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ABSTRACT
Simulated annealing, in the form of temperature-controlled mo-
lecular dynamics, has been successfully applied to macromolecular
X-ray structure optimization. The theory and practice of the method
are reviewed, and some recent improvements are described.

Introduction
Over the past decade, developments in molecular biology,
X-ray diffraction instrumentation, and computational
methods have allowed a nearly exponential growth of
macromolecular structural studies. In particular, cryopro-
tection to extend crystal life,1 the availability of tunable
synchrotron sources,2 high-speed CCD data collection
devices,3 and the ability to incorporate anomalously
scattering selenium atoms into proteins have all made
structure solution much more efficient.3 The multiple
anomalous diffraction (MAD) method4 often allows high-
quality experimental electron density maps to be obtained.
The analysis of the experimental data generally requires
sophisticated computational procedures that culminate
in refinement and structure validation. This refinement
procedure can be formulated as the chemically con-
strained or restrained nonlinear optimization of a target
function, which usually measures the agreement between
observed data and data computed from an atomic model.
The ultimate goal is to optimize the simultaneous agree-
ment of an atomic model with observed data and with a
priori chemical information.

The target function used for this optimization normally
depends on several atomic parameters but most impor-
tantly on atomic coordinates. The large number of adjust-

able parameters (typically at least three times the number
of atoms in the model) gives rise to a very complicated
target function. This in turn produces what is known as
the multiple minima problem: the target function con-
tains many local minima in addition to the global mini-
mum. These local minima tend to defeat gradient-descent
optimization techniques such as conjugate gradient or
least-squares methods.5 These methods are simply not
capable of sampling molecular conformations thoroughly
enough to find the most optimal model if the starting one
is far from the correct structure.

Simulated annealing is an optimization technique
particularly well suited to overcoming the multiple minima
problem.6 Unlike gradient-descent methods, simulated
annealing can cross barriers between minima and thus
can explore a greater volume of the parameter space to
find better models in deeper minima. Following its
introduction to crystallographic refinement,7 there have
been major improvements of the original method in four
principal areas: the measure of model quality; the search
of the parameter space; the target function; the modeling
of conformational variability. The combination of im-
proved experimental methods and powerful simulated
annealing algorithms has allowed more and more chal-
lenging systems to be analyzed, recently culminating in
several structures for the ribosome at atomic resolution.8-10

For crystallographic refinement, the introduction of
cross-validation (the “free” R value) has significantly
reduced the danger of overfitting the diffraction data.11

The complexity of the conformational space has been
reduced by the introduction of torsion-angle molecular
dynamics,12 which decreases the number of adjustable
parameters that describe a model approximately 10-fold.
The target function has been improved by incorporating
the concept of maximum likelihood, which takes into
account model error, model incompleteness, and errors
in the experimental data.13-15 Finally, the sampling power
of simulated annealing can be used for exploring the
molecule’s conformational space in cases where the
molecule undergoes dynamic motion or static disorder
through multiconformer models.16-18

The Target Function
In essence, macromolecular structure calculation and
refinement is a search for the global minimum of a target
function

as a function of the parameters of an atomic model, in
particular atomic coordinates. Echem comprises empirical
information about chemical interactions; it is a function
of all atomic positions, describing covalent (bond lengths,
bond angles, torsion angles, chiral centers, and planarity
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of aromatic rings) and nonbonded (intramolecular as well
as intermolecular and symmetry-related) interactions. Edata

describes the difference between observed and calculated
data, and wdata is a weight appropriately chosen to balance
the gradients (with respect to atomic parameters) arising
from the two terms.

