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The K-level widths increase rapidly with atomic 
number beyond iodine, up to 96 eV for uranium. It 
seems unlikely that K-edge resonances for any of 
these heavy elements will be strong enough to com- 
pensate for the spreading of effects over wavelength 
any better than in the present case. No L absorption 
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Fig. 3. Polarization anisotropy of anomalous scattering in sodium 
bromate, f~-f~ above, f ' - f "  below. Solid curves show the 
actual values, broken curves the result of convolution with a 
line shape of 10-6 eV FWHM. 

edges occur in existing elements above 33 keV. Thus 
the high-energy region is not favorable for applica- 
tions which would exploit this kind of dichroism or 
birefringence. Those who seek to avoid these compli- 
cations may welcome this result. Another conclusion 
is that the search for examples of greatest anisotropy 
should be directed toward the long-wavelength region 
where levels are narrow. 
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Abstract 

A vectorizable algorithm for fast computation of 
structure factors and derivatives during refinement of 
macromolecular structures is presented. It is based 

on fast Fourier transformations on subgrids that cover 
the unit cell of the crystal. The use of subgrids allows 
reduction of the total memory requirements for the 
computations without producing large overheads. 
The algorithm is applicable to all space groups. The 
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performance of the algorithm on a conventional 
scalar computer as well as on supercomputers is dis- 
cussed. 

Introduction 

The step in crystallographic refinement that consumes 
the most central processor unit (CPU) time is the 
evaluation of the crystallographic residual and its first 
derivatives with respect to the atomic coordinates of 
the molecule. This applies to restrained least-squares 
refinement (Sussmann, Holbrook, Church & Kim, 
1977; Jack & Levitt, 1978; Konnert & Hendrickson, 
1980; Moss & Morffew, 1982) as well as to refinement 
by simulated annealing (Briinger, Kuriyan & Karplus, 
1987; Briinger, Karplus & Petsko, 1989; Brfinger, 
1988a, b). The CPU time needed to compute the 
structure factors through the direct summation 
method exceeds the CPU time for a single evaluation 
of the stereochemical restraints by up to two orders 
of magnitude. For example, in the case of aspartate 
aminotransferase, a protein composed of 396 amino 
acids, the evaluation of the crystallographic residual 
and its first derivatives through direct summation 
takes 103 s at 2.8 A resolution whereas the evaluation 
of the stereochemical restraints takes only 2.8 s on a 
Cray-XMP. The efficient calculation of the crystallo- 
graphic residual and its first derivatives is of particular 
concern for crystallographic refinement by simulated 
annealing since this method requires many more 
updates of the structure factors than restrained least- 
squares refinement. 

Evaluation of the atomic electron density on a finite 
grid followed by fast Fourier transformation (FFT) 
provides a way to improve significantly the speed of 
the calculation of the crystallographic residual and 
its first derivatives (Cooley & Tukey, 1965; Ten Eyck, 
1973, 1977; Agarwal, 1978, 1981; Isaacs, 1984; 
Tronrud, Ten Eyck & Matthews, 1987; Finzel, 1987). 
Lunin & Urzhumtsev (1985) showed that this can be 
generalized to an arbitrary target function involving 
the observed and computed structure factors by using 
a multidimensional version of the chain rule in com- 
plex space. 

This work was motivated by the fact that the pres- 
ently available FFT programs for crystallographic 
refinement use external disks to store the grid points 
of the atomic electron density. The input/output 
operations associated with such external disk storage 
decrease the performance of the program on a super- 
computer unless all electron density grid points can 
be fitted into the memory of the computer. At present 
there are many supercomputers in operation without 
large memory or special solid-state devices. There- 
fore, the goal of this work was to develop a space- 
group-general algorithm that would be easy to imple- 
ment and adaptable to the available resources of the 
particular machine. The FFT refinement method of 

Agarwal (1981) was reformulated in order to achieve 
vectorization on supercomputers and minimize total 
memory requirements. The availability of optimized 
library routines on supercomputers that evaluate 
three-dimensional FFT's greatly improved the per- 
formance of the algorithm. 

The two main differences with earlier FFT 
implementations (Agarwal, 1981; Tronrud, Ten Eyck 
& Matthews, 1987) concern the organization of the 
finite grid and the application of symmetry operators 
in reciprocal space. If the electron density grid is too 
large to fit into the available memory of the computer, 
the FFT is carried out on subgrids and the results are 
then accumulated. The subgrid can be chosen small 
enough to fit into the memory of the computer, thus 
optimizing the performance of the FFT. 

It has already been pointed out (Isaacs, 1984) that 
the modelling of the electron density on the finite 
grid is an expensive part of the computation. To 
reduce the time spent in the calculation of the atomic 
electron density, it is computed only for a set of 
unique atoms. The FFT is carried out over the unit 
cell, and the transposed symmetry operators of the 
crystal space group are then applied to the computed 
structure factors. This yields the identical result to 
computing the electron density for all atoms in the 
unit cell. 

The following sections describe the mathematical 
basis for the subgrid fast Fourier transformation 
(SGFFT) algorithm and its current implementation 
on supercomputers. In the last section the perform- 
ance of the algorithm is discussed for three rep- 
resentative examples. 

