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Macromolecular crystallographic refinement has recently
been made more efficient by the use of cross-validated
maximum likelihood targets and torsion-angle molecular
dynamics simulated annealing. In combination with
automated model building methods, the amount of manual
intervention required to complete and refine a structure is
greatly reduced.
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Introduction
The ultimate goal of refinement is to simultaneously opti-
mize the agreement of an atomic model with both
observed diffraction data and a priori chemical informa-
tion. The target function used for this optimization
normally depends on many parameters and, most impor-
tantly, on atomic coordinates. The large number of
adjustable parameters makes the target function very
complicated and results in the multiple minima
problem — the target function contains many local mini-
ma in addition to the global minimum. This complexity
tends to defeat gradient-descent optimization techniques,
such as conjugate gradient or least-squares methods [1].
The challenges of crystallographic refinement arise not
only from the high dimensionality of the parameter space,
but also from the phase problem. For new crystal struc-
tures, initial electron density maps must be computed
from a combination of observed diffraction amplitudes
and experimental phases. Frequently, these phases are of
a poorer quality and/or lower resolution than the observed
amplitudes. A different problem arises when structures
are solved by molecular replacement, [2,3] a technique
that uses a similar structure as a search model to obtain the
initial phases. In this case, the resulting electron density
maps can be severely ‘model biased’, that is, they some-
times seem to confirm features of the search model
without providing clear evidence of actual differences
between it and the true crystal structure. In both cases,
initial atomic models usually contain significant errors and
require several cycles of refinement interspersed with
manual intervention in order to correct gross errors. Here,
we review the recent advances in the field of crystallo-
graphic refinement that decrease manual intervention and
increase efficiency, arriving at more correct models in a
shorter amount of time. 

Simulated annealing [4] is an optimization technique that
is particularly well suited to overcoming the multiple min-
ima problem, thereby reducing the manual intervention
required during refinement [5]. Unlike gradient-descent
methods, simulated annealing can cross barriers between
minima and, thus, can explore a greater volume of the
parameter space in order to find better models (deeper
minima). Many examples have shown that simulated
annealing refinement, starting from initial models
obtained by standard crystallographic techniques, pro-
duces significantly better final models compared to those
produced by least-squares or conjugate-gradient minimiza-
tion [5–9]. Since its introduction [5], crystallographic
refinement has undergone major improvements in three
principal areas: the measure of model; quality, the search of
the parameter space; and the target function.

For crystallographic refinement, the introduction of
cross-validation in the form of the free R-value [10] has
significantly reduced the danger of overfitting the dif-
fraction data. Cross-validation also produces more
realistic coordinate error estimates based on the Luzzati
or σA methods [11]. The complexity of the conforma-
tional space can be reduced by the introduction of
torsion-angle refinement methods [9,12], which decreas-
es the number of adjustable parameters that describe a
model by approximately 10-fold. The target function has
been improved using a maximum likelihood approach
that takes into account model error, model incomplete-
ness and errors in the experimental data [13,14•,15••].
Cross-validation of the parameters for the maximum
likelihood target function is essential in order to obtain
better results than conventional target functions
[13,16•,17•]. 

Cross-validation
Cross-validation plays a fundamental role in all the maxi-
mum likelihood target functions described to date. A few
remarks about this method are therefore warranted here.
For cross-validation, the diffraction data are divided into
two sets — a large working set (typically comprising 90% of
the data) and a complementary test set (comprising the
remaining 10%). The diffraction data in the working set are
used in the normal crystallographic refinement process,
whereas the test set data are not. The cross-validated (or
‘free’) R-value computed using the test set data is a more
faithful indicator of model quality. It provides a more objec-
tive guide during the model building and refinement
process than the conventional R-value. It also indicates
whether the introduction of additional parameters (e.g.
water molecules, the relaxation of noncrystallographic sym-
metry restraints or multiconformer models) improves the
quality of the model or, instead, increases overfitting [18•].
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Target functions
Crystallographic refinement is a search for the global min-
imum of the target:

E = Echem + wxrayExray (1)

where E is a function of the parameters of an atomic
model. Echem comprises empirical information about
chemical interactions; it is a function of all atomic posi-
tions, describing covalent (bond lengths, bond angles,
torsion angles, chiral centers and planarity of aromatic
rings) and nonbonded (intramolecular as well as intermol-
ecular and symmetry related) interactions [19]. Exray is
related to the difference between the observed and calcu-
lated data and wxray is a weight appropriately chosen to
balance the gradients (with respect to atomic parameters)
arising from the two terms.