A Priori Chemical Information
The geometric energy function Echem consists of terms for
covalent bonds, bond angles, chirality, planarity, and
nonbonded repulsion.19 The parameters for the covalent
terms can be derived from average geometry and root-
mean-square (rms) deviations observed in a small-
molecule database. Extensive statistical analyses were
undertaken for the chemical moieties of proteins20 and
of polynucleotides21 using the Cambridge Crystallographic
Database.22 Analysis of the ever increasing number of
atomic resolution macromolecular crystal structures will
no doubt cause some modifications of these parameters
in the future.23-26 It is common to use a purely repulsive
quartic function (Erepulsive) for the nonbonded interactions19

that are included in Echem,

where Rij is the distance between two atoms i and j, Rij
n

is the van der Waals radius for a particular atom pair ij, c
e 1 is a constant that is sometimes used to reduce the
radii, and n ) 2, m ) 2 or n ) 1, m ) 4. In contrast to
molecular mechanics force fields, van der Waals attraction
and electrostatic interactions are usually not included in
structure calculation and refinement. These simplifica-
tions are valid since the experimental data contains
information that is able to produce atomic conformations
consistent with actual nonbonded interactions. In fact,
atomic resolution crystal structures can be used to derive
parameters for electrostatic energies.27 Purely repulsive
nonbonded interactions are used partly because the
calculation is simplified and, therefore, computationally
faster. However, the main motivation is to avoid biasing
the structure calculation to artifacts that may be present
in the force field. In particular, the electrostatic terms are
difficult to parametrize. If the experimental diffraction
information is insufficient to fully determine the macro-
molecular structure, use of electrostatic, attractive van der
Waals, and simulated solvent interactions can bias the
structure toward the theoretical nonbonded model. In this
instance it is preferable that the atoms do not attract one
another but rather are moved to points of minimal
interaction as a result of repulsion.

Geometric energy functions are related to empirical
energy functions that were developed for energy-mini-
mization and molecular-dynamics studies of macromol-
ecules.28 These empirical energy functions were not
designed for structure determination and therefore re-
quired some modification for use in macromolecular
structure refinement.29-32 Recently, crystallographic simu-
lated annealing refinement was implemented with a

purely geometric energy function that uses only covalent
energy terms in combination with the repulsive potential
described above.14 This helps to provide uniformity among
different crystallographic refinement programs and sim-
plifies the generation of parameters for new chemical
compounds.

X-ray Diffraction Data
The conventional form of EX-ray consists of the crystal-
lographic residual ELSQ, defined as the sum over the
squared differences between the observed Fo and calcu-
lated Fc structure factor amplitudes for a particular atomic
model:

Here hkl are the indices of the reciprocal lattice points of
the crystal, Fo and Fc are the observed and calculated
structure-factor amplitudes, and k is a relative scale factor.

Reduction of ELSQ can result from improvement in the
atomic model but also from an accumulation of systematic
errors in the model or fitting noise in the data.33 The least-
squares residual is therefore poorly justified when the
model is far away from the correct one or incomplete.34

An improved target for macromolecular refinement can
be obtained using a maximum-likelihood formulation.13,35-38

The goal of the maximum-likelihood method is to deter-
mine the probability of making a measurement, given the
model and estimates of the model’s errors and those of
the measured intensities. The effects of model errors
(incorrectly placed and missing atoms) on the calculated
structure factors are first quantified with σA values, which
correspond roughly to the fraction of each structure factor
that is expected to be correct. However, overfitting of the
diffraction data causes the model bias to be underesti-
mated and undercorrected in the σA values. The effect of
this overfitting can be reduced by cross-validating σA

values, i.e., by computing them from a randomly selected
test set that is excluded from the summation39,40 on the
right-hand side of eq 3. The expected values of 〈Fo〉 and
the corresponding variance (σML

2) are derived from σA, the
observed Fo, and calculated Fc. These quantities can be
readily incorporated into a maximum-likelihood target
function:13

To achieve an improvement over the least-squares re-
sidual (eq 3), cross-validation was found to be essential14

for the computation of σA and its derived quantities in eq
4.

