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vectorized SGFFT algorithm is up to 26 times faster 
than the vectorized direct summation method on the 
Cray-XMP. Since the SGFFT algorithm is designed 
in a general and simple way, it is expected that it 
could be efficiently implemented on supercomputers 
with new parallel architectures. 

The author thanks M. Karplus, J. Kuriyan, G. A. 
Petsko and W. I. Weis for useful discussions. The 
work described in this paper was begun while the 
author was a research associate at Harvard University. 
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Abstract 

A detailed description of the method of crystallo- 
graphic refinement by simulated annealing is pre- 
sented. To test the method, it has been applied to a 
1-5 A resolution X-ray structure of crambin. The 
dependence of the success of the simulated annealing 
protocol with respect to the temperature of the heating 

0108-7673/89/010050-12503.00 

stage is discussed. Optimal success is achieved at 
relatively high temperatures. Regardless of the pro- 
tocol used, the molecular-dynamics refined structure 
always yields an improved R factor compared with 
restrained least-squares refinement without manual 
re-fitting. The differences between the various refined 
structures and the corresponding electron density 
maps are discussed. 

© 1989 International Union of Crystallography 
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Introduction 

Conventional refinement of the X-ray structure of 
biological macromolecules involves a series of steps, 
each of which consists of a few cycles of least-squares 
refinement with stereochemical and internal packing 
restraints (Sussmann, Holbrook, Church & Kim, 
1977; Jack & Levitt, 1978; Konnert & Hendrickson, 
1980; Moss & Morffew, 1982; Hendrickson, 1985; 
Tronrud, Ten Eyck & Matthews, 1987), that are fol- 
lowed by re-fitting the model structure to difference 
electron density maps with interactive computer 
graphics (Jones, 1978). During the final stages of 
refinement, solvent molecules are usually included 
and alternative conformations for some atoms or 
residues in the protein may be introduced. 

The aim of least-squares refinement is to minimize 
the difference between the observed [[Fobs(h)l] and 
calculated [[Fcalc(h)[] structure-factor amplitudes, 
which is usually expressed as a weighted sum of the 
residual 

Y~ Wh[lFobs(h)l- klFc~,~(h)l] 2 (I) 
h 

where h=(h,k,l) are indices referring to the 
reciprocal-lattice points of the crystal. 

In the case of macromolecules, the restrained least- 
squares refinement (RLSQ refinement) procedure is 
easily trapped in a local minimum and it does not 
correct the positions of residues that are misplaced 
by more than about 1/~ so that manual adjustments 
of the model structure are necessary. Crystallographic 
refinement can be understood as a nonlinear optimi- 
zation problem with the aim of finding a minimum 
close to the global minimum of a target function 
f (X)  = f ( x t ,  x 2 , . . . ,  x~) containing the residual sum 
[(1)], and stereochemical and other interactions of 
the macromolecule; the quantities xl, x 2 , . . . ,  x, rep- 
resent the variables of the system, such as the atomic 
positions or individual atomic temperature factors. 
In the past few years considerable progress has been 
reported in nonlinear optimization problems by the 
introduction of simulated annealing (Kirkpatrick, 
Gelatt & Vecchi, 1983). Simulated annealing (SA) is 
now in widespread use in areas such as electronic 
circuit design (Soukop, 1981). The method usually 
consists of simulating the many-parameter system by 
a Monte Carlo algorithm (Metropolis, Rosenbluth, 
Rosenbluth, Teller & Teller, 1953) which involves 
trial moves of xl,x2,. . . ,x, , .  Gradient descent 
methods, such as RLSQ refinement, accept only 
moves that reduce f (X)  and, therefore, cannot escape 
from local minima. Monte Carlo algorithms, on the 
other hand, accept certain moves that increase f (X),  
as well as those that decrease f(X). A move which 
increases f (X)  is accepted with a probability given 
by exp [-Af(X)/kT] where Af(X) is the difference 
between the values o f f ( X )  before and after the trial 
move, T is the 'temperature' of the system and k is 

Boltzmann's constant. In fact, T should be under- 
stood not as a physical temperature but rather as a 
control parameter that determines whether the system 
can escape certain local minima. Thus, very high 
values of T may have to be introduced if the barriers 
between local minima are large. The success of simu- 
lated annealing is dependent on the 'annealing' 
schedule which determines how the temperature is 
modified during the simulation. Initially, the tem- 
perature is kept very high and the system is then 
'annealed' by slowly reducing the temperature. In 
other words, a coarse search is carried out at high 
temperatures and a local minimum is approached 
during the cooling stage. This procedure may have 
to be repeated to reach the global minimum. The 
major difficulty in applying simulated annealing to 
specific problems appears to be the choice of an 
efficient annealing schedule (Bounds, 1987). 

A first attempt to introduce simulated annealing 
into crystallographic refinement has been reported 
(Brfinger, Kuriyan & Karplus, 1987). A major 
difference from the optimization problems discussed 
by Kirkpatrick et al. (1983) is that one is optimizing 
a single unit with internal degrees of freedom rep- 
resenting a macromolecule rather than a fluid-like 
system consisting of many identical subunits. A direct 
application of the Metropolis algorithm to 
macromolecules turns out to be inefficient if all 
degrees of freedom are included, as the covalent 
bonds of the system will lead to rejection of most 
steps taken by the algorithm. Instead, molecular 
dynamics (Karplus & McCammon, 1983) can be used 
to follow the gradients of a target function and to 
introduce a temperature into the system to escape 
from local minima. Refinement by simulated anneal- 
ing with molecular dynamics proceeds in the same 
way as with the Monte Carlo algorithm: there is a 
heating stage and a cooling stage, with heating and 
cooling possibly repeated several times. The confor- 
mational space searched by molecular dynamics is 
confined to regions allowed by stereochemical and 
other restraints by the inclusion of an empirical poten- 
tial energy term (Brooks, Bruccoleri, Olafson, States, 
Swaminathan & Karplus, 1983) in the target function. 
The diffraction data are introduced into the target 
function by including the crystallographic residual 
[(1)] as an additional term. The resulting effective 
potential energy is similar to the function used in 
refinement by least-squares minimization (Jack & 
Levitt, 1978). 