Maximum likelihood refinement targets
The traditional form of Exray consists of the crystallographic
residual LSQ, defined as the sum of the squared differences
between the observed (|Fo|) and calculated (|Fc|) structure-
factor amplitudes for a particular atomic model:

Exray = LSQ = Σ (|Fo| – κ|Fc|)2 (2)
hkl∈working set

where hkl are the indices of the reciprocal lattice points of
the crystal and κ is a relative scale factor.

Minimization of the LSQ can improve the atomic model,
but can also lead to the accumulation of systematic errors
in the model by fitting noise in the diffraction data [20].
The least-squares residual is a limiting case of the maxi-
mum likelihood theory and is only justified if the model is
nearly complete and error free. These assumptions are
usually violated during the initial stages of refinement.
Improved targets for the refinement of incomplete, error-
containing models have been obtained using the more
general maximum likelihood formulation [13,14•,15••].
The goal of this method is to determine the likelihood of
the model given estimates of the errors in the model and
the measured intensities [15••,17•]. 

In general, an empirical approach is used to estimate errors
in the model. The σA distribution for the model is a good
source of such error estimates [21,22]. As the model
improves, however, the σA distribution changes and new
error estimates must be obtained. Refinement methods
that improve the model Fc structure factors will therefore
have a beneficial effect on error estimates and this will
then enhance the next refinement cycle. Thus, powerful
optimization methods and maximum likelihood targets are
expected to interact in a synergistic fashion (Figure 1).

In order to achieve improvement over the least-squares
residual (Equation 2), cross-validation was found to be
essential [13,16•] for the estimation of model incomplete-
ness and errors. Maximum likelihood refinement without
cross-validation gives much poorer results, as indicated by
higher free R-values, higher Rfree– R differences and high-
er phase errors compared to the final refined structure
[16•]. It should be noted that when using the cross-vali-
dated maximum likelihood target, the final normal
R-value is, in general, increased compared to refinements
using the least-squares target. This is a consequence of
the reduction in the overfitting achieved by the maximum
likelihood target.

For many structures, some initial experimental phase
information is available from either isomorphous heavy-
atom replacement or multiwavelength anomalous
diffraction methods. These phases represent additional
observations that can be incorporated in the refinement
target. The maximum likelihood formulation naturally
extends itself to the incorporation of this information
[14•,15••]. Tests have shown that the addition of experi-
mental phase information greatly improves the results of
refinement [23••,24••].

Pannu and Read [13] have developed an efficient
Gaussian approximation in the case of structure-factor

Figure 1

Simulated annealing produces better models than extensive conjugate
gradient minimization. Map correlation coefficients were computed
before and after refinement against the native penicillopepsin
diffraction data [39] for a polyalanine model derived from
Rhizopuspepsin [40]. Correlation coefficients are between
σA-weighted maps calculated from each model and the published
penicillopepsin structure. The observed penicillopepsin diffraction data
were in space group C2, with cell dimensions a = 97.37 Å,
b = 46.64 Å, c = 65.47 Å and β = 115.4°. All refinements were carried
out using diffraction data from the lowest resolution limit of 22.0 Å up
to 2.0 Å. The MLHL refinements used single isomorphous phases from
a K3UO2F5 derivative of the penicillopepsin crystal structure, which
covered a resolution range of 22.0 Å to 2.8 Å. The simulated annealing
refinements were repeated five times with different initial velocities. The
numerical averages of the map correlation coefficients for the five
refinements are shown as the hashed bars. The best map correlation
coefficients from simulated annealing are shown as the white bars.
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amplitudes with no prior phase information, termed the
‘MLF’ target function. In the limit of a perfect model,
MLF reduces to the traditional least-squares residual
(Equation 2) with 1/σ2

O weighting. In the case where
prior phase information is included, integration over the
phase angles is carried out numerically and is termed the
‘MLHL’ target [23••]. A maximum likelihood function
that expresses the probability distribution in terms of
observed intensities has also been developed and is
termed ‘MLI’ [13]. 