Notation 

We define 12 as a unique set of observed reflections 
with indices hkl that satisfy certain selection criteria. 
Usually, the reflections are selected based on their 
significance, i.e. whether the intensity is larger than 
a certain multiple of the standard deviation. The index 
triple (h, k, l) is denoted as h. The space group.of the 
crystal will be described in terms of n~ symmetry 
operators (O's,t~) composed of the 3x3  matrix ~s 
representing a rotation and a vector ts representing 
a translation. It is assumed that the atomic model 
consists of na unique (not symmetry-related) atoms. 
The set of unique atoms may coincide with a standard 
crystallographic asymmetric unit, but this is not a 
necessary condition for this work. The coordinates 
of every atom in the unit cell can then be generated 
by application of a symmetry operator to the coordin- 
ates of an atom in the set of unique atoms. The vector 
ri denotes the orthogonal coordinates of atom i in 
,~. ~ is the 3 x 3 matrix that converts orthogonal 
coordinates into fractional coordinates; ~* denotes 
the transpose of it. The columns of o~* are equal to 
the reciprocal unit-cell vectors a, b, c. The length of 



44 A MEMORY-EFFICIENT FFT ALGORITHM 

the reciprocal-lattice vector s= ,~*h which corre- 
sponds to the reflection h is equal to 2 sin 0/A, where 
A is the wavelength of the X-rays and 0 is the scatter- 
ing angle. 

Target function 

Crystallographic refinement can be understood as a 
nonlinear optimization problem with the aim of 
finding a minimum close to the global minimum of 
a target function T, 

T(p l ,  p2, . . . , p,,) 

= ~[IFo~d, ~ o ~ ,  Fcalc(P~, P2,. . . ,  Pn)] 

+ E ( p ~ , p 2 , . . . , p ~ )  (1) 

where A is a function of the observed structure-factor 
amplitudes ([Fobs[), observed phase information 
(q~ob~), and the calculated structure factors of the 
atomic model (F~a,¢). E ( p ~ , p 2 , . . . , p , , )  comprises 
stereochemical and other interactions of the 
macromolecule; the quantities p~, P2, • • •, P,, rep- 
resent the variables of the system, such as the atomic 
positions or individual atomic B factors. The FFT 
refinement programs of Agarwal (1978) and Tronrud, 
Ten Eyck & Matthews (1987) use steepest descent or 
conjugent gradient minimization (Fletcher & Reeves, 
1964) to optimize T. The recently developed method 
of crystallographic refinement by simulated annealing 
(Briinger, Kuriyan & Karplus, 1987; Brfinger, 
Karplus & Petsko, 1989; BriJnger, 1988a) uses 
molecular dynamics to overcome local minima. 
Molecular dynamics as well as conjugate gradient 
minimization require the repeated computation of T 
and its first derivatives with respect to the model 
parameters p~. Higher-order minimization methods 
require the computation of second derivatives as well. 
Since the computation of E ( p ~ , p 2 , . . .  ,p~) and its 
first derivatives is straightforward (cf. Konnert & Hen- 
drickson, 1980) we are only concerned here with the 
computation of A and its first derivatives. 

In crystallographic refinement the function A 
usually consists of the crystallographic residual 

Wh[lFob~(h)l - k[F~al~(h)[] 2, (2) 
h E . f 7  

which is a sum of the weighted differences between 
observed (]Fobs]) and calculated (]F~ald) structure- 
factor amplitudes. The sum extends over the set of 
all observed reflections JT. Wh are individual weights 
for each reflection h. The scale factor k is set to the 
value which makes the derivative of the crystallo- 
graphic residual with respect to k zero, 

(3) 
This is a necessary condition to make the crystallo- 
graphic residual minimal. 

It should be noted that the following derivations 
do not depend on the particular form of 
A(lFobd, q~obs, Fcalc). For example, phase information 
can be added to the crystallographic residual (cf. 
Briinger, 1988b). 

Calculated structure factors 

The structure factors of a crystal are given by Fourier 
transformation of the electron density, 

Fcalc(h) = ~ p(,~--lg) exp (21rih.g) dg. (4) 
g ~  ~/," 

The vectors g are defined in fractional c6ordinate 
space. The integration is carried out over the standard 
unit cell ~ =  ( 0 . . .  1 , 0 . . .  1 , 0 . . .  1). The argument 
r=,,~-~g of the electron density p is specified in 
orthogonal A, coordinates. 

The electron density p is a superposition of the 
individual electron densities of all atoms in the unit 
cell of the crystal. Using the crystallographic sym- 
metry operators one can write 

n 

p(r )=  ~ pA(G~r+t~) (5) 
s = l  

where the sum runs through all symmetry operators 
( ~ ,  t~) of the space group. The term pA is the super- 
position of the electron densities Pi of a set of unique 
(i.e. not symmetry-related) atoms, 

n 

pA(r)= ~ p,(r) (6) 
i = 1  

where na is the number of unique atoms. Let A Fcalc(h) 
be the structure factors generated by this unique set 
of  atoms, 

A Fcalc(h)= ~ pA(,~-Ig) exp(27r ih .g)dg.  (7) 
g c ~  ~ 

Using (5) and (4) one can derive the result 
rl 

Fcalc(h) ~ A , = Fcalc(6~ h) exp (2~rih.L) (8) 
s = !  

where 0~ * denotes the transpose of 6~. The coefficient 
exp(2crih.t~) arises from the translational part of the 
symmetry operator (0~s, t~). Thus, the structure factors 
Fca~(h) can be obtained by computing the structure 
factors of a unique set of atoms and then accumulat- 
ing all symmetry-related structure factors. 