Briinger, Kuriyan & Karplus (1987) showed that 
SA refinement has a radius of convergence that is 
significantly larger than that of conventional RLSQ 
refinement and that the method can reduce the need 
for manual corrections. In the present paper a detailed 
description of the SA-refinement method is given with 
a brief description of the program. The robustness 
of the method with respect to data resolution and 
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temperature during the heating stage is demonstrated 
by application to a 1.5 ~ resolution structure of cram- 
bin (Hendrickson & Teeter, 1981). 

Methodology 
In this section we first describe the form of the poten- 
tial energy function with emphasis on the changes 
required to avoid artifacts that could be introduced 
by the high temperatures used in the simulation. Next, 
we describe how the potential energy function can 
be extended to include nonbonded interactions 
between symmetry-related molecules. We then show 
how the temperature can be controlled during a 
molecular dynamics calculation, followed by a 
description of an effective potential energy that con- 
tains information about the diffraction data. We then 
give a brief description of the program X - P L O R  used 
in the SA refinement. Finally, we introduce the system 
studied in the present paper. 

Empirical potential energy 

The empirical potential energy E~ is a function of 
all atomic positions of the system describing internal 
stereochemical interactions (bond lengths, bond 
angles, dihedral torsion angles, chiral centers, planar- 
ity of aromatic rings) as well as nonbonded (van der 
Waals and electrostatic) interactions. 

E ,=  ~ kb(r--ro)2+ ~. ko(O-O0) 2 
bonds angles 

+ ~ k~cos(n~o+d)  
dihedrals 

+ Y~ ko,((o - (Oo) 2 
chiral, planar 

+ ~ (ar-12+br-6+cr- t ) .  (2) 
atom pairs 

The parameters of the empirical potential energy E~ 
are inferred from experimental as well as theoretical 
investigations (Lifson & Stern, 1982; Levitt, 1983; 
Brooks et al., 1983; N6methy, Pottie & Scheraga, 
1983; Hermans, Berendsen, van Gunsteren & Postma, 
1984; Nilsson & Karplus, 1986; Weiner, Kollman, 
Nguyen & Case, 1986). 

In this work stereochemical and nonbonded par- 
ameters for the empirical potential energy were taken 
from the explicit polar hydrogen parameter set 
PARAM19 and TOPH19 of C H A R M M  (Brooks et 
al., 1983) with several modifications that avoid un- 
physical structural changes induced by the use of very 
high temperatures in the dynamics. The standard 
twofold dihedral angle potential energy for rotations 
around H - N = C - O  peptide bonds has two minima, 
allowing both trans and cis peptide bonds. It was 
replaced by a onefold potential energy allowing only 
trans peptide bonds. The force constant was set to 
418-4 kJ mol -~ rad -2. With the standard twofold term, 

transitions of peptide bonds from trans to cis can 
occur at high temperatures. Thus, in the present form 
of the calculation, cis peptide bonds are excluded for 
most amino acids unless they are specifically intro- 
duced by manual intervention. In the case of proline 
peptide bonds, the twofold term was retained with a 
reduced force constant of 20.9 kJ mol -~ rad -2 to allow 
transitions between cis and trans prolines. The force 
constant of the improper torsion angle which specifies 
the tetrahedral geometry of C ° carbon atoms was 
increased to 2092 kJ mol -I rad -2. This was done in 
order to avoid transitions from L- tO D-amino acids 
at high temperatures. The force constants of the 
improper torsion angles which specify the planarity 
of aromatic rings, such as Phe or Tyr, were increased 
to 1046 kJ mol -~ tad -2. In addition, the 1-4 and 1-5 
nonbonded interactions in aromatic rings were 
included in the calculation. Without the increased 
force constants and the nonbonded interactions, 
aromatic rings could be twisted intu unreasonable 
conformations in cases where the initial structure 
contained close contacts around the aromatic ring. 

The Lennard-Jones interactions were multiplied by 
a cubic switching function and the electrostatic inter- 
actions were multiplied by a quartic shifting function 
(Brooks et al, 1983); nonbonded interactions were 
included up to 7.5 ~.  The reduced cutoff was used 
in order to decrease total computational time. A 
dielectric constant of unity was employed throughout 
the system. 