Real-space refinement
In real-space refinement, the target that is minimized is
the agreement between the current electron density map
and the electron density calculated from the model. This
method has a long history in macromolecular refinement
[12], but has become less frequently used since the intro-
duction of efficient reciprocal-space refinement methods
[19]. Interest in the method has been renewed, however,
after recent improvements to the real-space target function
[25•] and the increasing availability of high quality experi-
mental phases from multiple wavelength anomalous
diffraction phasing or noncrystallographic symmetry aver-
aging. Tests have shown the method to be useful in the
initial stages of refinement, especially when alternated
with reciprocal-space refinement [26•].

Simulated annealing
Annealing denotes a physical process wherein a solid is
heated until all the particles randomly arrange them-
selves in a liquid phase and then is slowly cooled so that
all the particles arrange themselves in the lowest energy
state. By formally defining the target E (Equation 1) to
be the equivalent of the potential energy of the system,
one can simulate such an annealing process [4]. There is
no guarantee that simulated annealing will find the glob-
al minimum [27]. Compared to conjugate-gradient
minimization, however, whereby search directions must
follow the gradient, simulated annealing achieves more
optimal solutions by allowing motion against the gradi-
ent. The likelihood of uphill motion is determined by a
control parameter referred to as temperature. The high-
er the temperature, the more likely it is that simulated
annealing will overcome barriers. It should be noted that
the simulated annealing temperature normally has no
physical meaning and merely determines the likelihood
of overcoming barriers of the target function
(Equation 1). The annealing schedule can, in principle,
be any function of the simulation step (or ‘time’
domain). The two most commonly used protocols are lin-
ear slow cooling or constant temperature followed by
quenching. An advantage is obtained with slow cooling
[28]. The duration of the annealing schedule is another
parameter. Too short a protocol does not allow for suffi-
cient sampling of the conformational space. Too long a
protocol may waste computer time since it is more
efficient to run multiple trials as opposed to one long
refinement protocol [29••].

Torsion-angle dynamics
Although Cartesian (i.e. flexible bond lengths and bond
angles) molecular dynamics places restraints on bond
lengths and bond angles (through Echem, see Equation 1),
one might want to implement these restrictions as con-
straints, that is, fixed bond lengths and bond angles. This
is supported by the observation that deviations from ideal
bond lengths and bond angles are usually small in macro-
molecular X-ray crystal structures. Indeed, fixed-length
constraints have been applied to crystallographic refine-
ment using least-squares minimization [12]. It is only
recently, however, that efficient and robust algorithms
have become available for molecular dynamics in torsion-
angle space [9,30–32]. An approach is chosen that retains
the Cartesian coordinate formulation of the target function
and its derivatives, allowing them to be calculated in a rel-
atively straightforward manner that can be applied to any
macromolecule or complex [9]. In this formulation, the
expression for the acceleration becomes a function of posi-
tions and velocities. Iterative equations of motion for
constrained dynamics in this formulation can be derived
and solved by finite difference methods [33]. This method
is numerically very robust and has a significantly increased
radius of convergence in crystallographic refinement com-
pared to Cartesian molecular dynamics [9].

Combined torsion-angle dynamics simulated
annealing and maximum likelihood targets
In a realistic test case [24••], a series of models of the aspar-
tic proteinase penicillopepsin was generated from
homologous structures present in the Protein Data Bank.
The sequence identity among these structures ranged
from 100 to 25%, thus providing a set of models with
increasing coordinate error when compared to the refined
structure of penicillopepsin. These models, after the
truncation of all residues to alanine, were each used as
search models in molecular replacement against the native
penicillopepsin diffraction data. In all cases, the correct
placement of the model in the penicillopepsin unit cell
was found.

Both conjugate-gradient minimization and simulated
annealing were carried out in order to compare the perfor-
mances of LSQ (the least-squares residual), MLF (the
maximum likelihood target using amplitudes) and MLHL
(the maximum likelihood target using amplitudes and
experimental phase information). In the case of MLHL,
phases from single isomorphous replacement were used. A
very large number of conjugate-gradient cycles were car-
ried out in order to make the computational requirements
equivalent for both minimization and simulated annealing.
The conjugate-gradient minimizations were converged,
that is, there was no change when further cycles were car-
ried out.

