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Pro®les of squared normalized structure factors, h|E|2i(d*),

have been computed for a large number of proteins and

nucleic acids. These are interpreted in terms of their under-

lying structural features. It is also shown that the `solvent dip'

at around 6.3 AÊ resolution is to a large extent a protein

secondary-structure effect that is enhanced by the water

structure. A hierarchical classi®cation of protein structures

based on their h|E|2i(d*) pro®les is brie¯y outlined, together

with the use of h|E|2i(d*) pro®les as an improvement over

Wilson absolute scale estimation and as a novel solvent-

modelling method.
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1. Introduction

The concept of randomly, uniformly and independently

distributed atoms, although clearly unable to capture the

structural regularities of chemical bonding and macro-

molecular architecture, continues to play a central roÃ le in

virtually all statistical steps in crystallographic structure

solution and re®nement.

Deviations from the hypothesis of uniform random distri-

butions, while that of independent atoms is retained, were

investigated by Luzzati (1955) and their exploitation in

structure solution was undertaken by Bricogne (1984, 1988,

1991, 1993, 1997a). Deviations from the hypothesis of inde-

pendence, on the other hand, have been studied by Harker

(1953), Main (1976) and others. In a previous paper (Morris &

Bricogne, 2003), we investigated them by multipole-expansion

techniques proposed in the context of the `micromolecular-

replacement' approach to exploiting stereochemistry in

statistical direct methods (Bricogne, 1994, 1995, 1997b). This

study brought to light a connection with Sheldrick's `1.2 AÊ

rule' (Sheldrick, 1990) in traditional direct methods.

In this article, we ®rst offer a brief survey of topics relevant

to normalized structure factors, then investigate the full

resolution range of h|E|2i(d*) curves and analyse the rela-

tionships between the features observed in these curves and

the known structural features of both proteins and nucleic

acids. We ®nally examine the question of correcting h|E|2i(d*)

pro®les for bulk-solvent effects and assess their usefulness in

the determination of absolute scale and in the normalization

of observed structure-factor amplitudes during structure

determination and in the re®nement of partial structure

models.

2. Normalized structure factors

The normalization process was introduced by Hauptman &

Karle (1953) as a means of turning the X-ray diffraction
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intensities1 into dimensionless quantities which characterize

the internal atomic arrangements within the crystal, as inde-

pendently as possible from the chemical identity and disorder

characteristics of its constituent atoms. The resulting normal-

ized structure-factor amplitudes turn out to be the natural

quantities by which to assess the strength of phase relation-

ships in direct methods.

More speci®cally, each observed structure-factor amplitude

|Fobs(h)| is normalized to |E(h)| by division by a resolution-

dependent quantity such that the expectation value h|E(h)|2i
for any given h = (hkl)T is unity,

hjE�h�j2i � 1:0: �1�

This expectation value is formally achieved by setting

jE�h�j2 � jFobs�h�j2
hjF�h�j2i ; �2�

where |F(h)|2 is the computed squared structure-factor

amplitude and h|F(h)|2i is its expectation value, which depends

on the prior knowledge one has at hand about the structure.

With no structural information, the atomic positions are

considered to be uniformly and independently distributed

random variables and the expectation of the squared

structure-factor amplitude is equal to

hjF�h�j2i �PN
i�1

�fi�h�Wi�h��2 �3�

in which the Debye±Waller factor has been de®ned according

to

Wi�h� � exp�ÿhT�ih�; �4�

with �i as the atomic displacement factor tensor and

fi(h) = fi�d�h� the spherically symmetric atomic scattering factor

of atom i. N is the total number of atoms.

If the composition of the molecule is de®ned in terms of

known groups, G, assumed to be independently distributed in

position and orientation, then Main (1976) showed that the

expectation value may be written as

hjF�h�j2i �PN
i�1

�fi�d�h�Wi�h��2

�P
G

P
iG 6�jG

fiG
�d�h�WiG

�h�fjG
�d�h�WjG

�h� sin�2�d�jrjG
ÿ riG
j�

2�d�jrjG
ÿ riG
j
�5�

in which the fjG
�d�� are spherically averaged group scattering

factors.

The more structural knowledge is correctly accounted for,

the more the expectation of the squared normalized structure-

factor amplitudes should approach unity.

2.1. Wilson statistics and standard normalized structure
factors

If the distribution of random atomic positions within the

unit cell is uniform and the atoms are independent, the

distribution of F(h) can readily be shown to be Gaussian: a

one-dimensional Gaussian with variance �c(h) = "(h)�2 for

centric re¯ections and a two-dimensional Gaussian with

variance �a(h) = 1
2"(h)�2(h) for the acentric re¯ections

(Wilson, 1949, 1950), where �2(h) =
P

f 2
j �h� and "(h) is the

multiplicity of re¯ection h (Stewart & Karle, 1976; Stewart et

al., 1977).

Standard normalized structure-factor amplitudes are

de®ned by

jE�h�j2 � jFobs�h�j2
�c�h�

for h centric; �6�

jE�h�j2 � jFobs�h�j2
2�a�h�

for h acentric; �7�

so that the expectation value h|E(h)|2i = 1 only in the cases for

which all assumptions of Wilson statistics are valid.

2.2. Debye's equation and the radial pair distribution

The scattering intensity I(h) from an object consisting of N

atoms is given by

I�h� � jF�h�j2 � F�h�F�h��
�Pi;j fi�d��fj�d�� exp�2�ihT�ri ÿ rj��: �8�

Averaging over the sphere for a given radius d* gives

I�d�� � hI�h�i�d�'d� �

P

i

f 2
i �d��

�
� 
P

i

P
j 6�i

fi�d��fj�d�� cos�2�hTrij�
�
: �9�

The average over the spherical angles gives the well known

result hcos(2�d*rij)i = sin(2�d*rij)/2�d*rij = sinc(2�d*rij) (the

sinc function) and Debye's formula (Debye, 1915) follows,

I�d�� �P
i

f 2
i �d�� �

P
i

P
j6�i

fi�d��fj�d�� sinc�2�d�rij�: �10�

The scattering intensity is well known to be the Fourier

transform of the Patterson function,

I�h� � FT fP�r�g � R
V

P�r� exp�2�ihTr� dr: �11�

Averaging over the spherical angle gives the radial intensity

I�d�� � hI�h�iS2
� 1

4�

R
S2

I�h� sin �d� d�d� d'd� �12�

and, with the introduction of the radial Patterson function

P�r� � hP�r�iS2
� 1

4�

R
S2

P�r� sin �r d�r d'r; �13�

the intensity can be written as a spherically symmetric Fourier

transform of the radial Patterson function,

1 In this article, by intensities we mean corrected intensities (squared structure-
factor amplitudes), i.e. corrected for Lorentz factor, polarization, absorption
etc.



