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Abstract 

Solvent flattening is a useful constraint for the early 
stages of crystallographic structure determination. How- 
ever, sometimes it fails to produce significant improve- 
ment of poor experimental or molecular-replacement 
phases. This often occurs as a result of incorrect pa- 
rameterization. In addition, the potential of overfitting 
or misinterpretation of the data exists. We have im- 
plemented a cross-validated (or free) R value in order 
to reduce this risk. The free R value was calculated 
between the experimental Fobs(h) and the calculated 
structure factors, F~f(h), obtained by inverse Fourier 
transformation of the solvent-flattened electron density. 
Because of the sensitivity of the free R value to the test 
set selection at low resolution complete cross-validation 
may be required. The reliability of this approach was 
assessed by examining the correlation between the free 
R value and the known phase errors for two test cases. 
A high correlation was found upon variation of the 
extent of negative density elimination, figure of merit 
estimation, and the relative weighting in the phase com- 
bination procedure. The free R value can be used to 
optimize parameters of density-modification procedures 
when independent phase error estimates are unavailable. 

the constraint of solvent flatness. This constraint is 
justified because the density in the solvent region is 
relatively featureless compared to that of the macro- 
molecule (Jiang & Brtinger, 1994). Phases are further 
improved by eliminating negative densities (Schevitz, 
Podjarny, Zwick, Hughes & Sigler, 1981) which can 
arise due to series truncation errors and phase inaccu- 
racies. Solvent flattening has met with much success 
and is now routinely performed, often in combination 
with molecular averaging (Rossmann & Blow, 1963), 
histogram matching (Zhang & Main, 1990), Sayre's 
equation (Zhang, 1993) and maximum-entropy methods 
(Xiang, Carter, Bricogne & Gilmore, 1993). 

Solvent flattening lacks an objective criterion to assess 
its success. Often the performance of the method is 
judged by visual inspection of the resulting maps. This 
can be rather subjective and can lead to misassignment of 
protein and solvent densities in the maps. In this paper, 
we describe how cross-validation (Brtinger, 1992a) can 
be used for assessing the quality of the solvent-flattening 
algorithm. Complete cross-validation (Jiang & Brtinger, 
1994) can be used in order to reduce fluctuations of the 
free R value. We show that the free /~ value has a high 
correlation with the errors in the solvent-flattened phases. 

1. Introduction 

Phase information is required in addition to the measured 
diffraction intensities to solve a crystal structure by 
X-ray crystallography. For macromolecular structures, 
ab initio phasing by direct methods has not yet succeeded 
due to the limited amount of information contained in 
the structure-factor amplitudes (Giacovazzo, Siliqi & 
Ralph, 1994). Instead, initial phases are usually obtained 
from experimental methods or molecular-replacement 
techniques. Because of the inherent errors in these initial 
phases, subsequent phase refinement and phase extension 
to higher resolution can assist greatly in the early stages 
of structure determination. Phases can be improved and 
extended by density modification, which imposes phys- 
ical and chemical constraints such as solvent flatness, 
map continuity and non-crystallographic symmetry in 
real space (for a review, see Podjamy, Bhat & Zwick, 
1987). 

Wang's (1985) solvent-flattening algorithm reduces 
the noise present in the diffraction data by imposing 
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2. Materials and methods 

2.1. Test cases 

Two known protein crystal structures were chosen to 
assess the correlation between the free R value and the 
phase error with respect to the crystal structure. The 
test cases are examples of excellent and poor starting 
multiple isomorphous replacement (MIR) phases and 
also of complete and incomplete data. 

2.1.1. Penicillopepsin. The first test case (an example 
of excellent MIR phases) was the crystal structure of 
penicillopepsin from Penicillium janthinellum consisting 
of 323 amino acids and 320 ordered water molecules. 
The space group is C2 with unit-cell dimensions a = 
97.37, b = 46.64, c = 65.47/~,/3 = 115.4 ° and the solvent 
content is 38%. It was solved by James & Sielecki (1983) 
with diffraction data collected at room temperature to 
1.8A, resolution by Hsu, Delbare, James & Hofmann 
(1977). Experimental phases to 2.8A, were obtained 
from MIR using eight heavy-atom derivatives with a 
mean figure of merit of 0.9. The measured diffraction 
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intensities and MIR phases are 97 and 91% complete to 
this resolution, respectively. 

2.1.2. Amylase inhibitor. The second test case is an 
example of substantially poorer MIR phases and rel- 
atively incomplete data. The crystal structure of the 
~-amylase inhibitor 1HOE-467A, a small protein of 74 
amino acids, was solved by Pflugrath, Wiegand, Huber 
& Vrrtesey (1986). It crystallizes in space group P212~ 21 
with unit-cell dimensions a = 61.76, b = 40.73, c = 
26.74 ]k and has a solvent content of 50%. Diffraction 
data were collected at room temperature to 1.9/~, reso- 
lution and MIR phases (mean figure of merit 0.63) were 
obtained to 2.5/~. The measured diffraction intensities 
and MIR phases are only 69.7 and 60% complete to this 
resolution, respectively. 