For a given target function, simulated annealing always
outperformed minimization (Figure 1). For a given starting
model, the maximum likelihood targets outperformed the
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least-squares residual target for both minimization and
simulated annealing, producing models with lower phase
errors and higher map correlation coefficients when com-
pared to the published penicillopepsin crystal structure
(Figure 1). This improvement is illustrated by σA-weight-
ed electron density maps obtained from the resulting
models (Figure 2). The incorporation of experimental
phase information significantly improved the refinement,
despite the ambiguity in the single isomorphous replace-
ment phase probability distributions. Thus, the most
efficient refinement will make use of torsion-angle dynam-
ics simulated annealing and prior phase information in the
MLHL maximum likelihood target function.

Multi-start refinement and structure-factor
averaging
Multiple simulated annealing refinements starting from the
same model, termed ‘multi-start’ refinement, will generally
produce somewhat different structures. Even well-refined
structures will show some variation, consistent with the
estimated coordinate error of the model. More importantly,
the poorer the model, the more variation is observed [6].
Some of the models resulting from multi-start refinement
may be better than others, for example, as judged by the

free R-value. Thus, if computer time is available, multi-
start refinement has several advantages. A more optimal
single model than that produced by a single simulated
annealing calculation can usually be obtained.
Furthermore, each separate model coming from a multi-
start refinement fits the data slightly differently. This could
be the result of intrinsic flexibility within the molecule or
the result of model building error. Regions in the starting
model that contain significant errors often show increased
variability after multi-start refinement and a visual inspec-
tion of the ensemble of models produced can be helpful in
identifying these incorrectly modeled regions. 

In order to better identify the correct conformation, structure
factors from each of the models can be averaged [29••]. This
averaging tends to reduce the effect of local errors (noise),
which are presumably different for each member of the fam-
ily. The average structure factor can produce phases that
contain less model bias than phases computed from a single
model. It should also produce better estimates of errors in
the model for maximum likelihood targets and σA-weighted
electron density maps because Fc is used in the computation
of these parameters. As it is inherently a noise-reducing tech-
nique, multi-start refinement followed by structure-factor

Figure 2
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Maximum likelihood targets significantly decrease model bias in
simulated annealing refinement. σA-weighted electron density maps
contoured at 1.25σ were produced for models by simulated annealing
refinement with different targets. Residues 233 to 237 are shown with

the published penicillopepsin crystal structure [39] represented by
solid lines and the model with the lowest free R-value from five
independent refinements in dashed lines.
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averaging should be most useful in situations in which there
is significant noise, namely when the data to parameter ratio
is low (e.g. if only moderate resolution diffraction data are
available). The program wARP [34•] makes efficient use of
structure-factor averaging in the context of phase improve-
ment and automated model completion (see below).

Efficient model building
Efficient crystallographic refinement also requires effi-
cient methods for building an initial model and rebuilding
the model during refinement. Programs such as O [35]
have removed much of the subjectivity of manual rebuild-
ing by incorporating information from databases of known
structures. Attempts are being made, however, to make the
process of model building even more automated. In one
instance, the use of information from known structures,
combined with automated map interpretation, has been
used to build an initial model with little or no manual
intervention from the user [36•]. These methods have
been seen to work even at relatively low resolution
(dmin~3.0 Å). In other work, refinement in combination
with the automated identification and interpretation of
potential atomic sites in an electron density map is being
used to try to gradually build a more complete model from
some small starting fragments [34•,37]. This method is cur-
rently limited by the need for relatively high resolution
data (dmin < 2.0 Å).

Conclusions
Simulated annealing has significantly improved the effi-
ciency of crystallographic refinement. A case in point is the
combination of torsion-angle molecular dynamics with
cross-validated maximum likelihood targets. These two
independent developments interact synergistically, pro-
ducing less model bias than any other method to date. This
combined method significantly increases the radius of con-
vergence, allowing the productive refinement of poor
initial models, for example, those obtained by weak mole-
cular replacement solutions [9,16•,24••].

In the future, we can look forward to more automated
methods for the building and rebuilding of models. These
will be combined with powerful maximum likelihood
target functions and torsion-angle representations of mole-
cules during refinement. The high quality phases available
from multiple wavelength anomalous diffraction phasing
will be routinely incorporated into the refinement process,
resulting in minimally biased models. The combination of
all these methods will result in more accurate models that
will be arrived at more rapidly, allowing a more detailed
interpretation of the structure and therefore the underly-
ing biology.
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