One possibility for explicit computation of (4) is 
to carry out the Fourier transformation for each atom 
translated to the origin, which yields the familiar 
'direct summation' formula, 

I1 a n s 

Fca~(h)= ~ f~(h) Y~ e x p [ 2 c r i h . ( 6 ~ r , + L ) ] .  (9) 
i = 1  s = l  

This equation is valid for all space groups. More 
efficient expressions can be obtained for each space 
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group separately by appropriate factoring (Inter- 
national Tables for  X-ray Crystallography, 1952). This 
method is used, for instance, in the refinement pro- 
gram P R O L S Q  (Konnert & Hendrickson, 1980). 

The form factors f (h )  are Fourier transforms of 
the electron densities p~ of atom i shifted to the origin. 
In most cases, the atomic form factors f (h )  can be 
approximated by an expression consisting of several 
Gaussians, such as 

f (h )  = {k~=, a k ' e x p [ - - b k ' ( ~ * h ) 2 / 4 ] + a ° ' }  

× exp [-B,(~*h)2/4].  (10) 

The constant B; is the isotropic B factor of atom i. 
The constants aki and bki can be obtained from Inter- 
national Tables for  X-ray Crystallography (1974). The 
following derivations do not depend on the particular 
shape of the atomic form factors. In particular, the 
conclusions are valid for anisotropic form factors. 

First derivatives of Fcalc(h) with respect to atomic 
positions can be derived from (9), 

?l s 

cgFcalc(h)/cgri = 27fir(h) ~ h.~so~l 
x = l  

x exp [27rib. (~sffr, + L)] (11) 

where 1 is the identity vector. 

Fast Fourier transformation 

The computation of the exponential coefficients that 
occur in the direct summation formula [(9)] is expen- 
sive. An alternative to the direct summation method 
is to approximate (4) by discrete Fourier transforma- 
tion of the electron density sampled at discrete grid 
points (Ten Eyck, 1977). A three-dimensional grid 
that covers the unit cell of the crystal is given by a 
set (F) of three-dimensional points 

r=  {(al N~, bl Nb, cl ND; 

a =O, . . . , N ~ -  l; b=O, . . . , N b - 1 ;  

c = 0 , . . . ,  No- l} .  (12) 

The points (g ~ F) are specified in fractional coordin- 
ates. The grid F contains N~NbNc points. 

Let the discrete Fourier transformation of p(r) over 
the grid F be defined as 

F T ( p , F ; h ) =  ~ p(~-~g) exp(27rig.h) (13) 
g ~ F  

where the sum (Y.g~r) represents a three-dimensional 
sum over all grid points, i.e. 

Na-1 Nh-1 Nc- I  

= ~ ~ ~ .  (14) 
gcF a=O b = O  c=O 

Substitution of the continuous Fourier transforma- 
tion in (4) by a discrete Fourier transformation over 

the finite grid F yields an approximation for the 
structure factors, 

Fcalc(h) --- .N'FT(fl,/-'; h) (15) 

where N is a normalization constant given by 
lal Ibl Icl/(NaNbNc). According to the Nyquist theorem 
(Brigham, 1974), (15) becomes exact when the elec- 
tron density p can be represented by a Fourier 
summation with coefficients not larger than N J 2 ,  
Nb/2,  No~2 in each dimension. Since the Gaussian 
form factors in (10) have an infinite Fourier spectrum, 
this implies that the accuracy of (15) is the better the 
finer the grid F chosen. However, a very fine grid 
decreases the efficiency of the FFT method. At a given 
grid size the accuracy of (15) can be improved by 
artificially increasing the B factor for each atom by 
a constant amount Bo which is eliminated after Four- 
ier transformation (Cochran, 1948; Ten Eyck, 1977). 
This broadens the electron density distribution and 
reduces the influence of the higher-order Fourier 
coefficients. For the choice of the coarseness of the 
grid and the artificial B-factor increase B0, see Ten 
Eyck (1977). Typically, B0 is set to 20.0 A2 and the 
grid is chosen approximately one third of the high- 
resolution limit of the data. 

In principle, the electron density would have to be 
computed at all grid points specified in F. In the 
special case of the multiple Gaussian approximation 
(10), the electron density pi for atom i is given by 

pi(r) = k:, ~ aki bki+ Bi+ B°l exp L~i+B,+~o J 

(16) 

which follows by Fourier transformation of the form 
factors f .  Thus, this expression would have to be 
computed at each grid point and for each atom. This 
would actually require more calculations than the 
direct summation method. However, since the elec- 
tron density of individual atoms falls off rapidly, it 
is a good approximation to compute only p~(r) in the 
neighborhood around the atoms, i.e. 

