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Economy of symbols v e r s u s  clarity 

Although the specification of an excessive number of 
symmetry elements in a symbol of Hermann- 
Mauguin type can be confusing, reduction of the 
number to an absolute minimum can be mystifying. 
The symbols proposed, although reasonably concise, 
are therefore not claimed to have been condensed to 
the maximum possible extent. 
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Abstract 

A revision of the classical statistical methods of phase 
determination is presented which widens their theo- 
retical foundations and consolidates their practical 
implementation, thus bringing about a major increase 
of their power. In a brief introductory survey (§ 1), 
the basic concepts and mathematical techniques of 
direct methods are analysed. Closer scrutiny (§ 2) 
reveals that severe inadequacies still impair the effec- 
tiveness of these methods. The asymptotic character 
of the series used to approximate joint distributions 
of structure factors demands that great caution be 
exercised to guarantee their accuracy, and this 
requirement can only be fulfilled if they are used 
within a multisolution algorithm in which the prior 
distribution of atoms is constantly updated so as to 
incorporate at every stage all the phase information 
assumed to that point. Further limitations follow from 
the traditional practice of approximating joint distri- 
butions by products of marginal distributions of 
single invariants. A scheme for simultaneously over- 
coming both difficulties is then proposed. The pivotal 
element of this scheme is a device, based on Jaynes's 
maximum-entropy principle, for exploiting the prior 

* Editorial Note: Papers exceeding the normal length limitations 
of the journal are scrutinized particularly carefully to ensure they 
meet the stated goal of providing the maximum density of informa- 
tion consistent with clarity of presentation. Considerable reduc- 
tions in length are often achievable in revision without loss of 
essential information. This very long paper, having passed all 
normal editorial procedures, constitutes a rare exception to the 
normal upper bound. 

t Present address: LURE, BStiment 209C, 91405 Orsay CEDEX, 
France. 

knowledge of some structure factors in the construc- 
tion of the joint distributions of others conditional 
to that knowledge. Jaynes's maximum-entropy for- 
malism is presented and systematically applied to the 
construction of the requisite non-uniform prior distri- 
butions of atoms in § 3. The problem of effectively 
approximating conditional distributions of very large 
numbers of structure factors is solved in § 4 by a novel 
technique of 'maximum-entropy inversion' of Karle- 
Hauptman matrices, and the result obtained is shown 
to generalize the most sophisticated probabilistic for- 
mulae hitherto obtained. This procedure is proved in 
§ 5 to coincide with an enhancement of the standard 
method of asymptotic expansions by means of 
Daniels's saddlepoint approximation. Its relationship 
to determinantal methods is investigated in § 6. A 
numerical algorithm for implementing these ideas is 
presented in § 7, together with an application to data 
from the small protein Crambin, and a unified strategy 
for its use ab initio is described and discussed in § 8. 
It is concluded that the phase-determination strategy 
proposed here will expedite the realization of the full 
potential of probabilistic direct methods, and is likely 
to bring macromolecular structures within their 
reach. 

Introduction 

Thirty years ago Hauptman and Karle pioneered the 
use of sophisticated methods of probability theory 
for directly determining the phases of structure factors 
from the sole knowledge of their amplitudes (Haupt- 
man & Karle, 1953). After an initial latency period, 
these probabilistic direct methods underwent a 
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remarkable development between the mid-sixties and 
the mid-seventies, with the advent of the symbolic 
addition procedure (Karle & Karle, 1966) and of 
multisolution strategies (Germain & Woolfson, 1968) 
for the systematic exploitation of the triple phase 
relationship. These advances resulted in computer 
programs capable of routinely solving most organic 
structures containing up to 100 non-hydrogen atoms. 
During the last decade, steady progress has been 
made in the further use of triplets, quartets and quin- 
tets, and in the derivation of more elaborate formulae 
for estimating these invariants by means of their 
neighbourhoods (Hauptman) or phasing shells 
(Giacovazzo). A review of these topics may be found 
in Giacovazzo (1980). In spite of these improvements 
the solution by direct methods of structures contain- 
ing over 150 non-hydrogen atoms remains the excep- 
tion rather than the rule. It seems, however, difficult 
at present to ascertain whether this upper bound 
represents a fundamental limit in the intrinsic power 
of the probabilistic approach, or is merely a con- 
sequence of some temporary imperfections in its cur- 
rent implementation. 

The present paper is an attempt at settling this 
question in favour of the second alternative through 
a reappraisal of the mathematical apparatus of prob- 
abilistic direct methods and of the procedures by 
which it is put to use. This study will bring to light 
an intimate connection between direct methods and 
a mode of statistical inference based on Jaynes's 
maximum-entropy (ME) principle (Jaynes, 1957, 
1968). 