For many crystal structures, some initial experimental
phase information is available from either isomorphous
heavy-atom replacement, single- or multiwavelength
anomalous diffraction methods. These phases represent
additional observations that can be incorporated in the
refinement target. The maximum likelihood formulation

E ) ∑
ij

((cRij
min)n - Rij

n)m (2)

EX-ray ) ELSQ ) ∑
hkl

(|Fo| - k|Fc|)2 (3)

EX-ray ) EML ) ∑
hkl∈workingset( 1

σML
2)(|Fo| - 〈|Fo|〉)2 (4)
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naturally extends itself to incorporation of this informa-
tion.15,41 Tests have shown that the addition of experi-
mental phase information, including single-isomorphous
replacement (SIR) or single-wavelength anomalous dis-
persion (SAD), greatly improves the results of refine-
ment.15,40 It should be noted that with advances in
synchrotron X-ray radiation instrumentation and density
modification it is now possible to use SAD phasing to solve
a crystal structure in favorable cases.42

Pannu and Read13 have developed an efficient Gaussian
approximation for the case of structure factor amplitudes
with no prior phase information, termed the MLF target
function. In the limit of a perfect model MLF reduces to
the traditional least-squares residual (eq 3) with 1/σ2

weighting. In the case where prior phase information is
included, the integration over the phase angles is carried
out numerically and is termed the MLHL target.15 A
maximum likelihood function that expresses the prob-
ability distributions in terms of observed intensities has
also been developed and is termed MLI.13

Additional Information
Additional constraints or restraints may be used to ef-
fectively improve the ratio of observations to parameters.
For example, atoms can be grouped so that they move as
rigid bodies during refinement or bond lengths and bond
angles can be kept fixed.12,43,44 The existence of noncrys-
tallographic symmetry can be used to average over
equivalent molecules and thereby to reduce noise in the
diffraction data.30

Weighting
The weight wdata (eq 1) balances the forces arising from
Edata and Echem. The choice of wdata can be critical: if wdata

is too large, the refined structure will show unphysical
deviations from ideal geometry; if wdata is too small, the
refined structure will not satisfy the observed data.
Automated protocols to provide initial estimates for
optimal weighting have been developed.14,29 However,
independent information must be used (e.g. cross-valida-
tion) to objectively obtain the best possible weight for the
X-ray diffraction data.11

Searching Conformational Space
Annealing denotes a physical process wherein a solid is
heated until all particles randomly arrange themselves in
a liquid phase and then is cooled slowly so that all
particles arrange themselves in the lowest energy state.
By formally defining the target E (eq 1) to be the equivalent
of the potential energy of the system, one can simulate
the annealing process.6 There is no guarantee that simu-
lated annealing will find the global minimum (except in
the case of an infinitely long search).45 Compared to
conjugate-gradient minimization where search directions
must follow the gradient, simulated annealing achieves
more optimal solutions by allowing motion against the
gradient.6 The likelihood of uphill motion is determined

by a control parameter referred to as temperature. The
higher the temperature, the more likely it is that simulated
annealing will overcome barriers. It should be noted that
the simulated annealing temperature normally has no
physical meaning and merely determines the likelihood
of overcoming barriers of the target function.

The simulated annealing algorithm requires a genera-
tion mechanism to create a Boltzmann distribution at a
given temperature T. Simulated annealing also requires
an annealing schedule; that is, a sequence of temperatures
T1 > T2 > ... > Tn at which the Boltzmann distribution is
computed. Implementations of the generation mechanism
differ in the way they transition from one set of parameters
to another that is consistent with the Boltzmann distribu-
tion at a given temperature. The two most widely used
generation mechanisms are Metropolis Monte Carlo46 and
molecular dynamics47 simulations. For X-ray crystal-
lographic refinement, molecular dynamics has proved
extremely successful3 whereas Monte Carlo methods have
yet to be shown to be effective.

Molecular Dynamics
A suitably chosen set of atomic parameters can be viewed
as generalized coordinates that are propagated in time by
the classical (Hamilton) equations of motion.48 If the
generalized coordinates represent the x, y, z positions of
the atoms of a molecule, the Hamilton equations of
motion reduce to the more familiar Newton’s second law:

The quantities mi and ri are respectively the mass and
coordinates of atom i, and E is given by eq 1. The solution
of the partial differential equations (eq 5) is achieved
numerically using finite-difference methods.47 This ap-
proach is referred to as molecular dynamics.