2.2. Computations 
All calculations were carried out with a developmen- 

tal version of X-PLOR (Brtinger, 1992b). The solvent- 
flattening algorithm was implemented in a major exten- 
sion of the X-PLOR language, rather than being coded 
in Fortran. Excerpts of this new language and the imple- 
mentation of the algorithm are described in the Appendix. 
The map calculations and Fourier transformations were 
performed using a grid size of 1/3 of the high-resolution 
limit in order to reduce problems that may arise due to 
undersampling. 

3. Theory 

3.1. Solvent-flattening procedure 
Solvent flattening is a process that iterates between 

density modification in real space and phase combination 
in reciprocal space. The density in the putative solvent 
regions is replaced by, or flattened to, its average value. 
Positivity is enforced in the macromolecule region by the 
truncation of negative electron densities. Phases obtained 
by inverse Fourier transformation of this flattened and 
truncated map are then recombined with the initial phase 
information to produce a less biased phase estimate. 
These steps are summarized in Fig. 1 and described in 
detail in the following sections. 

3.2. Envelope calculation 
Solvent flattening requires the definition of a molec- 

ular envelope, that is, a boundary that separates solvent 
from macromolecule. The methods of Wang (1985) and 
Leslie (1988a) determine this boundary approximately 
f r o m  an  in i t i a l  e l e c t r o n  d e n s i t y  m a p  o b t a i n e d  b y  M I R  o r  

molecular replacement. 
The initial map is first truncated by setting all density 

points below the average to the average density. The 
map is then smoothed by replacing the density at each 
gridpoint in the initial map by the weighted mean of the 
electron density at all surrounding grid points within a 
sphere of specified radius, rs. As the macromolecular 
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Fig. 1. Flow chart of Wang's (1985) solvent-flattening procedure as 
employed in this work. The molecular envelope is computed from 
the smoothed and truncated initial map using the method of Leslie 
(1988a). The constraints of solvent flatness and positivity are applied 
respectively to the solvent and macromolecule regions of the map. 
Updated structure factors are obtained by inverse Fourier trans- 
formation of this modified map. A figure of merit is computed 
for each reflection measuring the discrepancy between the original 
and modified structure-factor amplitudes. Phase probabilities for the 
modified structure factors are then computed for each reflection 
using (7). The modified and initial phase-probability distributions are 
then combined. Integration of the combined normalized probability 
over phase space produces a figure of merit I mcombl for each 
reflection. The combined phase, ",:comb, corresponds to the new best 
(centroid) phase. A map is made from the new Fourier synthesis 
mco,,,blFobs(h)lexp(i~comb) which is used for the next iteration of 
the whole process until the desired convergence is achieved. 
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densities are assumed to be higher than the solvent 
densities, a statistical analysis of the averaged densities 
can be used to discriminate between the macromolecule 
and solvent regions of the map. The map density points 
are sorted by value and a histogram of density values 
obtained. At this point, the solvent content of the crystal 
must be known which can be obtained from a crys- 
tal density experiment (Matthews, 1968). An electron- 
density level is determined such that the ratio of the 
integrals over the two portions of the histogram are 
equal to the solvent/macromolecule fraction. A mask 
is defined depending on whether the density points are 
below (solvent) or above (macromolecule) this density 
level. 

The fluctuations in density in the macromolecular 
region, which would cause some parts of the macro- 
molecule to appear as solvent if the initial map was 
used, are smeared out as a result of truncation and 
smoothing. Smoothing the truncated map in real space 
is computationally expensive, but it can be calculated 
more efficiently in reciprocal space (Leslie, 1988a). The 
Fourier transform of the smoothed truncated map is 
given by the product of the Fourier transform of the 
truncated initial map and an appropriate weighting func- 
tion which corresponds to the smoothing operation. It is 
important that this double Fourier transform procedure 
uses all theoretically observable reflections to a certain 
resolution, not just the ones actually observed. 

An alternative method for computing the molecular 
envelope consists of making a histogram of the local 
variation in r.m.s, densities at each gridpoint to distin- 
guish between macromolecule and solvent (Abrahams, 
Leslie, Lutter & Walker, 1994). This approach assumes 
that the local r.m.s, variations in density are lower for 
solvent than for the macromolecule. 

It should be noted that the accuracy of the molecular 
envelope critically depends on the quality of the initial 
phases. It is also possible to use crude initial models 
or to edit the mask (Jones & Kjeldgitard, 1993) before 
applying solvent flattening, especially when combined 
with NCS averaging. 

Unless otherwise stated, the envelope calculations 
in this paper were performed only once, prior to the 
solvent-flattening procedure, using the Wang-Leslie 
method with a smoothing radius, rs of 8 A. 

3.3. Figure of merit estimation 
A figure of merit for the solvent-flattened phases is 

obtained from the dicrepancy between observed and 
modified structure-factor amplitudes. In the presence of 
an appropriate model, the figure of merit (FOM) for each 
phase can be estimated from, 

f tanh (~-) (centrics) 
FOM = ~ I1(x) (acentrics), (1) 

k lO(X) 

where IO(X) and I I ( X )  are the zero and first order 
modified Bessel functions of the first kind and X is 
given by, 

X = 2[IFobs(h)llF~,c(h)l]/e E Q ,  (2) 

IF~a,c(h)l is the structure factor of the model, ~--~q repre- 
sents the amount of missing information and e corrects 
for the difference in expected intensities for different 
reciprocal lattice zones (Woolfson 1956; Srinivasan & 
Parthasarathy 1976). 