(0~(r) for ~ r ~ A i  
p~(r) = p;(r) = otherwise, (17) 

where the neighborhood Ai is defined as the set 
of grid points g for which p ( ~ - l g )  is greater than 
10-7/~ -3. This results in spherical neighborhoods 
with radii of typically 3.0-6.0 A depending on the 
atom type and B factor. The artificial increase in the 
temperature factor (B0) makes the neighborhoods of 
the atoms somewhat larger. The definition of Ai is 
complicated by the fact that the neighborhood of an 
atom can penetrate the unit-cell boundaries. In this 
case, the selected grid points have to be projected 
back into the primary unit cell. 



46 A MEMORY-EFFICIENT FFT ALGORITHM 

From (17) one obtains an approximation for pA, 

= Y p,(r). (18) 
i = 1  

With (13) and (8) this yields an approximate 
expression for the structure factors, 

n 

F~a,~(h) =,N" exp[Bo(of*h)2/4] ~ exp (27rih.t~) 
s = l  

x FT(pA, F; ~*h). (19) 

The factor in front of the sum eliminates the artificial 
B-factor increase in (16). Inserting (19) into (1) one 
obtains an approximation for A" 

_ A (I Fob J, ~0ob~, (20)  

Since the symmetry operators are applied after Four- 
ier transformation, the electron density grid has to 
be computed only for the set of unique atoms. An 
alternative method would be to apply the symmetry 
operators in orthogonal coordinate space to pa on 
each grid point that has non-zero density. 

Factoring 

The Fourier transformation in (19) can be obtained 
most efficiently by fast Fourier transformation (FFT) 
(Cooley & Tukey, 1965). The FFT memory require- 
ment is of the order NaNbN¢. It is shown below that 
(19) can be factorized, thus reducing the memory 
requirements. This can be accomplished along similar 
lines to the reduction of a one-dimensional Fourier 
transformation into two one-dimensional Fourier 
transformations of half the size, which provides the 
basis for the one-dimensional FFT algorithm (Cooley 
& Tukey, 1965). The use of subgrids was also sug- 
gested by Raftery, Sawyer & Pawley (1985) in order 
to reduce memory requirements for their one- 
dimensional FFT algorithm to compute structure fac- 
tors. It is shown below that the use of subgrids can 
be generalized to three dimensions. 

A three-dimensional subgrid is defined by a set of 
points 

r "=  {(a"/ N~, b"/ N'~, c"/ N~); 

a " = 0 , . . . ,  N ~ - I ;  b " - - 0 , . . . ,  m ~ - l ;  

c " = 0 , . . . ,  N ~ -  1} (21) 

where N'o', N~, N~, N ' ,  N~,, N'¢ are integer numbers 
such that 

N' N"=  N,,, N~N'~ = Nb, N' M"= No, a ~ o  

N" < Na, N~ < Nb, N'¢ < N¢, (22) 

N" <- N,,, NZ <- N,,, NT <- N¢. 

The full grid F can be generated by combining all 

points of F" and a set of points F '  defined by 

F ' =  {(a ' /No,  b'/ Nb, c'/ Nc); 

a'=O,..., N ' o - 1 ;  b'=O,..., N ~ , - 1 ;  

c '=  0, . . . ,  N ' c -  1}. (23) 

The points in F' provide the offset that is added to 
the subgrid F". We can then formally write 

F = F ' + F "  (24) 

where the ' + '  operator adds all points of set F' to 
all points of set F". Fig. 1 illustrates the factoring of 
F for a special two-dimensional case. 

With these definitions one can rewrite (13), 

FT(p ,F ;  h )=  E E exp[2zr i (g '+g") .h]  
g'¢  1" g"el '"  

x p[ f f - ' (g '+ g")]. (25) 

By making use of the relation reaction exp(a + b ) =  
exp ( a ) e x p  (b) one may factorize this equation, i.e. 

FT(p, £;  h) 

= ~ exp(2rrig' .h)FT(p, F"+g ' ;  h mod F") (26) 
g ' ~ l "  

where the Fourier transformation of p on the right- 
hand side is given by 

FT(p, F"+g ' ;  h) 

= ~ exp(27rig".h)p[o%-I(g'+g")]. (27) 
g"c  1"" 

The use of h mod F" rather than h in (26) reflects the 
fact that the projection of the reflection indices into 
the periodic subgrid F" does not change the value of 
exp (27rig".h). The mod function operates on each 
component h, k, l of the vector h separately, i.e. we 
define 

f h mod N" 

h mod F" = ~ k mod N~ (28) 

[. l mod S 

Fig. 1. Illustration of the factoring of the grid F (small dots) into 
the subgrids I'" (crosses) and F' (circles) for a two-dimensional 
case. The vectors a and b are unit-cell vectors. The grid point g 
can be represented as g'+ g". In this example, the Fourier trans- 
formation over the grid F is a sum of 12 Fourier transformations 
over the subgrid F" where each subgrid is translated by a vector 
g' ~ it". 
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where x mod y is defined as the remainder of the 
integer division of x by y. This projection of the 
reflection indices h into the subgrid F" is necessary 
since the result of the subgrid Fourier transform [(27)] 
will only be available for he  F". By inserting (26) 
into (19) we obtain for the calculated structure factors 
the expression 