Initial velocities for the integration of eq 5 are usually
assigned randomly from a Maxwell distribution at the
appropriate temperature. Assignment of different initial
velocities will produce a somewhat different structure after
simulated annealing. By performing several refinements
with different initial velocities, one can therefore improve
the chances of success of simulated annealing refinement.
Furthermore, this improved sampling can be used to study
discrete disorder and conformational variability (see
below).

Although Cartesian (i.e., flexible bond lengths and bond
angles) molecular dynamics places restraints on bond
lengths and bond angles (through Echem, eq 1), one might
want to implement these restrictions as constraints, i.e.,
fixed bond lengths and bond angles.43 This is supported
by the observation that the deviations from ideal bond
lengths and bond angles are usually small in X-ray crystal
structures. Indeed, fixed-length constraints have been
applied to structure calculation by least-squares or con-
jugate-gradient minimization.43 It is only recently, how-
ever, that efficient and robust algorithms have become
available for molecular dynamics in torsion-angle space.49-52

mi

∂
2 rbi

∂t2
) -∇iE (5)
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Using an approach that retains the Cartesian-coordi-
nate formulation of the target function and its derivatives
with respect to atomic coordinates makes calculations
remains relatively straightforward and topology indepen-
dent.12 In this formulation, however, the expression for
the acceleration becomes a function of positions and
velocities. Iterative equations of motion for constrained
dynamics in this formulation can be derived and solved
by finite difference methods.53 This method is numerically
very robust and has a significantly increased radius of
convergence in crystallographic refinement compared to
Cartesian molecular dynamics.12

Temperature Control
Simulated annealing requires the control of the temper-
ature during molecular dynamics. The current tempera-
ture of the simulation (Tcurr) is computed from the kinetic
energy

of the molecular dynamics simulation,

Here n is the number of degrees of freedom and kb is
Boltzmann’s constant. One commonly used approach to
control the temperature of the simulation consists of
coupling the equations of motion to a heat bath. A friction
term (γi) to control the temperature

can be added to the right-hand side of eq 5, where vi are
the velocities of the atoms.54 This method generalizes the
concept of friction by allowing a negative friction coef-
ficient and by determining the friction coefficient and its
sign by the ratio of the current simulation temperature
to the target temperature Tcurr.

Why Does Simulated Annealing Work?
The goal of any optimization problem is to find the global
minimum of a target function. In the case of macromo-
lecular structure calculation and refinement, one searches
for the conformation or conformations of the molecule
that best fit the experimental data and that simultaneously
maintain reasonable covalent and noncovalent interac-
tions. Simulated annealing refinement has a much larger
radius of convergence than conjugate-gradient minimiza-
tion (see below). It must therefore be able to find a lower
minimum of the target E (eq 1) than the local minimum
found by simply moving along the negative gradient of E.
Paradoxically, the very reasons that make simulated
annealing such a powerful refinement technique (the
ability to overcome barriers in the target energy function)
would seem to prevent it from working at all. If it crosses

barriers so easily, what allows it to stay in the vicinity of
the global minimum?

It is most easy to visualize this property of simulated
annealing in the case of molecular dynamics. When a fixed
temperature is specified, the system essentially gains a
certain inertia that allows it to cross energy barriers of the
corresponding target function (eq 7). The target temper-
ature must be large enough to overcome smaller barriers
(e.g., Figure 1) but low enough to ensure that the system
will not “climb out” out of the global minimum if it
manages to arrive there. While temperature itself is a
global parameter of the system, temperature fluctuations
arise principally from local conformational transitionss

for example from an amino acid side chain falling into
the correct orientation. These local changes tend to lower
the value of the target E, thus increasing the kinetic energy
and, hence, the temperature of the system. Once the
temperature coupling (eq 8) has removed this excess
kinetic energy through heat dissipation, the reverse transi-
tion is very unlikely, since it would require a localized
increase in kinetic energy where the conformational
change occurred in the first place. Temperature coupling
maintains a sufficient amount of kinetic energy to allow
local conformational corrections but does not supply
enough to allow escape from the global minimum. This
explains the observation that on average the agreement
with the experimental data will improve rather than
worsen with simulated annealing.