In the context of solvent flattening, the model is 
approximated through the solvent-flattened and truncated 
map, and thus IF.l~(h)l is set to IFsf(h)l (Fig. 1). Sim 
(1959) suggested computing e ~--~q by, 

e E Q  = (]Fob~(h)l- IFca'¢(h)l):, (3) 

where the angular brackets () refer to averaging over 
a number of resolution shells whereas Bricogne (1976) 
instead suggested using, 

e E q  = (IFobs(h)l 2 -IFca~c(h)12), (4) 

which measures the mean discrepancy between observed 
and calculated intensities. 

Rayment (1983) proposed a much simpler figure of 
merit estimation in phase refinements of the structure of 
mouse polyoma virus capsids, 

FOM = exp [ - l lFobs (h ) l -  IFca,c(h)ll/IFobs(h)l]. (5) 

Little theoretical justification for any of these figure 
of merit estimations exists in the context of solvent 
flattening. The performance of all three methods is 
empirically assessed in §4. 

3.4. Phase combination 
Solvent flattening is prone to model bias when errors 

are present in the solvent/molecule boundary. Conse- 
quently, portions of molecular density can be flattened by 
uncritical application of this method. Model bias can be 
reduced by combining phase probability distributions of 
solvent-flattened phases with those of the initial phases. 

Phase combination is achieved by multiplication of 
the phase probabilities, 

Pcomb(~) = [Pinit(o~)][Psf(Ot)], (6) 

where Pinit(O0 is the phase probability distribution of 
the initial phases and Psf(Cz) is that derived from the 
solvent-flattened density map. 

By equating the model with the truncated and solvent 
flattened map, the following phase probability distri- 
bution (Hendrickson & Lattman, 1970; Table 9.1 of 
Srinivasan & Parthasarathy, 1976) is appropriate, 
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Nexp[(X/2)cos(~a,c)COSa + (X/2)sin(~aJc)sina] (centrics) 
P~f(~) = Nexp[Xcos(~cale)COSO~ + Xsin(~o~alc)sim~] (acentrics) " (7) 

On integration of the normalized combined probabil- 
ity distribution, Pcomb(C~), over phase space, a combined 
best (centroid) phase and figure of merit can be obtained 
for each reflection, 

f0  7r mcomb [Fobs (h) [exp(i~comb) =I/N  IFobs(h) [ 

× [P¢omb(~)dx], (8) 

where N is a normalization factor. The left-hand side 
of (8) is the most common Fourier synthesis used for 
solvent flattening. Alternative forms of Fourier syntheses 
are briefly discussed in §4.3. 

3.5. Density truncation 
The F00o term is in general unknown for macromolec- 

ular crystal structures. Thus, the average of the electron- 
density map is zero which will affect the result of density 
truncation. An estimate for the average electron density 
(Fooo/V) (Leslie, 1988b) can be obtained from, 

[(Fo~x)/V) + (p~o.)]/[(F(~))/V) + (Pmacro)] - -  S ,  (9) 

3.7. Complete cross validation 
The R value (10) is a poor criterion for assessing 

phase accuracy because it can be made arbitrarily small 
by inappropriate paramaterization, e.g. by using a very 
small smoothing radius. As a result, the data are overfit, 
producing possibly poorer phases than the initial ones. 
This problem can be avoided by using cross validation. 
The free R value shows a much higher correlation with 
the phase accuracy of refined models than the R value 
(Brtinger, 1992a, 1993). This method has already been 
used to optimize the performance of density skeletoniza- 
tion (Baker, Bystroff, Fletterick & Agard, 1993; Grimes 
& Stuart, 1994). 

In the context of solvent flattening, cross-validation 
consists of omitting a certain subset or test set, T, 
of the observed data, modifying electron-density maps 
computed using the remaining data, updating calculated 
structure factors [Fsf(h)] by inverse Fourier transforma- 
tion, and evaluating the free R value (Rfree) over the test 
set of reflections T, 

where (P.~o,) and (Pmacro) are the average solvent and 
macromolecular densities in the Fourier map (computed 
excluding the F¢~o/V term). S is the ratio of the physical 
solvent and macromolecular densities. For proteins, the 
density is around 0.43 e-/~-3. The solvent density is de- 
pendent on the environment. For water this is 0.33 e-/~-3 
leading to a value of S of 0.77. However, this is only 
appropriate if all of the low resolution terms are present. 
Thus, to obtain maximum performance of the algorithm 
it may be advisable to treat S as an adjustable parameter. 

The average electron density Fooo/V is added to the 
map prior to truncation of negative densities. 

3.6. Measure of convergence 
The convergence of the solvent-flattening algorithm 

can be assessed by the R value between observed and 
modified structure factors [Fobs(h) and Fsf(h)] weighted 
by the combined figure of merit mcomb. 

R = Z rnc°mb(h)l/F°t's(h)l- klFsf(h)ll 
h 

-" Z mc°mb(h)lF°bs(h)l' 
h 

(lO) 

where k is a scale factor. We used mcomb(h) weighting in 
calculating the R value because it is supposed to assess 
the quality of the electron-density maps computed using 
figure-of-merit weighted amplitudes (8). 