I�d�� � RR
0

P�r� sin�2�d�r�
2�d�r

r2 dr: �14�

The upper bound R simply states that the object (the macro-

molecule) is ®nite and that there is no interatomic distance

greater than R, P(r) = 0 for r > R.

For truly equal-atom structures consisting of spherically

symmetrical atomic densities, we have fi�d�� = fj�d�� for all i, j

and Debye's equation may be cleanly separated into a purely

geometrical term (interference function or structure factor in

small-angle scattering terminology), S�d��, and scattering term

(form factor), Form�d��,

I�d�� � Nf �d��2|����{z����}
Form�d��

1� 1

N

P
i

P
j6�i

sinc �2�d�rij�
" #
|������������������������{z������������������������}

S�d��

: �15�

Division by the scattering term Nf �d��2 puts the intensity on a

scale independent of the number of atoms and of atom type

and so reduces the picture to that of a distribution of point

atoms of unit scattering strength. As the sinc function averages

out to zero over uniform random position vectors, the

expectation for geometric intensity I�d��=Nf �d��2 in such a

case is unity. In effect, the introduction of normalized struc-

ture factors attempts to achieve this same factorization into a

scattering and a geometric term as best as possible by the

replacement of Nf �d��2 by hP f �d��2i (with correction factors

for multiplicity and temperature factors), |E|2(d*) ' S(d*), an

approximation that breaks down as soon as the individual

atomic scattering factors differ too much from each other (e.g.

heavy atoms), thus causing an overweighting of the corre-

sponding sinc-function contributions.

The summation over all contributing particles in the sinc

summation is commonly replaced by a radial distribution

function or expressed in the form of a correlation function,

S�d�� � 1� 1

N

P
i

P
j6�i

sinc �2�d�rij�

� 1� 1

N

R
p�r�sinc �2�d�r� dr; �16�

where p(r)dr gives the number of atoms with a separation

within (r, r + dr). p(r) is known as the distance distribution

function or radial pair distribution function (the spherically

averaged origin-removed Patterson function). As can be seen,

S�d�� ÿ 1 and p(r)/N are related by Fourier transformation.

The integral of p(r) over all distances is equal to N(Nÿ 1), the

number of interatomic distances in the structure. p(r)/N thus

gives the average environment per atom. Noting that

p(r)/[N(N ÿ 1)] is a probability, we can write S�d�� as

1 + hsinc(2�d�r)i.
The radial pair distribution, p(r)/N, of a few selected

structures is depicted in Fig. 1. All atoms were considered

equal and weighted only by their occupancy. There is a sharp

increase at small distances as the ®rst neighbouring atoms are

encountered; the major hump in the radial distance distribu-

tion is highly shape- and size-dependent, followed by decline

at larger distances until a zero value is reached corresponding

to the largest interatomic distance within the protein. Fig. 2

shows the h|E|i2(d*) curves obtained from transforming the

radial distance distributions of Fig. 1. The in¯uence of

secondary structure on these curves is small but nevertheless

signi®cant, as will be shown later.

3. Theoretical hhh|E|2iii(d*) profiles and their
interpretation

Theoretical pro®les for squared normalized structure-factor

amplitudes have been computed (taking the PDB isotropic

displacement factors and the occupancy into account) for 700

good-quality, low-sequence-similarity, high-resolution protein

chains from the Protein Data Bank (Bernstein et al., 1977;

Berman et al., 2000). This data set was selected according to

the principles described in Hooft et al. (1996) with a resolution

limit of 2.0 AÊ . Waters, metals, ligands and riding H atoms were
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Figure 1
The radial pair distribution function for a few selected protein structures.
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excluded from these calculations as only the protein texture

was initially of interest. Similar curves have also been

computed for a variety of small molecules, proteins and their

ligands, DNA and RNA structures. The small-molecule curves

will not be discussed here as they add nothing to previous

publications in the ®eld of small-molecule crystallography

(such as Hall & Subramanian, 1982a,b). Some examples of

DNA with and without protein are presented below (x3.6)

after taking a closer look at the protein pro®les. For a recent

analysis using directly the radial intensity distributions from

collected data sets, see Popov & Bourenkov (2003).

3.1. Protein profiles

The most prominent feature of the h|E|2i(d*) curves is

perhaps their striking similarity between very different protein

structures, as shown in Figs. 2 and 3 [for reasons of presen-

tation, we depict the natural logarithm of the h|E|2i(d*) versus

the resolution in AÊ in all such plots]. In Fig. 2, a few models

covering a wide spread in secondary-structure characteristics

are depicted. The similarity between the h|E|2i(d*) curves is

evident in spite of the wide variation in �-helix/�-sheet

compositions (assigned using the DSSP algorithm; Kabsch &

Sander, 1983) and of the globally quite different radial pair-

Figure 3
The natural logarithm of the averaged squared normalized structure factors over 700 protein structures with estimated standard deviations. See Table 1
for a list of extrema with corresponding h|E|2i values.

Table 1
List of extrema in the protein-only h|E|2i pro®les.

The inclusion of waters signi®cantly lowers the local minimum of 0.939 at
6.25 AÊ to a global minimum of 0.386, reduces the local maximum at 4.55 AÊ

from 1.534 to 1.185 and broadens this peak to about 3.5 AÊ . As mentioned in
the main text, these values are dependent on how many waters are used and
their assigned B factors.