Crystal symmetry interactions 

Experience has shown that the influence of crystal 
packing interactions can be important in crystallo- 
graphic refinement. In the absence of crystal packing 
information, backbone or side-chain atoms of a 
molecule in the asymmetric unit can penetrate sym- 
metry-related molecules. This can occur in contact 
regions between molecules where the electron density 
does not clearly define the molecular boundaries. A 
potential energy which describes nonbonding interac- 
tions between the molecule(s) located in the asym- 
metric unit and all symmetry-related molecules sur- 
rounding the asymmetric unit is given by 

E crystal i =Y. Y~ NB{]~-~ M i n G ( ~ r , - C ~ e r j + t s ) ] }  
s i>_j 

(3) 

where NB { } and MinG ( )  are functions that are 
defined below, o~ is the matrix that converts 
orthogonal coordinates into fractional coordinates, 
the first sum extends over all symmetry operators 
(Us, L) of the crystal, and the second sum extends 
over all pairs of atoms ( i , j )  for which the argument 
of the function NB { } is less than a specified cutoff 
rcut, and r~ and rj are the coordinates of atoms i and 
j respectively. The function MinG (r) defines the 
minimum image distance in fractional coordinate 
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space. It operates on each component of the three- 
dimensional vector r separately where the operation 
on each component x is given by 

MinG (x) = sign ( - x ) i n t  (Ixl + x. (4) 

The function int (y) is defined as the integer part of 
y, and sign (y) is defined as the sign of y. For the 
application of (3) and (4) to compute the crystal 
symmetry interactions, one has to make the assump- 
tion that the cutoff rcut is less than half of any of the 
edges of a maximal orthogonal box fitting into the 
unit cell of the crystal. In the special case of an 
orthorhombic space group rcut has to be less than half 
of any of the unit-cell vectors of the crystal. Thus, 
the present simplified approach is limited to large 
molecules such as proteins. NB {r} has the form of a 
nonbonding interaction potential, i.e. it is a sum of 
van der Waals and electrostatic interactions, 

NB {r} = ar -12 - br-6 + cr -1, (5) 

where a, b, c are taken from Brooks et aL (1983). The 
form of NB {r} is chosen to be identical to the poten- 
tial used for intramolecular interactions. Thus, the 
nonbonding interaction energy between two atoms is 
independent of whether it is an intermolecular or an 
intramolecular interaction. The pairwise search in (3) 
for interactions less than rCut is computationally 
expensive. The computational time is greatly reduced 
by introducing an approximation which consists of 
storing the atomic pair indices (i, j)  of all crystal- 
symmetry interactions less than rcut in a list that is 
only updated when any atom has moved by more 
than 0.5 A. The pairwise search is carried out by 
searching for nearest neighbors among all residue 
centroids and then by searching the atom pairs 
between the selected residue pairs. Equation (3) 
includes only intermolecular interactions between 
different molecules since the nonbonding interaction 
energy for atoms in the asymmetric unit is already 
included in the standard potential energy E~. The 

j~,crystal is added crystal symmetry interaction energy _i  
to the empirical potential energy Ei. 

Conjugate gradient minimization 

Energy minimization of the empirical potential 
energy Ei is carried out by use of a conjugate gradient 
minimization algorithm (Fletcher & Reeves, 1964; 
Powell, 1977). The algorithm requires the value of 
the energy and its first derivatives. It does not require 
explicit computation of second derivatives since 
information is being built up about second derivatives 
during subsequent shifts in different directions. This 
implies that the conjugate gradient minimization tech- 
nique requires a few more steps to get 'started' than 
does the least-squares method used in PROLSQ 
(Konnert & Hendrickson, 1980). (Note that in 
PROLSQ conjugate gradient minimization is used to 

invert the least-squares matrix, but it is not used 
actually to minimize the crystallographic residual.) 

Molecular dynamics 

Molecular dynamics simulations involve the simul- 
taneous solution of the classical equations of motion 
for all atoms of a macromolecule where the forces 
are derived from the empirical potential energy Ei 
(Karplus & McCammon, 1983). The solution of the 
classical equations of motion is carried out numeri- 
cally by the Verlet (1967) algorithm. The initial 
velocities are assigned to a Maxwellian distribution 
at the appropriate temperature. Control of the tem- 
perature during the molecular dynamics calculation 
is obtained by periodic uniform re-scaling of the 
velocities vi, i.e. 

void V~/ew = scale x - i  (6) 

for all atoms i. The factor scale is given by 

scale = ( ~  m V ° ' d ( t ) 2 } / n k T  (7) 

where the sum is carried out over all atoms i of the 
system. The parameter n is the number of degrees of 
freedom of the system, k is Boltzmann's constant, T 
is the temperature, v°ld(t) denotes the velocity of 
atom i at time t, and ( ) denotes a trajectory average 
over the time intervals between the rescaling of the 
velocities. The rescaling of velocities enforces a con- 
stant temperature during the molecular dynamics 
simulation. 

Structure-factor difference expressed as an effective 
potential energy 

In SA refinement the empirical potential energy Ei 
is augmented by an effective potential energy Ex con- 
taining information about the diffraction data 
(Briinger, Kuriyan & Karplus, 1987; Briinger, 1988a). 
The total potential energy Etota~ is then given by 

Eto ta l  = Ei + Ex. (8) 

At the present state of empirical potential energy 
parameterization, a molecular dynamics simulation 
without the effective potential energy term Ex cannot 
reproduce the crystal structure to sufficient accuracy 
(Kuriyan, Petsko, Levy & Karplus, 1986), even when 
one starts with a solved X-ray structure. It is the 
combination of the empirical potential energy and 
the effective potential energy describing the crystallo- 
graphic residual that makes it possible to use 
molecular dynamics in SA refinement. 