A number of papers have recently appeared on the 
maximum-entropy approach to direct phase determi- 
nation. Piro (1983) considers the relation between 
direct methods and a form of the ME method already 
studied by Britten & Collins (1982) and Narayan & 
Nityananda (1982), which is based on a different 
entropy called here the 'Burg entropy'. The article by 
Wilkins, Varghese & Lehmann (1983) contains an 
exposition of Jaynes's ideas on the relevance of his 
ME principle to all inverse problems, along lines 
indicated independently by the present author 
(Bricogne, 1982). Wilkins et al. advocate its use as a 
de novo approach to the phase problem, stating 
without proof that it 'subsumes all currently practised 
numerical approaches to the crystallographic inver- 
sion problem as special cases'. This unsubstantiated 
claim is partially refuted by the present study: the 
precise relation between the two methods is shown 
to be one of complete logical equivalence, whose 
proof is anything but obvious, and the only difference 
lies in the quality of their practical implementations. 
In this respect, all the currently available entropy 
maximization algorithms are still far inferior to direct 
methods in that they fail to deal adequately with one 
of the major difficulties of phase determination, called 
'branching' in this article. 

The fundamental problem of direct phase determi- 
nation is the construction of joint or conditional 
probability distributions (j.p.d.'s or c.p.d.'s) of struc- 
ture factors. The formal device of the Edgeworth 
asymptotic series proposed in the early literature, and 
purported to afford a general solution to this problem 
(§ 1), is critically re-examined. It is shown to be incor- 
rectly utilized and hence to yield unreliable approxi- 
mations to conditional distributions when structure 
factors with large amplitudes are used as arguments. 
Further loss of phasing power results from the current 
practice of exploiting large numbers of 'small-base' 
distributions (involving few structure factors) rather 
than a single large-base distribution, since the intri- 
cate pattern of interactions between phases is only 
very partially represented (§ 2). To correct these 
imperfections, a better method must be sought for 
approximating large-base joint distributions, which 
will lead to consistently accurate estimates of condi- 
tional distributions derived from them. For this pur- 
pose, one is compelled by the restricted domain of 
validity of the Edgeworth asymptotic expansion to 
adopt a new kind of multisolution approach in which 
the prior distribution of atoms is constantly updated 
so as to recentre the asymptotic expansions of the 
c.p.d.'s around the trial structure-factor values 
assumed at each stage (§ 2). Jaynes's maximum- 
entropy principle and the ensuing formalism provide 
both the criterion necessary to select uniquely such 
a non-uniform prior distribution, and the analytical 
methods for deriving it in closed form (§ 3). The 
effective construction of accurate conditional distri- 
butions of very large numbers of structure factors is 
considered in § 4. A general method is obtained, by 
which all previously known formulae for estimating 
phase invariants may readily be derived as approxi- 
mations and extended, and whose implementation 
can be made computationally efficient. The unique- 
ness and optimality of this scheme is then proved in 
§ 5 by establishing its equivalence with a multi- 
dimensional version of Daniels's saddlepoint method 
(Daniels, 1954). The approximate conditional distri- 
butions thus obtained bear a close relationship to 
those afforded by the maximum-determinant method 
(MDM) of Tsoucaris (1970), but the present pro- 
cedure has considerable advantages over the latter 
(§ 6). A fundamental computational process in the 
implementation of these ideas is the constrained 
maximization of an entropy functional. An algorithm 
designed for this purpose, which embodies a complete 
solution to the branching problem and has been 
used successfully to carry out phase extension on 
a small protein, is presented in § 7. Finally, the 
overall organization of the new multisolution algor- 
ithm, its impact on the powers of direct methods, 
and its potential usefulness in ab initio phase 
determination for large structures are discussed 
in §8. 
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1. Survey of the classical formalism of direct methods 

The recalcitrant nature of the phase problem derives 
from the fact that it is mathematically indeterminate 
unless sufficient chemical information is brought to 
bear on its solution to constrain it down to a reason- 
ably unique answer, while the full content of this 
chemical information cannot be adequately captured 
by any of the well-developed devices of mathematics 
until a stereochemical parametrization of the electron 
density becomes possible. 

The statistical theories of the phase problem 
endeavour to exploit some of the statistical con- 
sequences of the basic premise of chemistry - the 
'atomic hypothesis'. This property of atomicity is 
abstracted to the statement that crystal structures may 
be viewed as consisting of identical atoms placed 
randomly and independently of each other in accord 
with the crystal periodicity and symmetry. The Four- 
ier coefficients pertaining to such structures are there- 
fore sums of a large number of random variables (the 
contributions from individual atoms), and one may 
invoke the limit theorems of probability theory to 
obtain estimates of their distribution. 

These ideas were first put to use by Wilson (1949) 
in his study of the distribution of diffracted intensities 
and of its modulation by crystal symmetry. The next 
logical step was taken by Hauptman & Katie (1953), 
who examined the joint distribution of several Fourier 
coefficients, and made the crucial observation that 
such distributions could yield phase information if 
the amplitudes were assumed to be known. Bertaut 
(1955a, b, c) and Klug (1958) later re-examined their 
initial formulation, and showed that its mathematical 
foundations were to be found in the theory of normal 
approximation by means of the Gram-Charlier or 
Edgeworth asymptotic expansions. 