Resolution d (AÊ ) h|E|2i Extrema

1.12 1.338 Local maximum
1.45 0.808 Local minimum
1.49 0.814 Local maximum
1.69 0.768 Global minimum
2.13 0.947 Local maximum
2.63 0.817 Local minimum
4.55 1.534 Local maximum
6.25 0.939 Local/global minimum
1 N Highest point

Figure 2
The natural logarithm of the squared normalized structure factors for a few selected protein structures.



distribution functions (although the ®ner details, especially in

the range up to 6 AÊ are very similar; see the right-hand plot in

Fig. 1).

All structures show a pronounced local maximum at

�1.1 AÊ , a smaller local maximum below the expectation value

of 1.0 at �2.1 AÊ , a strong local maximum at �4.55 AÊ and a

local minimum at�6.25 AÊ . French & Wilson (1978) mention a

characteristic minimum at 6 AÊ and a maximum at 4.5 AÊ , as

have many others, but give no further interpretations. Blessing

et al. (1996) report a minimum at 6.2 AÊ and a maximum at

4.4 AÊ . Their explanation for the minimum is that the 1,3 C�

repeats place many atoms near planes with �6 AÊ spacing and

destructive interference between these planes is caused by the

way they interleave. The maximum at 4.2 AÊ has been

explained by the 1,2 C� repeats placing side-chain atoms on

planes approximately separated by 4 AÊ . This captures a

certain amount of truth but requires some further clari®ca-

tions. (i) An h|E|2i(d*) pro®le is the transform of a pair-

distribution function and therefore distances rather than

planes are the important corresponding features in (one-

dimensional) real space to which the (one-dimensional)

reciprocal-space features should be matched. (ii) The resolu-

tion values, d, at which the h|E|2i(d*) pro®les show features are

not the values at which distances (and certainly not planes)

should be sought in real space, but rather distances that are

sinc-transform-related to these d values. The C� repeats are

indeed important, but explaining features in h|E|2i(d*) pro®les

at certain d* values by planes separated by 1/d* is funda-

mentally incorrect. Planes do not exist in the rotationally

averaged one-dimensional space of pair-distribution functions

or in d* space. We give detailed explanations for these

h|E|2i(d*) extrema in terms of atomic distances in the

following sections.

3.2. Correlations with secondary-structure content

Studying the variation of the squared normalized structure-

factor amplitudes shell by shell across a large number of

structures in conjunction with structural features shows some

interesting correlations. Protein secondary-structure assign-

ment has been performed with the DSSP algorithm (Kabsch &

Sander, 1983) for all 700 structures. For each d* value, the

dependence of the h|E|2i(d*) values on helix and strand

percentage, as well as on the total number of atoms in the

structure, was studied by computing a linear correlation

coef®cient. Fig. 4 shows these dependencies overlaid with the

averaged h|E|2i(d*) over all structures. For a visual estimation

of signi®cance, we also depict the correlation coef®cient

evaluated in the same way for the output of a random-number

generator. It is worth noting how far and to what magnitude

these correlations extend to high resolution. The correlations

in the medium-resolution region are, however, still suf®ciently

strong for classi®cation purposes, as will be shown below. The

helix and strand curves are almost perfect mirror images of

each other about the zero-correlation line, thus cancelling out

any signi®cant correlation with the total (helix + strand)

secondary-structure content.

Acta Cryst. (2004). D60, 227±240 Morris et al. � h|E|2i(d*) profiles 231

research papers

Figure 4
Linear correlation coef®cient for � and � content and the size of the
protein.

Figure 5
A cluster dendrogram. The clustering of a set of 600 protein structures.
There are three main clusters (at cluster distance of about 1.3). The left
cluster contains mainly structures with a high strand content (�); the
tightly packed centre cluster has mainly structures with a high helix
content (�) and the spread right cluster contains mainly �+� structures.

Figure 6
An example of clustering for 20 randomly chosen structures taken from
the validation set.
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3.3. Clustering

A hierarchical cluster analysis (Murtagh, 1985; Gordon,

1981; Everett, 1974; Ihaka & Gentleman, 1996) was performed

on a subset of 600 computed protein h|E|2i(d*) pro®les (Fig. 5).

[100 of the 700 set of proteins were kept aside for validation

purposes. The structures were used to reproduce a similar

clustering from various subsets of data (Fig. 6) and, more

importantly, to use the clustering derived with the 600 struc-

tures to test the classi®cation power for the 100 structures

previously not used directly in the initial clustering process.]

Each curve is initially assigned to its own individual cluster.

The algorithm then joins the two most similar curves (de®ned

by a simple Euclidean distance metric in this case) and

proceeds iteratively until only one cluster remains. This

method has the advantage of being solely data-driven in the

sense of not imposing a given number of clusters to be found.

Plotting the distances between clusters that are to be joined

versus the individual points/clusters, a cluster dendrogram may

be constructed (Fig. 7). As hierarchical clustering leads to one

®nal cluster containing all points, visual inspection of the

dendrogram is useful in deciding how many relevant clusters

should be accepted based on clustering density and the

distance to the neighbouring clusters.

To avoid clustering the structures mainly by their number of

atoms, only data in the d range 7.0±1.0 AÊ were used during

clustering (see Fig. 7 for a plausible justi®cation of this cutoff).

An example of 20 randomly selected structures clustered

based on their h|E|2i(d*) pro®les is shown in Fig. 6. Although

there are exceptions, a trend can be seen towards clustering of

� structures with � structures and of � with �; indeed, three

dominant blocks arise in the these clusters that correspond

well on average to �, � and �+�. Using only data corre-

sponding to a resolution of 3.5±7.0 AÊ , a region commonly said

to be the secondary-structure region of the Wilson plot,

performs this clustering into secondary structures classes less

satisfactorily; indeed, using the 3.5±1.0 AÊ d range performs a

slightly better such classi®cation (although this is of less

practical relevance). This performance is judged by building

an average helix and strand content per cluster and computing

its variance and by counting the number of wrong structures

per cluster (data not shown). Such a classi®cation is far from

perfect, but an overall trend may be observed. Adjusting the

resolution limits can enhance the power and reduce the error

rate of classi®cation. A detailed cluster and classi®cation

analysis will be presented elsewhere (manuscript in prepara-

tion). For a similar classi®cation using wide-angle solution

scattering data, see Hirai et al. (2002). We have thus shown

that although the differences between the three major struc-

ture classes (�, � and �+�) are indeed small, they are suf®cient

to classify proteins from their computed h|E|2i(d*) pro®les.