Practical Considerations
As Figure 1 illustrates, the simulation temperature needs
to be high enough to allow conformational transitions but
not too high to avoid moving too far away from the initial
structure. The optimum temperature for a given starting
structure is a matter of trial and error. We empirically

Ekin ) ∑
i

n atoms1

2
mi(∂ri

∂t )2

(6)

Tcurr )
2Ekin

3nkb
(7)

-miγiυi(1 - ( T
Tcurr

)) (8)

FIGURE 1. Schematic explanation of molecular dynamics based
simulated annealing. The kinetic energy of the system allows local
conformational transitions with barriers smaller than the kinetic
energy. If a larger drop in energy is encountered, the excess kinetic
energy is dissipated through the friction term (eq 8). It is thus unlikely
that the system can climb out of the global minimum once it has
reached it.
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determined starting temperatures for a variety of simu-
lated annealing protocols14,55 that should work for the
average case. However, it might be worth trying a different
temperature if a particularly difficult refinement problem
is encountered. In particular, significantly higher temper-
atures are attainable using torsion-angle molecular dy-
namics. Note that each simulated annealing refinement
run is subject to chance by using a random number
generator to generate the initial velocities. Thus, multiple
refinements must be run if systematic trends resulting
from changes of certain parameters of the annealing
schedule are to be studied. The best structure(s) among
a set of refinements using different initial velocities and/
or temperatures should be taken for further refinement
or averaging (see below).

The annealing schedule employed can in principle be
any function of the simulation step (or time domain). The
two most commonly used protocols are linear slow
cooling or constant temperature followed by quenching.
A slight advantage is obtained with slow cooling.31 The
duration of the annealing schedule is another parameter.
Too short a protocol does not allow sufficient sampling
of conformational space. Too long a protocol may waste
computer time since it is more efficient to run multiple
trials as opposed to one long refinement protocol (un-
published results).

Crystallographic Refinement
In the crystallographic case, the limited radius of conver-
gence of refinement arises not only from the high dimen-
sionality of the parameter space but also from the
crystallographic phase problem. For new crystal struc-
tures, initial electron density maps must be computed
from a combination of observed diffraction amplitudes
and experimental phases where the latter are typically of
poorer quality and lower resolution than the former. A
different problem arises when structures are solved by
molecular replacement, which uses a homologous struc-
ture as a search model.56,57 In this case the resulting
electron density maps can be severely “model-biased”;
that is, they seem to confirm the existence of the search
model without providing clear evidence of actual differ-
ences between it and the true crystal structure. In either
case, initial atomic models usually require extensive
refinement.

Many examples have shown that simulated annealing
refinement starting from initial models (obtained by
standard crystallographic techniques) produces signifi-
cantly better final models compared to those produced
by least-squares or conjugate-gradient minimization. In
a realistic test case,40 a series of models for the aspartic
proteinase penicillopepsin was generated from homolo-
gous structures present in the Protein Data Bank. The
sequence identity among these structures ranged from
100% to 25%, thus providing a set of models with increas-
ing coordinate error compared to the refined structure of
penicillopepsin. These models, after truncation of all
residues to alanine, were all used as search models in

molecular replacement against the native penicillopepsin
diffraction data. In all cases the correct placement of the
model in the penicillopepsin unit cell was found.

Both conjugate gradient minimization and simulated
annealing were carried out to compare the performance
of LSQ (the least-squares residual), MLF (the maximum
likelihood target using amplitudes), and MLHL (the maxi-
mum likelihood target using amplitudes and experimental
phase information). In the latter case, phases from single-
isomorphous replacement were used. A very large number
of conjugate gradient cycles were carried out to make the
computational requirements equivalent for both minimi-
zation and simulated annealing. The conjugate gradient
minimizations were converged; i.e., there was no change
when further cycles were carried out.