The effective potential energy Ex consists of the 
weighted differences between observed (]Fob~[) and 
calculated (]Fca~c]) structure-factor amplitudes, 

Ex = WA/NA ~ Wh[lFob~(h)l- klFc,ic(h)l] 2. (9) 
h 



54 CRYSTALLOGRAPHIC R E F I N E M E N T  BY SIMULATED ANNEALING 

which is identical to (1) except for the additional 
weight WA which relates Ex to the empirical potential 
energy Ei; NA is a normalization factor. The purpose 
of the normalization factor Na is to make the weight 
Wa approximately independent of the resolution 
range during SA refinement. Several choices would 
be possible, e.g. NA-= Y'.h Wh o r  N A --= ~ h  Wh[Fobs (h ) [  2- 

B y  trial and error we found that the latter expression 
for NA worked somewhat better than the former. The 
sum in (9) extends over all observed reflections with 
indices h. Wh are the individual weights for each 
reflection h. The scale factor k is set to the value 
which makes the derivative of E~ with respect to k 
zero, 

This is a necessary condition to make E.,. minimal. 
The effective potential energy E.~ is the same as the 
function used by Jack & Levitt (1978), except for the 
treatment of the scale factor k. In Jack & Levitt, k is 
treated as an independently minimized parameter 
whereas in this work k is eliminated by inserting (10) 
into (9). If k is not eliminated from (9) it would be 
necessary to optimize the choice of k at each 
molecular dynamics step. This would introduce a 
slight inconsistency between E~ and its first deriva- 
tives with respect to the atomic positions. 

The structure factors [Fc~c(h)] of the atomic model 
can be expressed in the following way: 

e~a tc (h)  = ~ ~,f(h) exp[-B,(~*h)2/4] 
s i 

× exp [27rih. (0~o%r, + t~)]. (11) 

The first sum extends over all symmetry operators 
(~'~,t,) composed of the matrix ~'~ representing a 
rotation and a vector L representing a translation. 
The second sum extends over all unique atoms i of 
the system. The quantity r~ denotes the orthogonal 
coordinates of atom i in real space. ~ is the 3 x3 
matrix that converts orthogonal coordinates into frac- 
tional coordinates; ~0" denotes the transpose of it. 
The columns of ~*  are equal to the reciprocal unit- 
cell vectors a*, b*, c*. B~ is the individual atomic 
temperature factor for atom i. The atomic scattering 
factors f ( h )  are approximated by an expression con- 
sisting of four Gaussians and a constant, 

4 

f ( h ) =  Y, ak~exp[--bk~(~**h)2/4]+aoi. (12) 
i=l  

The constants ak~ and bk~ were obtained from Inter- 
national Tables for X-ray Crystallography (1974). 
Equation (11) represents the space-group-general 
form of the 'direct summation' formula to compute 
the structure factors. Somewhat more efficient 
expressions can be obtained for each space group 
separately by appropriate re-summation. 

Expressions for derivatives of Fcatc(h) with respect 
to the atomic coordinates r~ are needed for molecular 
dynamics and energy minimization; they can be 
obtained from (9), (11), (10), and (12) (cf Brfinger, 
1989). The functional dependence of k on fc,,~,-(h) is 
included implicitly in the computation of the deriva- 
tives of E, with respect to the atomic model param- 
eters [(10)]. 

Equation (11) represents a simple way to compute 
the structure factors and derivatives of the atomic 
model, but it is computationally very expensive. For 
example, in the case of the aspartate amino- 
transferase, a protein consisting of 396 amino acids, 
the evaluation of the right-hand side of (11) and its 
derivatives takes 102 s on a Cray-2 at 2.8/~ resolu- 
tion in space group C222~ whereas the evaluation of 
the empirical potential energy Ei takes only 2.8 s. In 
principle, the structure factors and their derivatives 
should be re-computed at each time step of the 
numerical integration of the equations of motion. To 
reduce the computational requirements of SA 
refinement we have introduced two approximations. 
The first approximation consists of not computing 
Fcalc(h) and its first derivatives at every dynamics step 
as already suggested by Jack & Levitt (1978). The 
first derivatives are kept constant until any atom has 
moved by more than Av relative to the position at 
which the derivatives were last computed. At that 
point all derivatives are updated. Tests have shown 
that for At. less than 0"3/~ this approximation does 
not affect the convergence properties and it speeds 
up the computation by almost an order of magnitude. 
For minimizations AF has to be set to small values 
(0.0-0.05 ,~) in order to ensure that the gradient of 
Fcalc(h) is smooth function of the displacement vector 
used in the minimizing algorithm. This is particularly 
important during the final cycles of the minimization. 

The second approximation consists of computing 
Fcalc(h) by numerical evaluation of the atomic elec- 
tron density on a finite grid followed by fast Fourier 
transformation (FFT). The FFT method provides a 
way to speed up the calculation greatly (Ten Eyck, 
1973; Agarwal, 1978). The implementation of the FFT 
method for SA refinement with particular emphasis 
on supercomputer applications is discussed by 
BriJnger (1989). 

An indicator for the progress of the crystallographic 
refinement is the R factor 

R=Y. IFobs(h)l-klFca,c(h)l / 2  IFobs(h)l (13) 

/ 

h l h  

where the summations extend over all observed reflec- 
tions. A minimum of Ex in (9) corresponds approxi- 
mately to a minimum of the R factor and vice versa. 
The R factor cannot be used to define the effective 
energy term Ex since the first derivatives of (13) with 
respect to the structure factors have a singularity at 
the origin. 
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The program X-PLOR 

All calculations in this work were carried out with 
the program X-PLOR, a general-purpose macro- 
molecular refinement program that uses crystallo- 
graphic diffraction data or nuclear magnetic resonance 
interproton or other internuclear distance data in 
combination with energy minimization or molec- 
ular dynamics. X-PLOR was developed by ATB 
primarily at Harvard, working in collaboration with 
MK, and is partly based on the C H A R M M  program. 
X-PLOR has parameter and topology data structures 
in common with C H A R M M  (Brooks et al, 1983). Its 
command language and execution control is different 
from C H A R M M  and more focused on the needs of 
interactivity and ease of use. It helps the user in both 
interactive and batch operation. On-line help explains 
the options available during the run and on-line 
query of variables shows the current control status 
of the program. Structuring syntax, such as 
' i f . . .  t h e n . . ,  else' and 'do whi l e . . ,  end do' in the 
command language facilitates self-documentation of 
operations. References to previously prepared com- 
mand files shorten set-up time of command sequences 
and help the user build up procedure libraries. 