FCa,c(h) = W exp [ Bo(o~*h)2/4] 
n 

x ~ ~ exp [21 r i (g ' . ¢* .h+L .h ) ]  
g ' e F '  s = l  

x FT(p A, F " + g ' ;  6*h mod F"). (29) 

The summation over F '  has to be carried out for the 
number 1/21 of the set of observed reflections/2. This 
requires memory o f t h e  order of [/21. The Fourier 
transformations of pA require memory of the order 
of ~r, ~r,, ~r,, Thus, the total memory requirement for l ~l gl l '~ b l '~ C . 

(29) is of the order of ~,r,, ~,r,, ~,r,,..:- ,, o,, ~,, c-1/21. The potential 
drawback of (29) appears to be the computation of 
N'N~N'~n~ exponential coefficients. Unless addi- 
tional memory is used to precompute and store these 
coefficients, they have to be recomputed each time 
the structure factors are required. Equation (29) pro- 
vides the basis of the SGFFT algorithm. 

First  der iva t ives  

In this section we will show how to evaluate the first 
derivatives of ~ [(20)] with respect to all model 
parameters p~. As was pointed out by Cochran (1948), 
the chain rule can be used to compute the derivatives 
of the crystallographic residual. However, s ince /1 is 
an approximation of zl, the derivatives of A will then 
be approximations of the derivatives of A. The follow- 
ing derivation generalizes the work of Lunin & 
Urzhumtsev (1985) to the SGFFT algorithm intro- 
duced in the previous section. 

Using the chain rule one can write 

Op, h~n O ~  Opi O ~  Opi 

(30) 

where e Fca,~(h) and ) denote the real and the 
imaginary part of F ~ ) ,  respectively. From (29) it 
follows that 

0 F~a~c(h)/Op, = W exp[ Bo( ~*h)2/4] 
tl s 

x 2 2 exp[27ri (g ' . f f* .h+ts .h)]  
g ' e l "  s = l  

A 

x FT(Opa/Opi, F"+g ' ;  ff*h mod F") 

(31) 

where we define 

0Fca,c(h) _ _  ~_ i - - -  (32) 
Opi Opi Opi 

In principle one could compute the derivatives by 
inserting (31) into (30), but this would be impractical 
since it would require a Fourier transformation for 
each parameter Pi of each atom i. It is shown in the 
following that instead of carrying out the Fourier 
transformation of OpA/Opi, one can obtain an 
expression that involves a Fourier transformation of 
coefficients that are related to 0 " ~ / ~ .  Let us define 

0A 0A 0A 
t - i - -  (33) 

on dh) 
i.e. 0zl/0Fca,c(h) is a complex rmmber whose real part 
contains the first derivative of zi with respect to the 
real part of the structure factor ~ )  and whose 
imaginary part contains the first derivative of ~ with 

~ to the imaginary part of the structure factor 

Fc..q~(h). 
If we make the reasonable assumption that /1 is a 

real function, it follows from (30) that 

0F~a,~(h) 
0 a _ R e  (34) 
0p, 0Fca,c(h)J Op, ' 

where Re denotes the real part of its argument, and 
* the complex conjugate. The Fourier transformation 
in (31) involves a sum over all points g e F". The 
partial derivatives of ~ are zero for grid points 
outside the neighborhood Ai of atom i, 

- -  (g,,) = ~ = 
op~ = ~ (g') ~ (g'') 

={OOpi(,.~-'g)/Op, g e  A, otherwise (35) 

which follows from (6) and (17). Therefore, it is more 
efficient to carry out the summation over Ai explicitly 
rather than by FFT's. 

We will show below that the sum over h in (30) 
can be replaced by a FFT which uses indices h" that 
are related to h. The Fourier transformation in (31) 
involves coefficients of the form 

exp[27rig". (¢~h mod F")] (36) 

where g"e F"+g ' .  Since the summation over g" is 
carried out explicitly this leaves 

h"= G*h mod F" (37) 

as a candidate for Fourier summation. Let us define 
a set of indices for each h"e F" and each symmetry 
operator, 

map(h", 0',; F") = {he/2  and (if*h) mod F " =  h"}. 