3.4. Principal components analysis

After studying the shell by shell correlations, the correla-

tions across shells will now be presented. A principal

components analysis (PCA; Fukunaga, 1990; Duda & Hart,

1973) was performed on the h|E|2i(d*) pro®les in the d* range

0.15±1.0 AÊ ÿ1. PCA decorrelates features by diagonalizing the

covariance matrix of a given set of features. This gives rise to a

new set of features which are ordered by decreasing variance,

i.e. the ®rst few new features account for a large portion of the

total variance and are therefore the most useful for classi®-

cation purposes (see any textbook on pattern recognition for

further details; e.g. Fukunaga, 1990; Duda & Hart, 1973). The

transformation of the h|E|2i(d*) pro®les by the PCA eigen-

vectors creates as the ®rst feature of the new space a quantity

that shows a linear correlation of 0.81 with the helix content

and ÿ0.85 with the strand content, thus bringing out in a

striking manner the secondary-structure in¯uence on these

pro®les. The second new feature basically takes the size of the

protein into account (Fig. 7). The principal components

analysis was however performed with the prior knowledge of

the known correlations discussed in the previous section.

Performing on the full range from 1 to 1 AÊ ÿ1 determines

different features, of which the ®rst shares 0.997 linear

correlation with the size of the protein and only features 8 and

9 show any appreciable correlation with the secondary struc-

ture (0.48 helix, ÿ0.36 strand and 0.48 helix, ÿ0.45 strand,

respectively). Using data from the `secondary-structure range'

corresponding to 7±3.5 AÊ , the linear correlation of the ®rst

PCA vector is 0.66 to helix and ÿ0.76 to strand content. This

means that a simple linear combination of binned h|E|2i(d*)

values in the medium-resolution regime should provide a

single number that characterizes the full pro®le and correlates

well the secondary-structure content, thus enabling the same

classi®cation as above (�, �, �+�). In the range corresponding

to 3.5±1.0 AÊ , the linear correlation coef®cient is 0.78 and

ÿ0.78, respectively, with helix and strand content, as in the

case of clustering, indicating that much secondary-structure

information resides in this high-resolution range.

3.5. Resolution regimes

The applicability of various theoretical approaches to

structure solution and re®nement is, as for any optimization

Figure 7
Linear correlation coef®cient for � and � content and the size of the
protein for the top ten new features from the principal components
analysis (linear combinations of the resolutions bins).



procedure, largely a question of the observations-to-para-

meter ratio. As the desired molecular model from an X-ray

diffraction experiment is an atomic one, this imposes the use

of additional restraints and constraints to allow the optimi-

zation to proceed smoothly with a decreasing observation-to-

parameter ratio. One would expect this addition of restraints/

constraints to increase smoothly in number with the decrease

of resolution. Macromolecular crystallographers have been

aware of the existence of a number of resolution boundaries

since the earliest days of protein crystallography. We will

revisit some of these (software-related) resolution regimes in

the light of the various features present in the h|E|2i(d*)

pro®les.

3.5.1. Sheldrick's 1.2 AÊ rule for direct methods. One of the

most striking features of the calculated h|E|2i(d*) pro®les is

the large peak at approximately 1.1 AÊ . The emergence of this

peak can be understood by recalling that h|E|2i(d*) and the

radial pair-distribution function are related by a spherical

Fourier transformation. This peak in h|E|2i(d*) corresponds to

the sinc-function maxima for typical organic bonding distances

enhanced by the interference of repetitive features of 1.1 AÊ

separation (starting from this 1.5 AÊ distance peak) in the

radial pair distribution function. Every interatomic distance

within a molecule has a corresponding sinc wave in d* space.

These sinc waves show both constructive and destructive

interference. The architecture of proteins just happens to

produce peaks in the radial pair distribution function that give

rise to constructive interference in the region of d = 1.1 AÊ (see

also Zwart & Lamzin, 2003). In Morris & Bricogne (2003) we

show that this peak is intimately related to the application

limit of traditional direct methods and its connection to an

approach (Bricogne, 1994, 1995, 1997a,b) to overcome the

limitations thereof.

3.5.2. The empirical applicability rule of 2.3 AÊ for
ARP/wARP. The next maximum in the h|E|2i(d*) is at about

2.2 AÊ . Distances of about 2.5 AÊ (for instance C�ÐC
, C�ÐC�,

C�
i ÐNi�1) and about 2.8 AÊ (opposite atoms in six-membered

rings, hydrogen-bonded OÐN) give rise to a local maximum in

this region. This is roughly the resolution needed to be able to

resolve the triangle of two successive bonds. Although this is

beyond the limit with which atoms can be placed with high

accuracy, it is important to reconstruct correctly chemical units

the size of the peptide plane. This maximum in the h|E|2i(d*)

pro®les at about 2.2 AÊ is remarkably close to the quoted limit

for the application of the automated model-building routine

warpNtrace (Perrakis et al., 1999) of the ARP/wARP software

suite (Lamzin et al., 2001). ARP (Lamzin & Wilson, 1997)

itself requires higher resolution to place its atoms with con®-

dence, but once the dummy atoms are more or less in place,

ARP/wARP uses peptide-plane density to recognize main-

chain fragments and the introduction of stereochemical

restraints of the interpreted fragments to overcome the reso-

lution de®ciency. By reducing the dominance of the density

criteria and introducing additional longer range geometrical

criteria (Morris et al., 2002), this limit has now been broken

and version 6.0 successfully builds at 2.5 AÊ (Morris et al.,

2004).