X-PLOR was designed to provide a comprehensive 
refinement package, user-friendly input, machine- 
portability, and highly efficient algorithms for the 
most CPU-time-consuming tasks on vector-parallel 
as well as conventional scalar machines. Table 1 lists 
the features of X-PLOR. The program is available on 
request from ATB. 

The system studied 

The system studied to provide a test of the 
methodology is crambin, a small protein composed 
of 46 amino acids, for which high-resolution X-ray 
diffraction data and a refined structure (determined 
by resolved anomalous phasing and RLSQ refinement 
with manual re-fitting) were available (Hendrickson 
& Teeter, 1981). The initial structure for the SA 
refinement was obtained from an NMR structure 
determination that used simulated data (Brfinger, 
Campbell, Clore, Gronenborn, Karplus, Petsko & 
Teeter, 1987). The orientation and the position of the 
initial structure in the unit cell were obtained by 
Patterson searches. Rotation and translation function 
results of several NMR-derived structures were 
averaged to yield the correct orientation and position. 
The initial structure that is used in the following is 
the average structure of the NMR-derived structures 
(Brfinger, Campbell, Clore, Gronenborn, Karplus, 
Petsko & Teeter, 1987). The diffraction data between 
8.0 and 1.5/~ were used as in Hendrickson & Teeter 
(1981). All reflections were weighted equally, i.e. Wh 
was set to 1.0 for all reflections. The complete SA- 
refinement protocol discussed in the next section 
required approximately 30 min of Cray-XMP time. 

Table 1. Features of X-PLOR 

Crystallographic 
refinement 

NMR structure 
refinement 

Empirical potential 
energy 

Restraints and 
constraints 

Refinement 
methods 

Analysis 

Manipulation 

Command 
language 

Implementation 

supports all space groups; phase difference 
restraints; direct summation method or FFT 
method with memory reduction; restrained, 
grouped and overall temperature factor 
optimization 

interproton distance restraints; choice of 
bi-harmonic, square-well, or soft-asymptote 
restraining potential; R " or center averaging 
for unresolvable protons; analysis of 
observed/computed interproton distance 

bond length, bond angle, dihedral angle, chiral 
and planar torsion, electrostatic and van der 
Waals, crystal packing/symmetry interactions 

fixing of atoms, bond lengths or bond angles; 
harmonic restraints of atomic positions to 
another structure; dihedral angle restraints 

conjugate gradient minimization, simulated 
annealing with molecular dynamics 

analysis of stereochemistry; r.m.s, deviations 
between structures 

manipulation of atomic properties, structure 
factors; hydrogen building 

free-field; on-line help; structured loop and 
conditional statements; variable substitution; 
atom selection parser 

VAX/VMS; all Cray and Convex systems; Stellar 
G S 1000 

Table 2. Crambin SA-refinement protocol 
Stage Description 

1 Determination of weight W a 
2 Minimization, 40 conjugate gradient steps, 8.0-1.5 A, 

C" restraints at 83.68 kJ mol-  ~ A-2,  Wa = 50 208 kJ tool-  ~, 
B = 6.0 ( 10-0)*/~2, Ar = 0.05 A 

3 Molecular  dynamics, 1.5 ps, T = 9000 K, 8.0-1.5 ,~, time 
step = 0"25 fs, velocity scaling every 75 fs, 
W A = 50 208 kJ tool-  l, B = 6.0 (10.0) ~2, At = 0.3/~ 

4 Molecular dynamics, 1.0 ps, T = 300 K, 8.0-1.5 A, time step = 
1 Is, velocity scaling every 100 fs, WA = 50 208 kJ tool-~, 
B = 6 . 0  (10.0) ,~ 2, At-=0"3,~ 

5 Minimization, 80 steps, 8-0-1.5 ,~, WA = 50 208 kJ mol -~, 
B = 6 . 0  (10"0)/~ 2, At-- = 0"0,~ 

* Temperature factors are specified as "a(b)" where "a" refers to C '~, N, C 
atoms and "b' refers to other atoms. 

Results and discussion 

Table 2 shows the protocol that worked quite success- 
fully for crambin. The SA refinement proceeded in 
five stages. The first stage determined the weight W A 

in (9) that relates the effective energy Ex to the 
empirical potential energy E;. It was chosen such that 
the norm of the gradient of Ex was comparable to 
the norm of the gradient of the empirical potential 
energy E; for the structure of crambin obtained after 
a 0.1 ps molecular dynamics simulation with WA set 
to zero, starting with the initial NMR-derived struc- 
ture. The molecular dynamics simulation is preceded 
by several cycles of conjugate gradient minimization 
to relieve bad contacts. It is necessary to use a 
molecular dynamics structure rather than the initial 
X-ray or energy-minimized structure to compute the 
gradients. The initial structure could be strained and 
thus would artificially increase the gradient, and 
energy minimization alone with WA set to zero cannot 
be used since a perfectly energy-minimized structure 
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has a gradient of Ei close to zero. A molecular 
dynamics structure has a non-zero gradient since the 
atoms are fluctuating around their equilibrium posi- 
tions, thus making possible a comparison of the 
gradients of Ei and Ex. 