(38) 

where the mod function has been defined in (28). Let 
B(h") be complex numbers that are obtained from 
the first derivatives of /~ after summation over the 
sets map(h", 0,; F") and application of the symmetry 
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operators, 

?l s 

B(h") = ~ ~ exp[27ri(g'. ~*.h + ts .h)] 
s = l  h E  m a p ( h " , O s ;  F " )  

× [O'~/OFcalc(h)]* (39) 

for all h"~ F". The expression in square brackets was 
defined in (33) above, the * means the complex conju- 
gate. Note that the second sum is defined as zero if 
the set map (h", 0~; F") is empty. Another way of 
expressing B(h") is to generate for each observed 
reflection h the set of symmetry-related reflections. 
The resulting reflection indices are projected into F". 
For each projected index the complex conjugate of 
the first derivative of ~ with respect to ~ )  is then 
multiplied by the exponential coefficient as given in 
(39) and the result is accumulated in B(h"). With 
these definitions one obtains by resummation of (31) 
and (34) 

A 

0--~A=Re{g,~ l ~ 0Pa[°~- '(g"+g')]  
Opi "" g"e I'" Opi 

x FT(B, F"; g")} (40) 

where the Fourier transform is applied to B(h"). 
Equation (40) allows computation of all partial 
derivatives using the same number of Fourier trans- 
formations needed to compute the structure factors 
[(29)]. The CPU time and memory requirements for 
(40) are identical to the ones for (29). 

Incorporation of Hermitian symmetry 
into the SGFFr algorithm 

Hermitian symmetry of the structure factors 
[Fcai¢(h) = FCal~(-h)] can easily be incorporated into 
(29) and (40). The number of operations required for 

the Fourier transformations in (29) and (40) is then 
reduced by a factor of two. The set ,(2 can be reduced 
to one hemisphere, i.e. without restriction the hemi- 
sphere defined by h > 0, However, the Fourier trans- 
formation of B in (40) includes both hemispheres. 
This implies that (40) has to be multiplied by a factor 
2. ~- The right-hand side of (40) will have a zero 
imaginary part because of the Hermitian symmetry. 

Vectorization of the SGFFr algorithm 

Fig. 2 shows a flowchart of the SGFFT algorithm 
described in (29) and (40). All operations are highly 
vectorizable with the exception of the computation 
of the electron density grid. The vectorization was 
accomplished automatically by the Cray and Convex 
compilers. Machine-dependent programming was not 
necessary. The electron density calculation is only 
moderately vectorizable since the uge of look-up 
tables to compute the form factors [(10)] and the 
organization of the neighborhoods Ai of the atoms 
produce memory conflicts. Thus, at the present state 
of the program, the electron density calculation is 
memory rather than CPU bound. It is important to 
note that the reduction of Gaussian factors in (1°0) to 
three (as is used by Agarwal, 1978) reduces the CPU 
time required to compute the electron density on a 
supercomputer by less than 20% (not shown). 

Efficient library routines were used for the three- 
dimensional FFT's. The algorithm in Fig. 2 is also 
suitable for parallelization, so that the algorithm 
should perform well on a multiprocessor machine 
with shared memory. Largely parallel machines 
would in fact be better suited for the electron density 
calculation. 

The SGFFT algorithm is part of the X - P L O R  pro- 
gram (Briinger, Karplus & Petsko, 1989; Briinger, 
1988a, b). The program X - P L O R  is available on 
request from ATB. 

/ / / / / / / / , , / / / / , , / / / / , , / / / / / / / / / / / / , ' / / / / / / /  
 le,oct ondens,tyca,ou,ation .VZ-1 .Isymmetry I  target 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / J  

i derivatives of target function 
with respect to unique Fcalc'S 

, j  , ,  / / , ,  ,, / / / , ,  / / / / ,, , ,  / , ,  / / / / / / / / / / / , "  

/ 

operators multiplication of target 
function 

/ / 

/ / 

/ / 

/ derivatives of electron | / 
/ density with respect to I / / / 
/ parameters Pi of unique I / 
/ atoms i / / / / 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / .  

Fig. 2. Flowchart showing the main stages of the algorithm described in this work to compute the structure factors, the target function, 
and the partial derivatives with respect to the atomic parameters p,. Blocks enclosed by shaded lines represent (29) and (40) which 
require large memory. 
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Table 1. CPU times (s) for computation of  the target 
function A and partial derivatives with respect to atomic 

positions 

Task  Vax 8700* C o n v e x - C l t  C r a y - X M P $  

(A) Crambin§ 
P21, 1.5-8.0/~, 327 non-H atoms, 5576 reflections, IFI/II'"I = 1 
Direct summation 440.5 72.55 4.23 
pA (unique atoms) 11 "5 11"52 2"35 
PI-FFT 15.7 2.24 0.25 
Symmetry, factoring 1.1 0.70 0.06 
Total 28.3 14.5 2.66 

(B) Aspartate aminotransferase¶ 
C222t, 2.8-8.0/~, 3086 non-H atoms, 8124 reflections, II"I/IF"I =4 
Direct summation 10 355 1572 103 
pA (unique atoms) 56 41.3 2.97 
pI-FFT 373.2 21"8 1.67 
Symmetry, factoring 34 8.1 0.64 
Total 463.2 71.2 5.28 

(C) Alkaline phosphatase** 
I222, 2.4-8-0/~, 6829 non-H atoms, 38 286 reflections, IFI/IF"I =6 
Direct summation 76 920 11 654 686.5 
pA (unique atoms) 170 135.4 15-38 
Pt-FFT 1046 63.0 5.9 
Symmetry, factoring 207 53.5 4.4 
Total 1423 251.9 25.68 
PROFFTet 602 - -  - -  

* With floating point accelerator unit, 16 Mbyte memory, 64-bit precision. 
Using IMSL (Library Manual, Houston: IMSL Inc., 1982) FFT3D routine 
for 3D FFT. 