3.5.3. Location of secondary-structure elements to about
5 AÊ . The assembly of the protein chain into a three-dimen-

sional structure gives rise to structural features commonly

classi®ed as �-helices and �-strands/sheets. These features

produce characteristic distances within the protein in the

order of 4.5±7 AÊ (� structures typically show peaks in the pair

distribution function at about 4.5, 4.9, 5.4, 6.2, 7.3 AÊ ; � struc-

tures at 4.8, 6.1, 6.6, 6.9, 7.6 AÊ ). We have attempted to

reproduce the peak in h|E|2i at around 4.6 AÊ with various

arrangements of protein chains containing no secondary-

structure elements (main-chain backbone angles ',  that do

not belong to the �, � core Ramachandran plot regions) but

were not successful (data not shown). In terms of introducing

random coordinate changes to the initial structure, it can be

shown that the peak around 4.6 AÊ persists to over 2 AÊ random

error (see also Zwart & Lamzin, 2003), while above this value

secondary structure becomes exceedingly hard to correctly

assign. Upon introducing secondary-element-type structure

(adjusting the main-chain backbone angles ' and  to fall into

the core �, � regions of the Ramachandran plot), a peak

emerges in this 4±5 AÊ regime of the h|E|2i(d*) pro®le. We

conclude that the broad peak around 4.6 AÊ may be interpreted

as the required resolution to reproduce the arrangement of

secondary-structure elements. The ®ner details of this peak

are shown in Fig. 2. The emergence of this peak, as for all the

others, can be understood in terms of the sinc-function

behaviour of the characteristic distances and the inference

with other distance contributions, as described in Morris &

Bricogne (2003) and Zwart & Lamzin (2003). Distances

typical for secondary-structure elements give rise to a large

peak around 4±5 AÊ . This h|E|2i(d*) maximum value ®ts

roughly with the limits of programs such as ESSENS

(Kleywegt & Jones, 1997) and FFFEAR (Cowtan & Main,

1998) that successfully place secondary-structure fragments,

especially helices, in electron-density maps calculated with

data extending to about 5 AÊ .

3.5.4. 6±7 AÊ bad data solvent cutoff. In all protein

h|E|2i(d*) curves a prominent minimum can be observed at

around 6.3 AÊ . Beyond this limit the curves are dominated by

the shape and size of the protein, implying that the

surrounding solvent of the molecule will also contribute to this

resolution, as is readily seen from Babinet's principle. The

importance of low-resolution data was often overlooked late

into the last millennium and these data were not recorded with

suf®cient care, resulting in corrupted low-resolution Fourier

synthesis contributions. In the absence of an adequate solvent

correction it proved advantageous to completely leave out

these data and to feed re®nement programs with heavily

weighted parameter restraints to compensate. The suggested

cutoff for poor low-resolution data is often in the range 6±7 AÊ .

It must, however, be pointed out that this `solvent dip' shown

in Fig. 3 was reproduced without any waters in the structures

and without any kind of solvent modelling. This dip is the

consequence of sinc-function contributions arising from the

repeats typical for secondary-structure elements. This

minimum is greatly enhanced by accounting for the solvent in

the calculations as will be shown later. Indeed, Ih ice has
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oxygen distances of 4.511 AÊ (Goto et al., 1990) that produce

sinc minima in exactly the same d* region as the secondary-

structure distances.

3.6. Extension to nucleic acids

These analyses have also been carried out for 200 DNA/

RNA-only structures from the Protein Data Bank (Bernstein

et al., 1977; Berman et al., 2000) (Fig. 8). They too exhibit a

remarkably low spread at every resolution, similar to the

protein pro®les in Fig. 2. However, a number of differences

exist. The bonding distances in DNA/RNA exhibit a slightly

different distribution compared with proteins, mainly owing to

the phosphate group (PÐO distances about 1.57±1.61 AÊ along

the main chain and about 1.46 AÊ for the terminal O atoms in

the phosphate group), giving rise to the shifted (compared

with the protein pro®les) maximum just below 1.1 AÊ . Contri-

butions to this high-resolution peak and most notably to the

second maximum at around 1.7 AÊ (as compared with about

2.1 AÊ for proteins) arise from the distances between the

stacked purine and pyrimidine side chains of the double-

stranded DNA structure. The side chains are stacked at

normal distances of about 3.3±3.4 AÊ , but a range of strong

peaks for distances between 3.3 and about 6.0 AÊ (especially

pronounced at around 3.5, 4.3 and 5.2 AÊ ) can be observed

between the atoms belonging to any two stacked side chains.

The sinc function for distances of 3.5 AÊ shows a pronounced

maximum at d = 1.7 AÊ and that for distances of 4.3 AÊ exhibits

a minimum at d = 2.5 AÊ . Note also that the `solvent dip' at

about 6±7 AÊ is not present. This is related to the slightly

different distribution of bonding distances and the reduced

number of pronounced peaks in the pair-distribution function

for distances of about 4.5±7 AÊ as seen for protein secondary-

structure elements (experimental data do exhibit a dip in this

region that indeed arises from the solvent). Similarly, all such

minima and maxima can be understood by examining the pair-

distribution function (taking into account also the atomic

numbers if heavy atoms are present in the structure) and

considering the sinc-function contributions and their inter-

ferences.

Figure 8
The natural logarithm of the averaged squared normalized structure factors over 200 nucleic acid structures with estimated standard deviations.

Figure 9
The natural logarithm of the squared normalized structure factors for 1mnn.



We have computed similar curves for nucleic acid and

protein structures including ligands. An example with DNA is

shown below for which all components of a PDB model

(1mnn; Lamoureux et al., 2002) are examined individually and

in various combinations (Fig. 9). This model contains 2382

protein atoms, 342 waters and 568 DNA atoms. Unless there is

a very signi®cant proportion of DNA or RNA (or heavy

atoms) in the model, the protein pro®le is dominant and

dictates the overall trend of the curve. Deviations occur

mainly in the 3±5 AÊ regime as this is the region directly related

to the three-dimensional shape of secondary-structure

elements that is absent in DNA, RNA and other ligands. As

another example, we show PDB model 1a3o which contains

4303 protein atoms, 172 haem-group atoms (including four Fe

heavy atoms) as a ligand and 412 waters. Again, we depict all

components in various combinations to give an impression for

the different contributions (Fig. 10).

All the computations so far are essentially for macro-

molecules in a vacuum, i.e. we have made no attempt to

account for the bulk solvent. However, we do discuss this

problem in some detail in a later section in connection with

scaling.