Rfree -- ~ mcombllFobs(h)l- klFsf(h)ll 
hCT 

-" ~ mcomolFoos(h)[ • 
hET 

(11) 

The choice of the test set usually has little influence 
on the behavior of the free R value, provided the 
selection is purely random and the test set contains 
a sufficient number of data points (Brfinger, 1993). 
However, considerable variation of Rfree can occur at 
low resolution because there are comparatively few 
reflections (Jiang & Briinger, 1994). In crystallographic 
refinement the low resolution reflections are usually 
omitted, but they are of vital importance for solvent 
flattening since they affect the definition of the envelope 
and the connectivity of the flattened map. To reduce 
fluctuations of the free R value at low resolution one can 
use complete cross-validation (Jiang & Briinger, 1994). 
Briefly, the observed diffraction data set is partitioned 
into n non-overlapping test sets (T l . . . . .  T,,) where 
each set contains a subset (e.g. 10%) of the data. For 
each test set Ti, a corresponding working set Ai is 
defined consisting of all data excluding Ti. Solvent 
flattening is carried out n times, once for each of the 
working sets Ai. Only the working reflections are used to 
compute the electron-density map, but updated solvent- 
flattened calculated structure factors are obtained for 
all the reflections, including the test set T/, on inverse 
Fourier transformation of the modified map to reciprocal 
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space (Fig. 2). After the n separate solvent-flattening 
macrocycles have been performed, the structure factors 
F J ( h )  for the test sets are merged and the completely 
cross-validated R value computed, 

R complete sf 
free : Z  "/'comb IFobs(h)l - klFcv(h)l  I 

h 

+ Z  mcomblFob.~(h) 1. (12) 
h 

It should be noted both the working R value (10) and 
the free R values for an individual test set (11) and the 
completely cross-validated R value (12) are zero prior to 
density modification. Thus, the performance of solvent 
flattening is monitored by the change in the R value 
and the free R values after the first density-modification 
cycle. 

Cross-validation is useful for testing and optimization 
of the algorithm. 

3.8. Phase refinement versus phase extension 

Solvent flattening can be used to extend phases to 
higher resolution as well as to refine them. Since ini- 
tial phases are unavailable for those that are extended 
the algorithm described above must be slightly mod- 
ified. Phase combination cannot be performed for the 
phase-extended reflections. Thus, the phase probability 
distribution from solvent flattening, Psf(c~), is directly 
used. Only the initially phased reflections are used 
to compute the initial map. In subsequent cycles all 
observed diffraction data are included, thus producing 
phases for initially unphased reflections. The figure of 
merit estimations (1)-(5) are computed for all observed 
intensities. 

I store structure factors 
(Fob s, F sf mcomb ) 

for test set T i 

Partition the reflection data ~'~ 
I,..into 10 test sets (T 1 . . . . .  TIO) ) 

/ 

Start with test set 1 (T i = T1) 

~c initial map T/~" ompute using all reflections but 

reflections used for and " 
solvent flattening density truncation 

Inverse FFT 

I °btainlFcSfl'$sf 1 
calculate figure of merit, 

combine probability, 
calculate mcomb 
for all reflections l" 

~.m compute new map 
comb * I Fob s (h) I exp ( i ¢ comb 

using all reflections but T i j @no 
I recall structure factors (Fob s, FcSf mcomb ) 

for all 10 test sets. 
calculate R complete 

sf ':~ between Fob s and Fcv weighted by mcomb 1 

Fig. 2. Flow chart of complete 
cross-validation applied to 
solvent flattening. The molecular 
envelope is computed using 
all observed reflections prior 
to the cross-validated solvent- 
flattening process. Only the 
working reflections (all but 
T,) are used to compute the 
electron-density maps. The 
inverse Fourier transformation 
updates calculated structure 
factors, Fsf(h) ,  for a l l  observed 
reflections. Structure factors for 
the current test set, FcS~(h), are 
written out for each cycle of 
the refinement. When all ten 
refinements are completed these 
structure factors are used to 

~?complete 
compu te . ,  free (12). 
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We will mainly focus on phase refinement in this 
paper although cross-validation can be applied to phase 
extension as well. For phase refinement, the test sets are 
chosen from the set of all reflections with known initial 
phases. For phase extension, the test sets are chosen from 
all reflections for which intensities have been measured. 

3.9. Testing the algorithm 
For a known crystal structure, the quality of the 

solvent-flattened phases can be assessed by the phase 
difference between the combined phases, qOcomb(h), from 
solvent flattening and those calculated from the model, 
qOmodel ( h ) ,  

(rn, c o m b ( h ) A g v )  - - Z  l lZc°mb(h)lqOc°mb(h) -- ggm{xlel(h)[ 

h 

-- ~'-2 rn, comb (h). (13) 
h 

Figure-of-merit weighting is applied as in the compu- 
/?complete 

tation of I~. (10), Rfre~ ( 11 ) and ~ "free (12 ) .  The 
phase errors were always obtained for all reflections for 
which initial phases were available regardless of cross- 

validation. In a real situation, phase accuracy cannot 
be assessed because the crystal structure is in general 
unknown. 