? Using not more than 16 Mbyte memory, 64-bit precision. Using VECLIB 
(Convex Computer Corp., 1988) Z3DFFT routine for 3D FFT. 

,+ Using not more than 16 Mbyte memory, 64-bit precision. Using SCILIB 
(Cray Research Inc., 1988) simultaneous FFT routines (CFTAX and 
CFFTMLT) to compute 3D Fourier transformation. 

§ Using an [81, 40, 48] grid and an identical subgrid. 
¶ Using a [ 180, 96, 96] grid and a [ 180, 96, 24] subgrid. Owing to systematic 

absences only half the symmetry operators of space group C2221 have to 
be applied to compute the structure factors ([x, y, z], I -x ,  y, ~ -  z], [x , -y ,  
~+z], [x,-y,-z]). 

** Using a [240,216,96] grid and a [240,216, 16] subgrid. Owing to 
systematic absences only half the symmetry operators of space group 1222~ 
have to be used to compute the structure factors ([x,y, z], [ - x , - y ,  z], 
Ix, -y,  -z] ,  [ -x ,  y, -z)] .  

?t  Using the space-group-specific program PROFFT (Finzel, 1987) for 
space group /222 in 32-bit precision. 

Results 

Table 1 compares the direct-summation algorithm 
and the SGFFT algorithm on various computers for 
three representative protein structures. The first case 
is a 1.5 ~ resolution structure of crambin (Hendrick- 
son & Teeter, 1981), a protein composed of 46 amino 
acids. The second case is a 2.8 ~ resolution structure 
of a mutant of aspartate aminotransferase (Smith, 
Ringe, Finlayson & Kirsch, 1986), a protein com- 
posed of 396 amino acids. The third case is a 2.4 
resolution structure of alkaline phosphatase 
(Sowadski, Handschuhmacher, Murthy, Foster & 
Wyckoff, 1985), a dimeric protein where each 
monomer is composed of 449 amino acids. The repor- 
ted CPU times are those required for the computation 
of the function A [(2)] and its first derivatives with 
respect to the atomic positions (ri). Equation (9) and 
a corresponding equation for the first derivatives were 
used for the direct-summation calculations. The total 
CPU time for the SGFFT calculation is broken down 
into three parts, the time spent for the calculations 

of the electron density grid, the time spent for the 
FFT calculations,:and the time spent for the summa- 
tions over the ns symmetry operators and the F '  grid 
points. Equations (16), (17) and (35) were used to 
compute the electron density pA and its first deriva- 
tives. The application of symmetry and subgrid 
operators was carried out according to (29) and (40). 

In the case of alkaline phosphatase, the total CPU 
time required for the SGFFT algorithm on the Vax 
8700 (1423 s) is compared with the CPU time required 
by the non-vectorizable program PROFFT (Finzel, 
1987) that makes use of a space-group-specific FFT 
routine for I222 in 32-bit precision (602 s). Thus, the 
SGFFT algorithm shows reasonable performance on 
a conventional scalar computer despite the fact that 
the SGFFT algorithm is space-group general and was 
executed in 64-bit precision. Execution of the SGFFT 
algorithm in 32-bit precision on the Vax 8700 results 
in a 30% reduction of CPU time (not shown). 

Table 1 clearly shows that the SGFFT algorithm is 
up to two orders of magnitude faster than the direct 
summation method. The SGFFT algorithm appears 
to perform best for the larger systems, aspartate 
aminotransferase and alkaline phosphatase. On the 
Vax 8700 computer, the FFT's require most of the 
total CPU time whereas on both the superminicom- 
puter (Convex-C1) and the supercomputer (Cray- 
XMP) the electron density calculation becomes the 
most expensive part of the computation. This clearly 
shows that, at the present state of the program, the 
introduction of space-group-specific FFT's could 
reduce the total CPU time for the SGFFT method by 
not more than a factor of two. 

The application of the factoring and symmetry 
operators appears to be almost negligible on the Vax 
8700 computer. Even in the case of alkaline phos- 
phatase with a subgrid F" a sixth of the size of the 
original grid F, the operations take not more than a 
fifth of the time spent for the execution of the FFT's. 
On the supercomputers, this situation is not quite as 
favorable. This is mainly because the FFT's are library 
routines that make use of the particular architecture 
of the machine, whereas the routine that carried out 
the factoring and symmetry operations was written 
in Fortran. Nevertheless, the degree of vectorizability 
for this routine is high; for example, in the case of 
alkaline phosphatase the routine is 47 times faster on 
the Cray-XMP than on the Vax 8700. Nonvectorizable 
code executes approximately six times faster on the 
Cray-XMP than on the Vax 8700. 

