneal.inp +}

{+ description: Crystallographic simulated annealing refinement +}

{+ authors: Axel T. Brunger, Luke M. Rice and Paul D. Adams +}

{+ reference: A.T. Brunger, J. Kuriyan and M. Karplus, Crystallographic
R factor Refinement by Molecular Dynamics, Science
235, 458-460 (1987) +}

{+ reference: A.T. Brunger, A. Krukowski and J. Erickson, Slow-Cooling
Protocols for Crystallographic Refinement by Simulated
Annealing, Acta Cryst. A46, 585-593 (1990) +}

{- begin block parameter definition -} define(

{====================== crystallographic data ========================}

{* space group *}

{* use International Table conventions with subscripts substituted by

parenthesis *}
{===>} Sg="P2 (1)2 (1)2 (l) "

{===>} b=40.73; {===>} c=26.74;
===>} alpha=90; {===>} beta=90; {===>} gamma=90;

{* anomalous f' f'' library file *}
{* should be used when refining against anomalous data -
libraries: "CNS XTALLIB:anom cu.lib" and "CNS_ XTALLIB:anom mo.lib" or
a user created file.
If blank no anomalous contribution will be included in the refinement *}
{===>} anom library="";

* reflection file *}
==>} ref="example.hkl";

{
{
{* reciprocal space array containing observed amplitudes: required *}
{===>} obs f="f native";

{* reciprocal space array containing sigma values for amplitudes: required *}
{===>} obs sigf="s native";

{* reciprocal space array containing test set for cross-validation: required *}
{===>} test set="test";
{* refinement target *}
{* mlf: maximum likelihood target using amplitudes
mli: maximum likelihood target using intensities
mlhl: maximum likelihood target using amplitudes and phase probability
distribution
residual: standard crystallographic residual
vector: vector residual
mixed: (1-fom)*residual + fom*vector
e2e2: correlation coefficient using normalized E*2
elel: correlation coefficient using normalized E
f2f2: correlation coefficient using F*2
f1fl: correlation coefficient using F *}
{+ choice: "mlf" "mli" "mlhl" "residual" "vector" "mixed"
"e2e2" "elel" "f2f2" "FI1f1" +}
{===>} reftarget="mlf";
} {- end block parameter definition -}

Fig. 9a

Authors
o Axel T. Brunger, Luke M. Rice and Paul D, Adams

References

o AT Brunger,]. Kurivan and M. Karplus, Crystallographic R factor Refinement by Molecular Dynamics,
Science 235, 458-460 (1987)

o AT Brunger, A, Krukowski and J. Erickson, Slow-Cooling Protocols for Crystallographic Refinement by
Simulated Annealing, Acta Cryst. A46, 585-593 (1990)

crystallographic data

space group
wse International Table conventions with subscripls substituted by paventhesis | pa(tyzctiedt) |

unit cell parameters in Angstroms and degrees

a b ¢ alpha | beta

| 26.74 ||90 | [90 | |90 l

61.76 ||40?3

anomalous f’ £’ library file | |

reflection file | example.hkl |

reciprocal space array containing observed amplitudes: required | f_native |

reciprocal space array containing sigma values for amplitudes: required | s_native |

reciprocal space array containing test set for cross-validation: required | test |

refinement target

mlfy maximum likelihood target using amplitudes
mliy maximum likelihood target using intensities
mihly maximum likelihood target using amplitudes
and phase probability distribution

residuals standard crystallographic residual
vector: vector residual

mixed: (I-fom)*residual + fomtvector

elel: correlation coefficient using normalized E~2
elel: correlation coefficient using normalized E
f2f2: vorrelation coefficient using F 2

f1f1: vorrelation coefficient using F

mlf =

“View updated filel “Download updated filel |Reset|

Fig. 9b

@vorld-wi deweb)

personal task files)

conversion from
HTML form to task file

{+ file: anneal.inp +}
{+ description: Crystallographic simulated annealing refinement +}
{+ authors: Axel T. Brunger, Luke M. Rice and Paul D. Adams +}
{+ reference: A.T. Brunger, J. Kuriyan and M. Karplus, Crystallographic
R factor Refinement by Molecular Dynamics, Science
235, 458-460 (1987) +}
Authors {+ reference: A.T. Brunger, A. Krukowski and J. Erickson, Slow-Cooling
Protocols for Crystallographic Refinement by Simulated
Annealing, Acta Cryst. A46, 585-593 (1990) +}
{- begin block parameter definition -} define(
crystallographic data

* Axel T. Brunger. Lube

References

{* space group *}

{* use 1 Table i with i bstituted by
parenthesis *}
} sg="P2(1)2(1)2(1)";

{* unit cell *}
} a=61.76;
} alpha=90;

spase group oo o]
use with tubscripis substiturnd by parenhersy |EEARIEAEIEEN)

{* anomalous £' £' library file *}
unlt cell parameters in Angstroms and degrees {* should be used when refining against anomalous data -

libraries: "CNS XTALLIB:anom cu.lib" and "CNS XTALLIB:anom mo.lib" or
u b c alphn beta gammi - 01 - -
a user created file.

et [Br76 | [eei7n | [EE7e | [] [EE] B8 il If blank no 1 tribution will be included in the refi *}
} anom_library:

e oy e [(s zeneeien st
} ref="example.hkl";
et O — {* reciprocal space array containing observed amplitudes: required *}
} obs_f="f native";
reciprocal space array containing observed amphitudes: required _

reciprocal space array eontaining sgma values for ampliludes: required [Sative |

{* reciprocal space array containing sigma values for amplitudes: required *}
>} obs_sigf=

"s_native";

reciprocal space array contalning test set for eress-validation: required _ {* reciprocal space array containing test set for cross-validation: required *}
} test_set="test";
refinement target *}
{* mlf: maximum likelihood target using amplitudes
mli: maximum likelihood target using intemsities
mlh:

refinement targel {*

s

maximum likelihood target using amplitudes and phase probabilit
distribution
residual: standard crystallographic residual
vector: vector residual
mixed: (1-fom)*residual + fom*vector
correlation coefficient using normalized E*2
lati fficient using lized E

correlation coefficient using F*2

£1£1: correlation coefficient using F *}
{+ choice: residual® "vector" "mixed"
"EIFL 4}

{- end block parameter definition

conversion from
task fileto HTML form

@istri buted task ﬁle@