4. Results and discussion 

4.1. Influence of the completeness of the data 
The influence of the completeness of the data on 

the accuracy of the free R value is shown in Figs. 
3 and 4 for penicillopepsin and the amylase inhibitor 
data, respectively. Complete cross-validation was re- 
peated five times using different random assignments 
of the test sets to examine the variation of /?complete * "free 
for phase refinement. The free R value shows con- 
siderable variation when computed for the individual 
test sets for both penicillopepsin (,-,0.03) and amylase 
inhibitor (,-~0.13). To reduce these variations we used 
complete cross validation. The /?complete values show * "free 
smaller variations for different partitionings of the data 
compared to the individual free R values (Figs. 3b and 
4b). The errors on the mean associated with the average 
value are around 0.002 and 0.003 for penicillopepsin 
and amylase inhibitor, respectively. This suggests that 
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Fig. 3. The accuracy of cross-validated R values for penicillopepsin using different partitionings of the diffaction data. Phase combination was 
carried out using u = 1, P = 1 (14) and density truncation with S = 0.87 (9). (a) and (b) were generated using all initially phased reflections. 
(c) and (d) were obtained using only 70% of these reflections (selected randomly) to examine the success of complete cross-validation with 
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it would be ideal to repeat complete cross-validation 
many times in order to obtain a converged average 
and reduced errors of the mean. However, at least for 

/-~complete penicillopepsin the "~free curves obtained from five 
independent partitionings are similar (Fig. 3b). This 
shows that a single complete cross-validation should be 
sufficient in this case. 

The results for amylase inhibitor are not quite as 
/;?complete s h o w s  large fluctuations for the encouraging a s .  "free 

different partitionings (Fig. 4b). These fluctuations arise 
because of both incompleteness of the data (about 60% 
complete) and the small overall number of the unique 
set of reflections. 

The influence of completeness and data-set size have 
been studied by randomly removing 30% of the exper- 
imental data in penicillopepsin to simulate incomplete 
data (Figs. 3c and 3d). The effect of removing 30% of 
the data, at random, for penicillopepsin is to slightly 
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increase the fluctuations among the single test sets 
complete (Fig. 3c). Furthermore, the mean of Rfree shows 

large errors (Fig. 3d). In light of these results, using 
only a single test set to assess the quality of density 
modification procedures can be prone to error. Even 
for the almost complete data of penicillopepsin the 
free R value shows variations among the ten test sets 
with a standard deviation of around 1%, consistent 
with the calculations of Briinger (1995). It is, therefore, 
advisable to use complete cross-validation and in cases 
of incomplete data or small data-set sizes a mean value 
for completely cross-validated R values for a number of 
different partitionings of the data set should be obtained. 

4.2. Figure of merit estimation 
Different figure of merit estimates [(1)-(5)] are com- 

pared in Fig. 5 for phase refinement of penicillopepsin 
at 2.8/~ resolution. Bricogne's modified version of Sim 
weighting (4) gives rise to the most stable behavior 
and largest improvement, as assessed by both the free 
R value and the phase errors. The Rayment weighting 
scheme (5) gives rise to slightly oscillatory phase errors 
and free R values. Sim weighting (3) produces the lowest 
working set R value but the phase error and free R value 
diverge as the number of cycles increases. 

4.3. Phase combination 

Equal weighting of the phase probabilities (6) does 
not necessarily lead to the best combined phases as sug- 
gested by Bricogne (1976). This is because the two phase 
probability distributions (6) are not completely indepen- 
dent. The solvent-flattened phase probability distribu- 
tion, Psf(c~), is obtained from the Fourier transformation 
of the modified electron-density map which was in turn 
derived from the initial phases with phase probability 
distribution Pinit(c~). Bricogne (1976) concluded that a 
solution to this problem is a relative weighting of the 
two sources of phase information, as in, 

Pcomb(Ot) = [ ~ i n i t ( ~ ) ] u [ / g s f ( ~ ) ] v  , (14) 

with u not equal to v. A similar issue is encountered 
when combining sources of phase information for dif- 
ferent derivatives in MIR phasing (Blow & Matthews, 
1973). A related approach to overcome the problems 
of combining partially dependent phase probabilities in- 
volves adjusting the amplitude coefficients in the result- 
ing combined Fourier synthesis. Rice (1981) suggested 
using Fourier syntheses of the form, 

Fcomb(h)--mcomb{IFobs(h)l+Qc[IFobs(h)l- IF•,c(h)l]} 
X exp(iqOcomb),  ( 1 5 )  

with Qc set to 3. Stuart & Artymuik (1985) and Read 
(1986) extended this approach further by calculating val- 
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ues of Q~ for each reflection from the errors associated 
with each of the phase distributions. 