Experience has shown that this procedure is rela- 
tively insensitive to the choice of resolution and initial 
structure. The comparison of the gradients suggested 
that a value of the relative weight WA equal to about 
50 208 kJ mol- t should be used in the case of crambin. 
WA was kept constant throughout the SA refinement. 
This choice of the weight factor resulted in good 
stereochemistry for the final structure without having 
to readjust the weight factor during the SA refinement. 
The same value of WA appears to be useful also for 
conventional RLSQ refinement. It  eliminates the 
initial guess and subsequent adjustments of WA which 
are quite common in RLSQ refinement where the 
choice of WA is based on the current stereochemistry 
of the structure. 

During the second stage in Table 2 conjugate 
gradient minimization was employed to relieve any 
initial strain or close nonbonded contracts in the 
structure that could pose a problem when starting the 
molecular dynamics calculation. During that stage, 
C a backbone atoms are harmonically restrained to 
their initial positions. This avoids a large drift of the 
structure if any bad nonbonded contacts have to be 
relieved. 

During the third stage, the heating stage, molecular 
dynamics was carried out at 9000 K for 1.5 ps; the 
initial velocities were assigned to a Maxwellian distri- 
bution at 9000 K. The velocities were re-scaled every 
75 fs in order to keep the temperature at 9000 K. 
Owing to the high temperature, the time step of the 
molecular dynamics integration (0.25 fs) had to be 
chosen smaller than what can be used at physiological 
temperatures (typically 1 fs). In the fourth stage, the 
system was cooled to temperatures near 300 K by 
rescaling the velocities every 100 fs. The fifth stage 
consisted of conjugate gradient minimization which 
further optimizes the R factor and stereochemistry 
of the system. 

This annealing schedule was developed by trial and 
error. It differs from the one described by Kirkpatrick 
et al. (1983) in the way the temperature is controlled 
during annealing; i.e. for Kirkpatrick et al. the cooling 
rate is slowed down if the system is near a critical 
point whereas here the system is cooled at a constant 
rate. The major difference between SA refinement and 
RLSQ refinement consists of the heating stage and 
the cooling stage. If these stages were bypassed the 
protocol would be similar to the Jack & Levitt (1978) 
refinement. 

It should be pointed out that the high temperature 
of the SA refinement and the motions during the SA 
refinement have no physical meaning since the total 
energy function is a hybrid of an empirical potential 

Table 3. Comparison of refinement protocols for 
crambin 

( C ° ,  C ,  N)  
T e m p e r a t u r e  D y n a m i c s  F ina l  Abood, A , ~ , ~ ,  d i f i e r e n c e ~  

(K)  R f a c t o r * t  R f a c t o r *  (/~) (o) (/~) 

0 (initial) 56. I 0.031 3.7 1-06 
0 (RLSQ 

minimized)§ 37.2 0-017 3.8 0.70 
0 (manually 

refined)~, 25.5 0.013 2.5 0.05 
300 35 33-7 0.017 3-0 0.57 

1000 36 35-1 0.017 3.4 0.58 
3000 37 31.0 0-015 3.0 0-54 
4500 41 33-0 0.016 3.6 0.35 
6000 43 30.7 0.017 3-3 0.29 
7500 45 28.6 0.014 2.9 0.24 
9000(a) 48 27.2 0.013 2-8 0.23 
9000(b) 49 28.2 0.015 3.0 0-09 

10 500 51 30.1 0.014 2.9 0.32 

* The R factor for crambin was computed with constant temperature factors ( B = 6 ,~ 
for C", N, C atoms, B = I 0 A for other atoms I and without solvent at 8.0- I. 5 ,,rk resolution. 

"t The dynamics R factor refers to the average R factor during the last 100 ps of  the 
heating stage (stage 3 in Table 2). 

,.+ Atomic r.m.s, ditterences from the manually refined structures I Hendrickson & Teeter, 
1981). 

§ "RLSQ minimized" refers to 40 cycles conjugate gradient minimization of Etota I at 
4 ]k resolution, followed by 40 cycles at 8.0-3.0 A, 40 cycles at 8.0-2.3 ,~, 40 cycles at 
8.0-1.9 ,~ and 40 cycles at 8.0-1.5 A resolution. 

qr For comparison,  the manually refined strcture (Hendrickson & Teeter, 1981) was 
subjected to conjugate gradient minimization without solvent and with constant tem- 
perature factors. 

energy and an artificial effective energy describing 
the crystallographic residual. The temperature is 
merely a parameter that determines the height of local 
energy barriers that can be overcome during SA 
refinement. 

Table 3 compares SA refinements of crambin at 
various temperatures, the initial structure, the 
manually refined structure (Hendrickson & Teeter, 
1981), and a structure that was obtained by mini- 
mization without re-fitting (simply referred to as the 
'RLSQ-minimized structure'). The refinement of the 
latter structure was carried out starting at low reso- 
lution (4.0 A) and then extending the resolution in 
several stages to 1.5/~, resolution. This is the usual 
procedure for RLSQ refinement where a larger radius 
of convergence is achieved at lower resolution. It 
appears that the conjugate gradient minimization 
method (Powell, 1977) that was employed in this 
paper produced comparable results to PROLSQ 
which resulted in an R factor of 38.1% at 2 A reso- 
lution [cf Table 1 of Brfinger, Kuriyan & Karplus 
(1987)]. In contrast to the RLSQ-minimized structure 
and in contrast to the work of Briinger, Kuriyan & 
Karplus (1987), the SA refinements here were carried 
out only at high resolution. This was done in order 
to demonstrate the large radius of convergence of SA 
refinement even at high resolution. 