For a given target function, simulated annealing always
outperformed minimization (Figure 2). For a given starting
model, the maximum likelihood targets outperformed the
least-squares residual target for both minimization and
simulated annealing, producing models with lower phase
errors and higher map correlation coefficients when
compared to the published penicillopepsin crystal struc-
ture (Figure 2). This improvement is also illustrated in the
σA-weighted electron density maps obtained from the
refined models (Figure 3). The incorporation of experi-
mental phase information further improved the refine-

FIGURE 2. Simulated annealing (blue bars) produces better models
than extensive conjugate gradient minimization (red bars). Map
correlation coefficients were computed before and after refinement
against the native penicillopepsin diffraction data66 for the polyalanine
model derived from Mucor pusillus pepsin.67 Correlation coefficients
are between σA-weighted maps calculated from each model and
from the published penicillopepsin structure. The observed penicil-
lopepsin diffraction data was in space group C2 with cell dimensions
a ) 97.37 Å, b ) 46.64 Å, c ) 65.47 Å, and â ) 115.4°. All
refinements were carried out using diffraction data from the lowest
resolution limit of 22.0 Å up to 2.0 Å. The MLHL refinements used
single-isomorphous phases from a K3UO2F5 derivative of the peni-
cillopepsin crystal structure, which covered a resolution range of
22.0 to 2.8 Å. Simulated annealing refinements were repeated 5 times
with different initial velocities. The numerical averages of the map
correlation coefficients for the 5 refinements are shown as the blue
bars. The best map correlation coefficients from simulated annealing
are shown as the white bars.
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ment significantly despite the ambiguity in the SIR phase
probability distributions. Thus, the most efficient refine-
ment will make use of torsion angle dynamics simulated
annealing and prior phase information in the MLHL
maximum likelihood target function.

Cross-validation is essential in the calculation of the
maximum likelihood target.13,14,39 Maximum-likelihood
refinement without cross-validation gives much poorer
results, as indicated by higher free R values, higher Rfree

- R differences, and larger phase errors. It should be noted
that the normal R value usually increases upon using the
cross-validated maximum likelihood formulation. This is
a consequence of the reduction of overfitting by this
method.

Simulated annealing refinement is most useful when
the initial model is relatively crude. Given a well-refined
model, it offers little advantage over conventional methods
for automatically improving the model, with the important
exception of reducing model bias in annealed omit

maps.58 Furthermore, simulated annealing refinement of
a final model can provide information about the accuracy
and conformational variability of the refined structure (see
below).

Averaging of Independently Refined Structures
As mentioned above, multiple simulated annealing refine-
ments will generally produce somewhat different struc-
tures, some of which may be better (as assessed, for
example, in terms of the free R value) than others. This
approach offers several advantages. First, a more optimum
structure can be obtained from multiple trials as opposed
to a single simulated annealing calculation. Second, each
member of the family of refined structures may be better
in different regions of the molecule. Thus, by examining
the ensemble during model-building, one may gain
insights into possible local conformations of the molecule.
Third, the structure factors of all structures of the family

FIGURE 3. Maximum likelihood targets significantly decrease model bias in simulated annealing refinement. σA-weighted electron density
maps contoured at 1.25 σ for models from simulated annealing refinement with different targets. Residues 50-52 are shown, with the published
penicillopepsin crystal structure66 in black and the model with the lowest free R value from 5 independent refinements in red. Key: (a) initial
electron-density map prior to refinement; (b) after refinement with the LSQ target; (c) after refinement with the MLF target; (d) after refinement
with the MLHL target.
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may be averaged. This averaging will reduce the effect of
local errors (noise) that are presumably different in each
member of the family.

Torsion-angle molecular dynamics simulated annealing
with the maximum likelihood target (eq 4) performed on
human heterogeneous ribonucleoprotein A1, hnRNP59

showed that averaging produced the least model-biased
map (as indicated by the lowest free R value and the
lowest Rfree - R difference) with the polypeptide backbone
being completely connected.60 This example is another
demonstration that cross-validation of the R value is
essential for assessing model correctness11 since the
normal R value decreases with increasing model-bias of
the electron density maps whereas the free R value shows
the correct behavior.