We have used complete cross-validation to identify 
the optimum relative weights u and v in (14) using the 
standard Fourier synthesis (8). We have constrained u + 
v to a value of  two such that the combined probability 
distribution is not broadened or sharpened compared to 
the commonly used unit weighting. For penicillopepsin, 
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serving converged behavior by using powers u and v of  
0.75 and 1.25, respectively (Fig. 6c). The corresponding 
Rcomplete value (Fig. 6b) is essentially converged and is free 
marginally lower than for u - 1 and v - 1. However, 

/:?complete values for these after about ten cycles the "~free 
two combination schemes are almost identical. Given 

/:?complete the error in ,~fre~ of  about 0.5% (Fig. 3b), these 
differences cannot be regarded as significant. Using an 
even lower value, u - 0.25, initially leads to reduced 
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of the data. 
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/:?complete value for values in both the phase errors and the ,,.free 
the first few cycles. However, divergence emerges during 
subsequent cycles even though the conventional R value 
(10) continues to decrease monotonically. This behavior 
is indicative of overfitting the observed amplitudes by 
putting too little weight on the MIR phases. Complete 
cross validation can be used to detect the point at which 
the data become overfit as a result of drifting away from 
the initial MIR solution. On the other hand, in the case 
where too much weight is applied to the MIR phases (u 
_ /?complete values and - 1.25, "v = 0.75) the phase errors, ,~f~ee 
R values are all higher. While the free /7, value is not 
perfectly correlated with phase accuracy, it nevertheless 
shows much better behaviour than the normal R value. 
The combination scheme u = 0.75 and v = 1.25 with the 
lowest R value that does not overfit the data (as detected 

/?complete 
by "'free , is the most appropriate method as judged 
by the phase errors. 

4.4. Density truncation 

Complete cross-validation was used to assess the 
/?complete effect of density truncation (Fig. 7). Both ,,f~ee and 

the phase errors indicate that solvent flattening is signif- 
icantly improved when density truncation is employed. 
We used a value of S = 0.87. Slightly higher or lower 
values of S (for example, S = 0.60) also give rise to 

/?complete values and phase errors, but the per- converged ,, free 
formance is slightly poorer. However, these differences 
in  /?complete ''lree are often insignificant given the error of 
around 0.5% as estimated from Fig. 3(b). 

4.5. Envelope calculations 

The choice of the smoothing radius used for the enve- 
lope calculation has been the subject of much discussion 
by Leslie (1988b). Too small a radius is likely to produce 
cavities within the protein and assign external protein 
loops to the solvent region, whereas too large a value will 
remove detail from the solvent/macromolecule bound- 
ary. This is reflected in the poor behaviour of /-?complete 

"free 
and the phases error for small (2A) and large (15,~,) 
values of the smoothing radius (Fig. 8). In contrast, the 
normal R value is best for the largest phase errors (2 ,~). 

4.6. Phase extension 

Solvent flattening was used to extend the resolution 
of the initial phases (Fig. 9). Complete cross-validation 
showed that optimal parameters for phase extension 
were close to those of phase refinement (combination 
scheme u = 0.75, v = 1.25 with Bricogne's version 
of Sim weighting and density truncation applied with 
S = 0.87). A fairly low phase error was achieved for 
the extended reflections illustrating the power of phase 
extension using solvent flattening; the constraint of flat 
solvent density improves the phases at high resolution 
because it removes some of high resolution noise present 
in the data. The performance of the phase improvement 

method is remarkable considering that phase extension 
was performed in one step from 2.8 to 1.8/~, resolution. 
Usually, phase extension is performed in several steps 
in reciprocal space. Clearly, this unexpected observation 
needs further investigation. 

4.7. Other methods 

Phase combination of the modified phases with the 
initial experimental phases helps eliminate model bias. 
However, if some noisy density in part of the solvent 
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region is removed by flattening then this original, un- 
desired, feature will to some extent still be present in 
the resulting combined Fourier synthesis. This may lead 
to slower convergence of the algorithm. Abrahams et 
al. (1994) proposed a possible solution to this problem 
by flipping rather than flattening the solvent densities. 
In this manner, originally more negative regions of 
electron density become positive on flipping such that 
the combined phases are more likely to lead to a flat 
region in the resulting electron-density map. 

We find that flipping rather than flattening the solvent 
densities and computing the molecular envelope by 
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local r.m.s, variations in density (see §3.2) yields only 
slight improvement for the penicillopepsin test case (not 
shown). Only marginal or no improvement is achieved 
using these methods possibly as a result of the high 
quality of the initial MIR phases. However, in the 
case of the F1-ATPase structure solved by Abrahams 
et al. (1994), which had very much poorer starting 
experimental phases, significant phase improvement was 
obtained using both methods. 

5. Concluding remarks 

Solvent flattening can be a useful tool for improving ex- 
perimental or molecular-replacement phases. However, 
up to now no objective criterion has been available by 
which to assess and quantify the improvement. We have 
shown that cross-validation is a step towards developing 
such a criterion. There was a high correlation between 
the free R value and phase errors (Figs. 5-8)  except for 
the phase combination scheme u = 0.75, v = 1.25 (Fig. 
6). This degree of correlation suggests that complete 
cross-validation can be used to identify cases where 
solvent flattening significantly overfits the data or where 
the improvement is minimal. 

The free R value obtained from solvent flattening is 
fairly sensitive to the partitioning of the data into test 
and working sets. This is especially true if the number 
of reflections is small due to incompleteness of the data 
or small unit cell size. This problem is largely overcome 
by using complete cross-validation where the reflection 
data are partitioned into ten non-overlapping test sets. 
Rcomplete is obtained after running cross-validation ten free 
times, once for each of the test sets. 

Some phase improvement is achieved when no density 
truncation is applied (Fig. 7). However, both the free 
R value and the phase errors decrease significantly 
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phase-extended region. 



1000 CROSS-VALIDATED DENSITY MODIFICATION 

when negative densities are eliminated. On the other 
hand, the working R value is considerably lower when 
no truncation is enforced making it an unsatisfactory 
indicator of phase improvement. Thus, the free R value 
is successful in identifying the method which gives the 
better phase improvement. 