The two structures at 9000 K differ by random 
number seeds for the initial velocities during stage 2 
(Table 2). It appears that all SA-refined structures 
are closer to the manually refined structure than is 
the RLSQ-minimized structure. The RLSQ-mini- 
mized structure has a root-mean-square (r.m.s.) 
difference of 0.7/~ for backbone atoms whereas the 
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r.m.s, difference for the SA-refined structures ranges 
from 0.09 to 0-58 A. This is also reflected in the final 
R factor at 1.5 ~ resolution, which is 37.2% for the 
RLSQ-minimized structure and ranges from 35.1 to 
28.2% for the SA-refined structures. The R factor of 
the manually refined structure is 25.5% at 1.5 ~ reso- 
lution with constant temperature factors and without 
solvent. The stereochemistry ( i .e .  the deviations of 
bond lengths and bond angles from ideality, Abond s 

and Aangles) is good for all SA-refined structures. 
It appears that the results in Table 3 are comparable 

to the SA refinement in Briinger, Kuriyan & Karplus 
(1987). In fact, the structures at 6000, 7500, 9000 and 
10 500 K have a smaller r.m.s, difference from the 
manually refined structure than the structure of 
Briinger, Kuriyan & Karplus (1987); the latter had a 
r.m.s, difference for backbone atoms of 0.34 A. The 
results in Table 3 suggest that the smaller radius of 
convergence at high resolution can be avoided by 
executing the SA refinement at high temperatures. 
This proves, at least in the case of the high-resolution 
structure of crambin, that SA refinement is less sensi- 
tive to the initial choice of the resolution than RLSQ 
refinement. 

The SA refinement of crambin was carried out with 
constant temperature factors and without solvent. 

Despite this, some of the SA-refined structures are 
very close to the manually refined crambin structure 
that included individual atomic temperature factors 
and solvent. The closest structures [9000(a), 9000(b), 
7500 K] have the lowest R factors. This suggests that 
the effects of solvent and individual atomic tem- 
perature factors on the atomic coordinates of crambin 
are relatively small. 
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As shown in Table 3, the efficiency of SA refinement 
is dependent on the temperature at which the heating 
stage is carried out. The SA refinement of crambin is 
optimal at 9000 K. When the temperature is increased 
even further the results get worse. The increase in 
temperature is correlated with the value of the average 
R factor during the heating stage. This R factor is 
always going to be larger than the final R factor after 
cooling since the atoms are undergoing large fluctu- 
ations around their equi l ibr ium positions. However, 
in the limit of  very high temperatures,  the effective 
energy Ex no longer influences the dynamics  of the 
system. Clearly, this is not useful for SA refinement. 
From Table 3 it appears that the R factor during the 
heating stage should be kept below 50%. Further 
investigations of this point are necessary for other 
systems to determine the opt imum temperatures.  

Fig. 1 shows the final R factor as a function of 
resolution for the RLSQ-minimized,  the worst SA- 
refined (at 1000 K), the best SA-refined [at 9000 K, 

labelled (a)], and the manually refined structure. The 
attributes "best' and 'worst' are defined in terms of 
the final R factor. Fig. 2 indicates r.m.s, differences 
for backbone atoms with respect to the manually 
refined structure, and Fig. 3 shows the deviations of 
bond lengths and bond angles from ideality as a 
function of residue number  for these structures. Both 
the RLSQ-minimized and the worst SA-refined struc- 
ture fit the high-resolution shells of the data less well 
than the manual ly  refined and the best SA-refined 
structure. 

The r.m.s, differences for residue positions of the 
initial NMR-der ived  structure are as large as 3.5 A, 
with part icularly large differences for residues 35 to 
40 [see Fig. 1 of Briinger, Kuriyan & Karplus (1987)]. 
The r.m.s, differences for the RLSQ-minimized struc- 
ture (Fig. 3a)  and the worst SA-refined structure (Fig. 
3b) are still quite large for residues 35 to 40. The 
r.m.s, differences are reduced in the case of the best 
SA-refined structure (Fig. 3c). There appears to be 
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(Jones, 1978). 
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some correlation between the magnitude of the r.m.s. 
differences and the r.m.s, deviations from ideality of 
either bond lengths or bond angles or both; for 
example, in the case of the RLSQ-minimized structure 
the large deviations of bond angles from ideality 
around residues 35-40 correspond to large r.m.s. 
differences. 

Table 3 and the results of Br/inger, Kuriyan & 
Karplus (1987) show that SA refinement always pro- 
duces better results than RLSQ refinement without 
manual re-fitting, regardless of the choice of protocol. 
However, some SA-refinement protocols appear to 
work better than others. From experience with SA 
refinement of aspartate aminotransferase, a protein 
larger than crambin (Br/inger, 1988b), one has to 
conclude that the choice of the 'best' protocol actually 
depends on the particular system studied. Therefore, 
a particular SA refinement for a new system may not 
optimally converge in all parts of the structure. 