Ensemble Models
In cases of conformational variability or discrete disorder,
there is not a single correct solution to the optimization
problem eq 1. Rather, the X-ray diffraction data represent
a spatial and temporal average over all conformations that
are assumed by the molecule. Ensembles of structures,
which are simultaneously refined against the observed
data, may thus be a more appropriate description of the
data. This has been used for some time in X-ray crystal-
lography when alternate conformations are modeled
locally. Alternate conformations can be generalized to
global conformations;16,17,61 i.e.; the model is duplicated
n-fold, the corresponding calculated structure factors are
added and refined simultaneously against the observed
X-ray diffraction data, and each member of the family is
chemically “invisible” to all other members. The number
n can be determined by cross-validation.17,18

An advantage of a multiconformer model is that it
directly incorporates many possible types of disorder and
motion (global disorder, local side chain disorder, local
wagging and rocking motions), although it is not generally
possible to distinguish between the static disorder and
motion with data from a single experiment. Furthermore,
a multiconformer model can be used to automatically
detect the most variable regions of the molecule by
inspecting the atomic root-mean-square difference around
the mean as a function of residue number. Thermal factors
of single conformer models may sometimes be misleading
by underestimating the degree of motion or disorder,62

and thus, the multiple-conformer model can be a more
faithful representation of the diffraction data. However,
it should be noted that when very high-resolution experi-
mental data (dmin of approximately 1.0 Å) are available,
the use of anisotropic thermal factors is seen to give a
better fit to the data.63 A disadvantage of the multicon-
former model is that it introduces many more degrees of
freedom. However, cross-validated maximum-likelihood
refinement can address this problem. For example, the
Rfree and R values were 0.239 and 0.237 for a single
conformer refinement and 0.231 and 0.230, respectively,
for a four-conformer refinement at 50-1.7 Å resolution
data of a fragment of mannose-binding protein A18 il-

lustrating that introduction of multiple conformers did not
increase the amount of overfitting compared to the single-
conformer case (unpublished results).

Although there are some similarities between averaging
individually refined structures and multiconformer mod-
els, there are also fundamental differences. For example,
in the case of X-ray crystallography, averaging seeks to
improve the calculated electron density map by averaging
out the noise present in the individual models, each of
which is still a good representation of the diffraction data.
This method is most useful at the early stages of refine-
ment when the model still contains errors. In contrast,
multiconformer refinement seeks to create an ensemble
of structures at the final stages of refinement which, taken
together, best represent the data. It should be noted that
each individual conformer of the ensemble does not
necessarily remain a good description of the data since
the whole ensemble is refined against the data. Clearly,
this method requires high-quality data and a high obser-
vation-to-parameter ratio.

Conclusions
Simulated annealing has improved the efficiency of mac-
romolecular structure calculation and refinement signifi-
cantly in X-ray crystallography. A case in point is the
combination of torsion angle molecular dynamics with a
cross-validated maximum likelihood target, which interact
synergistically to produce less model bias than any other
method to date. The combined method also increases the
radius of convergence allowing the refinement of poor
initial models, e.g., those obtained by weak molecular
replacement solutions.12,41 However, simulated annealing
refinement alone is still insufficient to refine a structure
automatically without human intervention. For example,
crystallographic refinement using simulated annealing
typically cannot correct mainchain tracing errors such as
register shifts. Fully automatic structure determination
probably requires significant new algorithmic develop-
ments.64

Molecular dynamics can also be used to provide new
physical insights into molecular function, which may
depend on conformational variability. The sampling char-
acteristics of simulated annealing allow the generation of
multiconformer models that can represent molecular
motion and discrete disorder, especially when combined
with the acquisition of high-quality data.18 Simulated
annealing is thus also a stepping stone toward develop-
ment of improved models of macromolecules.

Many of the recent computational developments discussed in
this review are available in the program Crystallography & NMR
System (Brunger, Adams, Clore, DeLano, Gros, Grosse-Kunstleve,
Jiang, Kuszewski, Nilges, Pannu, Read, Rice, Simonson, and
Warren; URL: http://cns.csb.yale.edu).65 This work was funded in
part by the U.S. Department of Energy under Contract No. DE-
AC03-76SF00098.
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