The direct summation method [(9)] appears to be 
highly vectorizable. This is reflected by the CPU times 
in Table 1; e.g. the CPU time for the direct summation 
is increased by a factor 100 between the Cray-XMP 
and the Vax 8700. The SGFFT algorithm is more 
complicated than the direct summation method. 
Despite this, it has been shown that it is possible 
to vectorize the SGFFT algorithm efficiently. The 
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vectorized SGFFT algorithm is up to 26 times faster 
than the vectorized direct summation method on the 
Cray-XMP. Since the SGFFT algorithm is designed 
in a general and simple way, it is expected that it 
could be efficiently implemented on supercomputers 
with new parallel architectures. 

The author thanks M. Karplus, J. Kuriyan, G. A. 
Petsko and W. I. Weis for useful discussions. The 
work described in this paper was begun while the 
author was a research associate at Harvard University. 

References 

AGARWAL, R. C. (1978). Acta Cryst. A43, 791-809. 
AGARWAL, R. C. (1981). In Refinement of Protein Structures, pp. 

24-28. SRC Daresbury Laboratory, Warrington, England. 
BRIGHAM, E. O. (1974). In The Fast Fourier Transform. Englewood 

Cliffs, N J: Prentice-Hall. 
BRONGER, A. T. ( 1988a ). Crystallographic Refinement by Simulated 

Annealing. In Crystallographic Computing 4: Techniques and New 
Technologies, edited by N. W. ISAACS & M. R. TAYLOR. Oxford 
Univ. Press. 

BRONGER, A. T. (1988b). J. Mol. Biol. In the press. 
BRONGER, A. T., KARPLUS, M. & PETSKO, G. A. (1989). Acta 

Cryst. A45, 50-61. 
BRONGER, A. T., KURIYAN, K. & KARPLUS, M. (1987). Science, 

235, 458-460. 
COCHRAN, W. (1948). Acta Cryst. 1, 138-142. 

COOLEY, J. W. • TUKEY, J. W. (1965). Math. Comput. 19, 297-301. 
FINZEL, B. C. (1987). J. Appl. Cryst. 20, 53-55. 
FLETCHER, R. & REEVES, C. M. (1964). Comput. J. 7, 149-154. 
HENDRICKSON, W. A. & TEETER, M. A. ( 1981 ). Nature (London), 

290, 107-112. 
International Tables for X-ray Crystallography (1952). Vol. I. 

Birmingham: Kynoch Press. 
International Tables for X-ray Co,stallography (1974). Vol. IV. 

Birmingham, Kynoch Press. (Present distributor KJuwer 
Academic Publishers, Dordrecht.) 

ISAACS, N. (1984). In Methods and Applications in Crystallographic 
Computing, edited by S. R. HALl. & T. ASH1DA, pp. 193-205. 
Oxford: Clarendon Press. 

JACK, A. & LEVITT, M. (1978). Acta Co,st. A34, 931-935. 
KONNERT, J. H. & HENDRICKSON, W. A. (1980). Acta Cryst. 

A36, 344-349. 
LUNIN, V. Y. & URZHUMTSEV, A. G. (1985). Acta Cryst. A41, 

327-333. 
Moss,  D. S. & MORFFEW, A. J. (1982). Comput. Chem. 6, 1-3. 
RAFTERY, J., SAWYER, L. & PAWLEY, G. S. (1985). J. Appl. Crvst. 

18, 424-429. 
SMITH, D. L., RINGE, D., F1NLAYSON, W. L. & KIRSCH, J. F. 

(1986). J. Mol. Biol. 191,301-302. 
SOWADSK1, J. M., HANDSCHUMACHER, M. D., MURTHY, 

H. M. K., FOSTER, B. A. & WYCKOFF, H. W. (1985). J. Mol. 
Biol. 186, 417-433. 

SUSSMAN, J. L., HOLBROOK, S. R., CHURCH, G. M. & K1M, S. H. 
(1977). Acta Cryst. A33, 800-804. 

TEN EYCK, L. F. (1973). Acta Co'st. A29, 183-191. 
TEN EYCK, L. F. (1977). Acta Cryst. A33, 486-492. 
TRONRUD, D. E., TEN EYCK, L. F. & MATTHEWS, B. W. (1987). 

Acta Cryst. A43, 489-500. 

Acta Cryst. (1989). A45, 50-61 

Crystallographic Refinement by Simulated Annealing: 
Application to Crambin 

BY AXEL T. BRIJNGER 

The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, 
Yale University, New Haven, CT 06511, USA, and Department of Chemistry, Harvard University, 

Cambridge, MA 02138, USA 

MARTIN KARPLUS 

Department of Chemistry, Harvard University, Cambridge, MA 02138, USA 

AND GREGORY A. PETSKO 

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 

(Received 22 April 1988; accepted 20 July 1988) 

Abstract 

A detailed description of the method of crystallo- 
graphic refinement by simulated annealing is pre- 
sented. To test the method, it has been applied to a 
1-5 A resolution X-ray structure of crambin. The 
dependence of the success of the simulated annealing 
protocol with respect to the temperature of the heating 
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stage is discussed. Optimal success is achieved at 
relatively high temperatures. Regardless of the pro- 
tocol used, the molecular-dynamics refined structure 
always yields an improved R factor compared with 
restrained least-squares refinement without manual 
re-fitting. The differences between the various refined 
structures and the corresponding electron density 
maps are discussed. 
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