To investigate what the crystallographer would 
have gained in the worst case using SA refinement, 
Fig. 4 shows the environment of residue Pro-36 for 
the RLSQ-minimized, the worst SA-refined, the best 
SA-refined and the manually refined structure. Super- 
imposed on the structures are electron density maps 
using (Fobs- Fcalc) amplitudes and Fcatc phases corre- 
sponding to the particular structures, where residues 
Cys-32 to Ala-38 have been omitted for the calculation 
of Fcalc. The SA refinement has not converged to the 
manually refined structure in the case of the RLSQ- 
minimized (Fig. 4a) and the worst SA-refined (Fig. 
4b) structure. Some of the Pro-36 atoms penetrate 
the correct Ile-35 electron density whereas the C ~2 
atom of Ile-35 penetrates the Pro-36 electron density. 
Despite the fact that the worst SA-refined structure 
has not converged to the manually refined structure, 
the quality of the electron density map is superior to 
the map of the RLSQ-minimized structure. The map 
in (Fig. 4b) outlines the correct positions of the atoms 
(cf. Fig. 4d) and is continuous except for a break 
between Pro-36 and Gly-37. The map of the RLSQ- 
minimized structure (Fig. 4a) shows less clearly 
defined features for residues 36-40 and manual re- 
fitting in this case would be difficult. The conventional 
RLSQ refinement carried out by Br/inger, Campbell, 
Clore, Gronenborn, Karplus, Petsko & Teeter (1987) 
starting with the same initial structure required 
several re-fitting sessions and many cycles of RLSQ 
refinement to correct this region. Since the map in 
Fig. 4(b) of the worst SA-refined structure is relatively 
easy to interpret, even poorly converged SA 
refinement has simplified the manual re-fitting of the 
crambin structure. 

In the case of the best SA-refined structure, all 
atoms shown in Fig. 4(c) have converged to the 
manually refined structure except for the sidechain 
of Ile-37 which is rotated 180 ° around the X~ bond. 
The unaccounted density patches in Figs. 4(c) and 

(d) indicate possible water molecules which are not 
included in this work. However, the inclusion of water 
molecules into SA refinement is relatively straightfor- 
ward and will be discussed elsewhere. 

Concluding remarks 

SA refinement by simulated annealing has been 
shown to be superior to RLSQ refinement. This 
superiority is reflected in many cases by a larger radius 
of convergence, i.e. SA refinement can move atoms 
that are displaced by more than 1.0 ~.  On the other 
hand SA refinement does not always converge in all 
regions of the structure. The method is inherently 
stochastic in nature by the introduction of initial 
random velocities assigned to a Maxwellian distribu- 
tion. There is no guarantee that a particular transition 
from one local minimum into another will happen. 
On average, however, the results are always improved 
over conventional RLSQ refinement. It appears that 
even in cases where SA refinement does not converge 
in a particular region it produces electron density 
maps in that region of the structure that allow better 
interpretation of atomic positions than maps pro- 
duced by RLSQ refinement. 

We have also discussed the robustness of the 
method in terms of the resolution range and the 
temperature used for the SA refinement. Particular 
choices of resolution range and temperature may 
result in an optimal refinement that converges to the 
manually refined structure without any re-fitting. 
However, even in cases where the SA refinement does 
not fully converge, the SA-refined structure has 
improved with respect to the R factor, 
stereochemistry, and the quality of the electron 
density maps. 

The SA refinement of Briinger, Kuriyan & Karplus 
(1987) employed a different set of parameters than 
used in this work. In particular, all hydrogens were 
simulated by Briinger, Kuriyan & Karplus (1987) 
whereas here aliphatic hydrogens were neglected and 
implicitly taken into account by 'extended' carbons. 
The success of both SA refinements indicates that SA 
refinement is insensitive to the particular choice of 
empirical potential energy parameters. The effective 
energy term Ex describing the diffraction information 
determines the outcome of the SA refinement to a 
large extent. In fact, the r.m.s, differences of the 
SA-refined structures compared with the manually 
refined structure are much smaller than has been 
reported for any free (i.e. without Ex) molecular 
dynamics simulation of macromolecules including 
solvent and crystal contacts (van Gunsteren, 
Berendsen, Hermans, Hol & Postma, 1983). This sug- 
gests further uses of the effective energy term Ex that 
go beyond crystallographic refinement. In particular, 
more precise simulations of anisotropic temperature 
factors and alternative conformations can now be 
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at tempted that  do not suffer from the inherent  drift 
of  free molecular  dynamics  calculations (Kur iyan  & 
Briinger, work in progress).  
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Abstract  

An alternative convention is proposed for solving the 
ambiguity problem of  ( 3 + 1 )  superspace group 
symbols described by Yamamoto ,  Janssen,  Janner  & 
de Wolff [Acta  Cryst. (1985), A41, 528-530] based 
on the requirement  that the condition for equivalence 
of  modula t ion vectors to be independent  on a selec- 
tion of  basis vectors is satisfied. 

symbols for basic space groups summarized in their 
Table 2. 

In order  to make  clearer our alternative solution 
we will present  below a simple derivation of  t ransfor-  
mation propert ies  of  a supersymmetry  opera tor  in 
(3 + d)  superspace  for the case of  replacing modula-  
tion vectors. 

A translat ional  periodicity in (3 + d)  superspace is 
character ized by a lattice A spanned  by bl ,  • • . ,  b3+d 
(de Wolff, 1974; Janner ,  Janssen & de Wolff, 1983): 

The ambiguity of  (3 + 1) superspace group symbols 
was discussed by Yamamoto ,  Janssen,  Janner  & de 
Wolff (1985) (hereafter  referred to as I) and their 
solution consists of  making a specific choice of  

d 
b i = a i  - ~ ejo)i ( i = 1 , 2 , 3 )  

j=l 

hi+3 : ei (i = 1 , . . . ,  d)  

(1) 
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