4. Scaling

4.1. Wilson scaling

Equations (6) and (7) allow measured structure-factor

amplitudes to be normalized. Measured data are however not

on an absolute scale. It is common to consider an overall scale

factor k and an overall temperature factor (a global atomic

displacement parameter providing additional resolution-

dependent scaling) B for the data. The mapping of the arbi-

trary observed scale to absolute may therefore be achieved by

the multiplication of the measured structure-factor amplitudes

by kexp(ÿ0.25Bd*2). As was shown above, an independent

uniform random-atom model lacks interatomic interference

and therefore the solid-angle averaged squared structure

factors should be equal to the summed squared atomic scat-

tering factors. Plotting the logarithm of this ratio (averaged

measured squared structure factors over the sum of squared

form factors) versus d*2 should produce values that lie on a

straight line of slopeÿ0.25B and shifted byÿlogk. This or the

extension to anisotropic scaling (®t of a tensor �) is the basis of

most common attempts to put data on absolute scale. Other

methods include origin Patterson peak analysis (Rogers, 1980;

Blessing & Langs, 1988) and the K-curve procedure (Karle &

Hauptman, 1953). Blessing et al. (1996) have shown that if this

overall resolution-dependent scale factor is interpreted as an

average temperature factor for the structure, then an addi-

tional d*-dependent term arises, as the expectation for the

Debye±Waller factor under the under assumption of normally

distributed individual B values is exp[ÿ0.25(hBi ÿ �2d*2)d*2],

where �2 = h(B ÿ hBi)2i. Although the initial assumptions can

be questioned and the behaviour of this result at high reso-

lution is somewhat suspicious, this approach combined with

iterative non-linear least squares has been reported to

produce reliable normalized structure-factor amplitudes for

data extending to about 2.5 AÊ . These approaches have known

problems with data extending little further than about 3 AÊ

owing to the modulation of the straight Wilson line by struc-

tural features of macromolecules. A method working to about

5.0 AÊ was reported in Cowtan & Main (1998) which

normalizes a number of scattering curves by the numbers of

ordered structures in the unit and attempts to ®t these curves

to experimental data.

4.2. hhh|E|2iii profile scaling

The now well known and remarkably constant form of the

h|E|2i pro®les takes into account precisely those variations that

can cause problems in Wilson scaling. Their use in scaling

would therefore appear to be an attractive way to increase the

robustness of current scaling procedures. One problem

however has yet to be dealt with.

4.2.1. Water-layer solvent correction. The h|E|2i(d*)

pro®les presented so far are all hypothetical in the sense that

they were calculated for protein models in a vacuum. This
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allowed a detailed analysis of the correspondence of the actual

protein structure and its pro®le, but should be considered

highly suspicious for real data (at least to about 5±6 AÊ ).

To effectively use h|E|2i(d*) pro®les in macromolecular

crystallographic software, the contributions of the solvent

must be correctly accounted for (Blessing et al., 1996).

Methods for crystallographic structure-factor correction and

solvent-related techniques may be found in Bricogne (1974,

1976), Phillips (1980), Urzhumtsev & Podjarny (1995),

Podjarny & Urzhumtsev (1997), Zhang & Main (1990),

Tronrud (1997) and many others. Svergun and co-workers

(Svergun et al., 1995; Koch et al., 2003) have developed robust

and well tested procedures for modelling the solvent for small-

angle scattering applications. We follow a very similar proce-

dure. A solvent layer is placed on an angular grid around the

protein surface (this includes cavities) at approximately

hydrogen-bonding distance from the protein atoms or bound

waters. (Good-quality recent PDB models now commonly

have accurate waters, but in general it is advisable to strip

especially older deposited structures of their waters as these

were often just noise-®tting parameters during re®nement.)

Babinet's principle is then employed to compute the structure-

factor contributions from pseudo-atoms in the structure that

have atomic scattering factors corresponding to the displaced

solvent. The breadth and depth of the solvent dip in the

h|E|2i(d*) is highly dependent on the choice of parameters

such as the number of solvent layers to add around the

macromolecule, their shell structure, their atomic displace-

ment factors and their atomic scattering factors (Jiang &

BruÈ nger, 1994; Svergun et al., 1998). The radius-dependent

shell density model (Schoenborn, 1988; Cheng & Schoenborn,

1990) attempts to account for this behaviour, which was also

predicted from molecular-dynamics simulations (Levitt &

Sharon, 1988). We also observed a shift towards lower reso-

lution of the minimum with increased solvent modelling and

the emergence of a local maximum in the region around 3.5 AÊ .

This observation was also made by Blessing et al. (1996). This

peak is more pronounced the more solvent there is and the

lower the solvent B factor (Blessing et al., 1996). This reso-

lution may therefore be of importance for the estimation of

the solvent content and be relevant for phase-improvement

techniques. The calculated h|E|2i(d*) pro®les from structures

with their modelled water structure in depicted in Fig. 11.

It must be stressed that even with adequate solvent

modelling [a correct estimate of the extent of the solvent in all

directions, a good description either in terms of an atomic

structure with appropriate dynamics or a lower parameter

description such as in Roversi et al. (2000), an appropriate

scattering factor description etc.] the low-resolution region will

be problematic to model within the crystal owing to the

proximity of neighbouring molecules that will give rise to

modulations of the intensity pro®le in this region. The better

approach may be to calculate h|E|2i from high-quality

experimental data measured with great care down to very low

resolution (Evans et al., 2000) for a great many different

proteins and to average these data, as investigated by Cowtan

& Main (1998) and Popov & Bourenkov (2003).

4.2.2. Formulation of the scaling problem. The more

structural knowledge that is correctly accounted for in the

scaling process, the more the Wilson plot [loghIi versus (d*)2]

should resemble a straight line (Main, 1976). This allows the

scaling procedure to be formulated as an optimization

problem in which the objective function to minimize is the

deviation from a straight line. We consider a small set of

hypotheses, namely that the structure is dominantly of (i)

helical, (ii) � or (iii) �+� content or no clear signal can be

detected and we use the average h|E|2i that we obtained from

the 700 studied protein structures. We are thus looking for the

hypothesis Hk that maximizes the posterior probability,

P�HkjD� ' �k�D�P�Hk�; �17�

in which the likelihood function measures the quality of ®t to

the best straight line that can be drawn through the Wilson

plot under one of the hypotheses mentioned above. In every

resolution bin the logarithm of average radial intensity is

computed and this value is divided by the logarithm of

h|E|2i(d*) from the pro®le corresponding to the hypothesisHk.