In a similar vein, overfitting occurs when the smooth- 
ing radius of the Wang-Leslie envelope mask is too 
small (Fig. 8). The free R value and the phase errors 
are signficantly higher with an averaging radius of 2/~, 
rather than 8/~ while the conventional R value is lower. 
Thus, the free R value is correlated with phase accuracy 
whereas the R value is often not correlated. 

We chose as our primary test case the almost complete 
diffraction data of penicillopepsin with very good quality 
starting experimental phases. Although this structure 
is not necessarily representative of a typical case for 
solvent flattening, the main point of this paper has 
been to demonstrate the validity of cross-validation for 
monitoring density-modification methods such as solvent 
flattening. Optimal parameters have been derived for 
solvent flattening of penicillopepsin, but it should be 
noted that these parameters do not necessarily hold for 
other systems. Indeed, the case of using the methods 
of inverting the solvent densities and calculating the 
molecular envelope via local r.m.s, variations in density 
(see §4.7) serves as an example; no further improve- 
ments over conventional methods are achieved with 
penicillopepsin whereas dramatic phase improvements 
are reported using these new methods for the F1 structure 
(Abrahams et al., 1994). Thus, cross validation should be 
used to optimize the performance of density modification 
on a case-by-case basis. 
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APPENDIX 

A 1. Overview of X-PLOR's crystallographic language 
Solvent flattening has been implemented using a new 

crystallographic language developed in X-PLOR. This 
language consists of concise structure-factor and map 
manipulations. The key features of this new language 
include: 
• the ability to declare arrays in real and reciprocal space; 
• the use of selections for operations involving both 

structure factors and map elements; 
• modularity as accomplished through macros; 
• the possibility to design new algorithms without having 

to alter the underlying Fortran code. 

A2. Solvent-flattening algorithm 
An extract from the main body of the X-PLOR script 

for phase refinement is shown below. 
{* PHASE IMPROVEMENT CYCLES *} 

w h i l e  ($1 < $ n c y c l e s )  loop main 
e v a l u a t e  ($1=$1+1) 

{* DENSITY MODIFICATION *} 
{* apply  s o l v e n t  f l a t t e n i n g  *} 
do (mapn$ave_sol_d~u) (mask=l) 

{* apply  n e g a t i v e  d e n s i t y  e l i m i n a t i o n  *} 
do (mape-$fOOO_over_v) (map < -$fOOO_over_v) 

{* i n v e r s e  FFT to  update  s t r u c t u r e  f a c t o r s  Fsf  *)  
do ( f s f e f t ( n a p ) )  ( a l l )  

{* COMPUTE NEW FIGURE OF MERIT *} 
do (fomc=O) ( a l l )  

@MACRO:weighting ( 8 f l e f o b e ;  
# f 2 = f s f ;  
I fO lmfOIC;  
lielI(alplitude(fobs)>O luld fol>O); ) 

{* t r u n c a t e  f i g u r e  of  m e r i t  tO a v o i d  o v e r f l o ,  prob l~as  *) 
do (fomc~ain(fomc,O.9995))  (a11) 

{* c a l c u l a t e  Hendrickson-Lattman c o e f f i c i a n t s  from t h e  *} 
~* modified phaaoe and fom (rome) *) 
@MACRO:foltox ( I x f i t - x c ;  

#fon=fomc; ) 

d o  (SLaa = x c e c o s ( p h a e e ( f s f ) ) )  ( a l l )  
do (HLBB = x c * s i n ( p h a s e ( f s f ) ) )  ( a l l )  
do (HLCC =0) ( a l l )  
do (HLDD =0) ( a l l )  

{* PHASE COMBINATION *} 
{* f i r s t  r e s e t  i n i t i a l  Hendrickson-Lattman c o e f f i c i a n t s  *) 
do (HLA =xo*cos (phase ( fobJ ) ) )  ( a l l )  
do (HLB = x o * s i n ( p h a s e ( f o b s ) ) )  ( a l l )  
do (HLC =0) ( a l l )  
do (HLD mO) ( a l l )  

{* combine p r o b a b i l i t i e s  *} 
@NACRO:conbineprobability ( #messages="off"; 

#addnmae="from i n i t i a l  phases";  
IpamHLA; 
#pb=HLB; 
8pc=HLC; 
8pdsHLD; 
Iw=$u; 
# a d d n m e = " f r o a d e n s i t y  m o d i f i c a t i o n " ;  
8addauHLAi; 
|addb=HLBB; 
Saddc=HLCC; 
#adddmHLDD; 
laddw-$v;)  

(*  use  o n l y  phase  p r o b a b i l i t i e s  from d e n s i t y  m o d i f i c a t i o n  f o r  *} 
~* i n i t t a l l y  unphased r e f l e c t i o n s  *} 
do (HLA =HLAA) ( fob <=0) 
do (HLB =HLBB) (fou <-O) 
do (HLC =0) (fom <=0) 
do (HLD =0) (fom <=0) 

~* coampute t h e  combined f i g u r e  of  m e r i t  * } 
@NlCKO:getfon ( 8pa=HLA; 

Ipb=HLB; 
8pc-HLC; 
8pd=HLV; 
8 m ~ ;  ) 