As the number of individual intensities is typically fairly large

(we have >500), the distribution of the bin-average intensity

may be assumed normal. We extend this assumption to the

distribution of the logarithm of the bin-average intensities as

this allows a least-squares ®t of the scaling parameters. With

�2 �PN
i�1

yi ÿ aÿ bxi

�i

� �2

�18�

and yi = loghF2
obsishell i, a = logk (where k is the Wilson scale

factor), b = B (the Wilson B factor) and xi = sin2�i/�, we de®ne

the likelihood function as

Figure 11
The natural logarithm of the averaged squared normalized structure
factors over protein structures including their solvent atoms, using
our simple new solvent model with parameters B = 100 AÊ 2 and
Nwaters = 3Natoms and for 700 protein structures without waters. The
latter curve gives a much better prediction of the `solvent dip' and hence a
straighter Wilson plot in Figs. 12 and 13.



�k � exp ÿ 1

2
�2

� �
: �19�

The goodness-of-®t can be estimated from the �2 distribution

with N ÿ 2 degrees of freedom (Press et al., 1992). The P(Hk)

values can be estimated from the relative frequencies of �, �
and �+� structures from the PDB or subset thereof.

4.2.3. A new solvent model combined with scaling. If all

variable in¯uences on the h|E|2i values could be modelled via

the introduction of parameters X, the above formalism of

trying to obtain the straightest line would give rise to a

powerful algorithm for both solvent modelling and scaling.

Extending the above equation to include other factors of

interest and not only the protein class (which could also be a

smooth function of helix and � content given an adequate

parameterization of the full pro®les), one can write

P�XjD� ' �X�D�P�X�; �20�
with the likelihood function as above using the �2

distribution.

These parameters X would be adjusted as above such that

the resulting curve is as straight as possible. To test this

approach, we have developed an extremely simple yet

powerful solvent model.

Based on well known oxygen distances from ice-crystal

structures (see, for example, Goto et al., 1990), we make a

crude approximation by ignoring all protein and water inter-

actions and consider only additional sinc contributions from

the most dominant distances (2.760, 4.511 and 7.351 AÊ for

Ih ice), the ratios of which we have ®xed (values taken from

the intensity distribution; Hura et al., 2003). The number of

contributions can be readily extended; indeed, the intensity

distribution for water (Hura et al., 2003) could be used directly.

Our model has only two parameters that roughly correspond

to the number of water atoms to take into account and the

isotropic displacement parameter of the water (same for all).

We choose these parameters in such a way that the resulting

curve is the straightest, i.e. by optimizing their values to

produce a maximum in the above posterior probability

(basically the �2 distribution unless a strong prior is used to

restrain the values). The algorithm may be described by the

following steps.

(i) Read in I and �(I) [or F and �(F)] for each hkl.

(ii) Read in the sequence and calculate �2(d*).

(iii) Divide every I by "(h)�2(d*) and compute bin averages

over the given resolution range.

(iv) Read in the average h|E|2i pro®le (or many for different

secondary structures).

(v) Compute a water-corrected pro®le consisting of the

water-intensity pro®le (approximated here by three sinc

functions) multiplied by a resolution-dependent factor (water

B factor) and a scaling parameter (the number of water

atoms): two parameters, Nw and Bw.

(vi) Optimize these parameters such that the resulting line

in the Wilson plot is the straightest, as judged by the �2

likelihood under any given prior knowledge. This ®tted

straight line gives rise to the Wilson scale and B factor.

Figs. 12 and 13 show two such attempts at modelling the

solvent. Despite its simplicity, this approach gave very satis-

fying results and the optimized parameters even lie in

reasonable ranges: we observed values between 90 and 150 AÊ 2

for the water B factor and the number of water atoms was

about three times the number of protein atoms. Considering

these values are mainly optimization parameters in a very

simple model and were obtained using a non-informative

prior, we ®nd they lie in surprisingly reasonable ranges. We are

optimistic that an extension of this method may lead to very

robust absolute scaling down to about 5 AÊ and possibly

further. Already within the current implementation, we obtain

consistent overall Wilson temperature and scale factors down

to about 3±3.5 AÊ (cut data) and acceptable results to about

4.5 AÊ (cut data). At lower resolution we obtain B factors of

the order of 1±5 AÊ 2 which are still considerably better than the

negative values that may otherwise result. The introduction of

stronger prior knowledge about the expected B values should

increase the robustness further.

4.2.4. Preliminary results. The above approach has been

implemented with the crystallographic software development

test-bed BALLS (Blanc & Morris, 2002).

We show here just two selected examples: PDB codes 1gw9

(Evans & Bricogne, 2002) and 1gwd (Evans & Bricogne,

2002). The data for these structures extend to 1.55 and 1.8 AÊ ,

respectively, and are of good quality; therefore, scaling is not a

problem. Our intention here is simply to show that the data

themselves can correctly select the appropriate h|E|2i pro®le

that is best suited for scaling (see Tables 2 and 3). Note that

the resolution range will in¯uence the actual probability

values as will the associated errors in each resolution shell:

comparing values between data sets should be performed with

caution. We use here the vacuum protein pro®les but also

show ®rst results including our solvent-modelling attempts.

The scaling parameters do not vary signi®cantly as enough

data exist to provide a robust estimate regardless of proper

normalization. The line-®tting quality does however vary as

the Wilson curve is straightened by the pro®le. The actual �2

and � are highly error-model-dependent and larger error

estimates in the resolution bins can produce a seemingly

better ®t although the scaling parameters may essentially be

the same. We have therefore not used the real estimates here,

but have quoted the �2 and � values using in each case the

same errors (the set of largest errors from each individual

pro®le). This means that the differences between the quality

estimates are smaller than otherwise, but we eliminate the

effect of pro®les having different � values owing to the

different numbers of structures that were used to calculate

them. We will not elaborate further on these issues as the full

implementation with anisotropic Wilson B factors and without

binned resolution shells is now under way.

The importance of correctly accounting for the effect of the

surrounding solvent is vital to extend this approach to lower

resolution successfully. In Tables 2 and 3, we have given the

parameters using the solvent as described above. It is clearly

better than not taking the solvent into account, but further

work is needed to better model these in¯uences. The examples

Acta Cryst. (2004). D60, 227±240 Morris et al. � h|E|2i(d*) profiles 237

research papers



research papers

238 Morris et al. � h|E|2i(d*) profiles Acta Cryst. (2004). D60, 227±240

used here contain triiodide and a large amount of salt that

were neglected in our solvent model. If the distances between

these atoms were approximately known from concentration

measurements, then one could compute an h|E|2i(d*) pro®le

that could be added to that of the protein in a similar way to

that of the solvent.

An alternative approach of averaging experimental Wilson

curves as in Cowtan & Main (1998) and Popov & Bourenkov

(2003) may be the route to success until better solvent models

are developed, although we think our method may have

potential and work on further improvement and testing is

under way.

Owing to encouraging results (Figs. 12 and 13), the ideas

have recently been included in SHARP (de La Fortelle &

Bricogne, 1997) and autoSHARP (Vonrhein & Bricogne,

2004) to provide more robust absolute scaling of lower reso-

lution data sets. In the re®nement and model completion

modules of BUSTER (Bricogne, 1993) the possibility of using

non-Wilson prior distributions has existed and been functional

since design stage to take into account chemical texture effects

in structure-factor statistics. Work is under way and will be

presented elsewhere.

5. Discussion

The basic bonding structure of organic molecules and the

regular paths (secondary structure) that protein chains follow

in three-dimensional space introduce characteristic features in

the radial pair-distribution function that give rise to a highly

predictable form of the h|E|2i(d*) pro®les. These pro®les may

be thought of as a (rotationally averaged) reciprocal-space

representation of protein texture. In this article, we have

investigated the features of macromolecular h|E|2i(d*)

pro®les, thereby attempting to link these features to known

structural characteristics and also to the limits of application

of a few selected software packages. The theoretical h|E|2i(d*)

pro®les, despite being the transform of a spherically averaged

structure, contain suf®cient information to allow a classi®ca-

tion into the three major structural groups �, � and �+� to be

performed, even at medium resolution. If the secondary

Table 2
Example of automatic pro®le selection for 1gw9.

This table lists the isotropic scaling parameters for 1gw9 (Evans & Bricogne,
2002) with various pro®les used for normalization. The data correctly give
preference to the �+� pro®le from �, �, �+� although the average pro®le gives
clearly better results, probably owing to the better statistics. As a reference the
parameters using the pro®le calculated from the solved structure are given, as
is our initial attempt at modelling the solvent effects.

Pro®le
Wilson B
(e.s.d.)

Wilson k
(e.s.d) �2

obs P(�2 > �2
obs�

None 12.22 (0.35) 0.260 (0.006) 179.72 1.28 � 10ÿ6

� 12.64 (0.62) 0.203 (0.009) 136.52 0.0075
� 12.55 (0.62) 0.208 (0.009) 172.54 6.77 � 10ÿ6

�+� 12.81 (0.62) 0.198 (0.009) 134.33 0.0105
Self 12.45 (0.63) 0.203 (0.009) 101.60 0.4088
Average 12.62 (0.62) 0.202 (0.009) 120.54 0.0696
Average + solvent 13.04 (0.63) 0.190 (0.008) 85.89 0.8230

Table 3
Example of automatic pro®le selection for 1gwd.

This table lists the isotropic scaling parameters for 1gwd (Evans & Bricogne,
2002) with various pro®les used for normalization. The data correctly give
preference to the � pro®le from �, �, �+�, although the average pro®le gives
slightly better results, probably owing to the better statistics. In this case, the
errors used in the weighting of �2 are probably overestimated.

Pro®le
Wilson B
(e.s.d.)

Wilson k
(e.s.d) �2

obs P(�2 > �2
obs�

None 10.7 (1.2) 0.264 (0.016) 47.28 0.790
� 8.4 (1.2) 0.297 (0.019) 39.82 0.950
� 11.5 (1.2) 0.221 (0.014) 48.32 0.757
�+� 10.1 (1.2) 0.252 (0.016) 46.45 0.815
Self 10.07 (1.23) 0.256 (0.016) 33.42 0.993
Average 9.9 (1.2) 0.260 (0.016) 38.01 0.969
Average + solvent 9.8 (1.2) 0.260 (0.017) 34.95 0.988

Figure 12
The experimental Wilson plot (with I/�2) for 1gw9 (red) and the
corrected Wilson curve (green) by division of the average h|E|2i pro®le
taking solvent effects into account as described in the main text.

Figure 13
The experimental Wilson plot (with I/�2) for 1gwd (red) and the
corrected Wilson curve (green) by division of the average h|E|2i pro®le
taking solvent effects into account as described in the main text.



structure was known reliably beforehand, for instance from

homologous structures with high similarity, CD measurements

or prediction software, then the data could be scaled using an

optimal h|E|2i(d*) pro®le for this structure. We have also

developed a procedure to allow the pro®le to be selected

automatically. This currently works with three pro®les corre-

sponding to the three major protein classes mentioned above,

but one could also envision an extended procedure that

optimizes the � and � content and chooses the appropriate

h|E|2i(d*) pro®le to give the straightest line. In many cases,

however, experimental error will swamp these subtleties and

cause too much blur to enable the ®ne differences to be used

with con®dence. Even without secondary-structure-dependent

h|E|2i(d*) pro®les, scaling is already made signi®cantly more

robust by the use of averaged h|E|2i(d*) curves and gives more

consistent results to lower resolution than without their use.

The robustness towards lower resolution will depend mainly

on the ability to correctly model the water layer and the bulk-

solvent contribution for different molecule shapes and sizes.

We have presented here a new solvent-modelling technique

that seems to capture well the main features of bulk solvent.

This method combined with the averaged squared normalized

structure-amplitude pro®les has been shown to provide robust

absolute scaling in a number of test cases.
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valuable critique.
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