{* compute new F o u r i e r  s y n t h e s i s  from combined fom and combined phase  *} 
do ( f comb=combine (ampl i tuds (m)*anp l i t ude ( fobe ) ,phase (a ) ) )  ( a l l )  

{* prepare  f o r  n e x t  c y c l e  - make map from new F o u r i e r  s y n t h e s i s * )  
do (map=ft(fcomb))  ( amp l i t ude ( fobs )>  0 and feN>O) 

{* OUTPUT STATISTICS *) 

s e t  d l s p l a y = l o u t p u t _ R v a l u e  end 
d i s p l a y  c y c l e  $I 
@NACRO:statist ics_Rvaluo ( S lobs=fobs ;  

I f c a l c = f s f ;  
Ifom=fom; 
#mpmm&mplitude(m);) 

s e t  d i sp lay=$disp lay_Rvalu@ end 
d i s p l a y  $1[ f3 .0 ]  Se21[f6 .4]  

end loop main 
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Objects in real space are: 
map - the electron-density map, subject to density 

modification; 
mask - the solvent/macromolecule mask map; 

and in reciprocal space: 
f sf -- modified structure factors prior to phase com- 

bination; 
f c o m b -  phase combined structure factors; 
fomo - figure of merit of  the initial phases; 
fomc - figure of merit of  the calulated phases from 

density modification; 
m - complex figure of merit of the combined phases 

[where a m p l i t u d e  (m) is the actual figure of merit; 
and p h a s e  (m) the best combined (centroid) phase)] xo 
and xc represent the initial and calculated values of x 
(2) required for computation of the phase probabili ty 
distribution (7); 

HLA etc. and HLAA etc. are the Hendr ickson-Lat tman 
coefficients (Hendrickson & Lattman, 1970) of the ini- 
tial and calculated phase probability distributions. The 
combined probability is returned as HLA etc. 

The F o o o / V  term ($f000_over_v) and the average 
solvent density ( S a v e _ s o l _ d e n )  in the map, (Psol), are 
calculated prior to the phase improvement  cycles. The 
relative weights for phase combination,  Su and Sv, are 
set at the beginning of the script. 

The changes that had to be made to the script for 
cr0ss-validation were minimal  as a result of the selection 
operator. Maps for density modification can be made 
using only the working reflections by including the 
additional selection ( t e s t  = 0), i.e. by changing the 
selections from (amplitude (fobs) > 0 and fom > 

O) to (amplitude(fobs) > 0 and fom > 0 and 

test = O). 

The selection facility allows a high degree of con- 
trol over which elements are selected for a particular 
operation. A full aymmetric  unit of  reflections have 
been defined for the computation of the Wang-Les l ie  
mask. Thus, it is necessary to use the selection (ampl.i- 
t u d e  ( fobs )  > 0) to prevent unobserved reflections 
with f o b s  : 0 from being included in the shell-wise 
average of e ~ ] q .  In the case of refinement it is also 
necessary to use the additional selection (tom > 0) 
which flags the initially phased reflections. 

A3. Macros  

An X - P L O R  macro is a script file with a well defined 
set of input parameters (W. L. DeLano, unpublished 
results). These macro parameters are declared in a header 
at the top of the script along with optional default values. 
When a macro is invoked from X - P L O R ,  the parameters 
and any default values are read from the macro file 
header. These parameters can then be modified upon 
macro invocation. All other parameters are assigned dif- 
ferent values before the body is evaluated. The following 
example is the macro file used to calculate the W a n g -  
Leslie envelope mask. 

macro {w~ng_leslie_mask} 
( 

|mapl=map; 
|map2=mask; 

) 

declare name=wl domain=reel type*real end {* wl is the weighting function*} 
{* in reciprocal space *} 

declare name=temp domain=reel type*comp end {* temporary structure $} 
{* factor array ,} 

{* compute weighting function wl *} 
evaluate ($rtod=180.O/$pi) 
do (wl=2.0*$pi*s()*$Rs) (all) 
do (wl-3(sin(wl*$rtod)-wl 6os(wl*$rtod)) / ul'3 

- 3(2 wl sin(wl*$rtod) 
- (wi'2-2) =os(wl*$rtod) - 2) / wl'4) ~all) 

do (temp=wl * ft(max(O.O.fmapl))) (all) 
do (Imap2=ft(temp)) (all) 

{* Define macromolecule and solvent re~ions of the map ,} 
{* compute cutoff *} 
,istogram 

mbins=999 

solcon=$solcon 
from=|map2 

end 
evaluate ($cutoff=$result) 

do (map3=|map2) (all) 
do (|map2=l) (map3 < $cutoff) 

do (lmap2=O) (map3 >= $cutoff) 

{*map2 =I (< $Cutoff) lepresents the solvent region *} 
{*map2 =0 (>= $cutoff) represents the protein region *} 

{* .nap2 is the smoothed mir map , }  

The initial map (default name map) is passed to the 
macro as object #map1 and the mask (a map restricted 
to values of 1 and 0) retumed to the main level of the 
X - P L O R  script as #map2 (default name mask). The size 
of the smoothing radius, $Rs, and the solvent content, 
S s o l c o n ,  are defined at the beginning of the solvent- 
flattening script. 
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