The mathematical apparatus of direct methods thus 
consists of three main elements: 

(a) a random process attempting to mimic the rules 
of chemistry through the attribute of 'atomicity'; 

(b) a probabilistic formalism capable of deriving 
conditional distributions of phases for given ampli- 
tudes which describe the redundancy relations 
between structure factors implied by the hypothesis 
of atomicity; 

(c) an algebraic formalism which supervises the 
use of probabilistic formulae on suitably chosen 
clusters of reflexions, and collates the information 
contained in the resulting phase probability distribu- 
tions. 

These three constituents will now be examined 
individually in some detail. 

1.1. Stochastic model 

Since their initial formulation by Hauptman & 
Katie, direct methods have used as their starting point 
a stochastic process which generates crystal structures 

by randomly placing atoms, independently of each 
other, in the asymetric unit of the crystal, according 
to some prior distribution. The atoms are often 
assumed to be identical, and their prior distribution 
uniform, but these restrictions are not essential (Klug, 
1958). 

In virtue of Shannon's sampling theorem (Shan- 
non, 1949), this picture may be discretized at any 
finite resolution by partitioning the asymmetric unit 
of the crystal into a finite number B of equal boxes. 
If the boxes are labelled 1 to B, the stochastic process 
which places atoms randomly may be viewed 
abstractly as a discrete source of symbols (the labels 
of the boxes) in the sense of communication theory 
(Shannon & Weaver, 1949). The prior distribution of 
atoms specifies that the B symbols of the source have 
a priori probabilities qi, q2 , . . . ,  qB. Under these cir- 
cumstances, the stochastic model is one of indepen- 
dent Bernoulli trials with B possible outcomes at each 
trial: outcome i occurs with probability qi and causes 
the current atom to be placed in box i. 

This model is admittedly a rather crude representa- 
tion of chemistry, yet it has the merit of leading to 
tractable mathematics. A Markov process with finite 
memory would give a better approximation of the 
statistical character of a source of atomic positions 
governed by the laws of stereochemistry, but its 
exploitation would entail much greater effort. 

1.2. Probabilistic formalism 

Let ( h i , . . . ,  hn) be the indices of a prescribed finite 
set of structure factors, whose joint distribution is 
being sought. 

A point atom of unit weight placed at random 
position x gives rise to a random vector in C n, 

1 
X(x) = ~:,!x) l) 

of complex contributions to the Fourier coefficients 
at h l , . . . ,  h,,. For instance, in space group P1, 

[ e x p  (2 , ih '  "x) 1 
X(x)= . (1.2) 

exp (2~rih,. x) 

By the assumptions of the stochastic model, the 
vector 

F= (1.3) 

of structure factors for an N-atom structure will be 
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obtained by summing N independent copies of ran- 
dom vector X: 

N 

F =  E X,. (1.4) 
i = i  

Geometrically, each Xi may be viewed as an elemen- 
tary step (or increment) of a random flight in C ", so 
that reckoning the joint distribution of F h , , . . . ,  F , ,  
amounts to estimating the relative frequency of ran- 
dom flights starting at 0 and ending at F amongst all 
the N-step flights generated by the stochastic process. 

1.2. I. Exact expression of  the joint distribution 

The first aim of probabilistic direct methods is to 
obtain an asymptotic estimate, in the limit of large 
N, of the distribution ~(F) of vector F, i.e. of the 
joint distribution of F h , , . . . ,  Fh,. Standard methods 
are available in probability theory to obtain such 
estimates, whose steps will now be outlined for further 
reference. The reader is referred to Klug (1958) for a 
detailed introduction to characteristic, moment- 
generating and cumulant-generating functions. 

Let the atoms be placed at random with a prior 
distribution q(x). Then the induced distribution P(X) 
for random vector X is the singular measure P defined 
by 

P(X)G(X) d2nX 
~2n 

= ~ q(x)G[~:l(X),... ,  ~n(X)] d3x (1.5) 
V 

for any function G of an argument in C n. In particular, 
all the moments and cumulants of P may be calcu- 
lated by this formula. 

Since the random vectors Xi are identically dis- 
tributed and independent, their addition gives rise to 
the convolution of their distributions: 

= p .  N (1.6) 

hence to the multiplication of their characteristic 
functions (C = #P, ~ = # ~ ) :  

cg = C N (1.7) 

or moment-generating functions [M(u)=C(- iu ) ,  
~(u)= rg(- iu)]: 

d R = M  N, (1.8) 

which is equivalent to the addition of their cumulant- 
generating functions (K = log M, Y( = log ~ ) :  

= NK. (1.9) 

The desired probability density ~ may thus be 
written 

~ =  #-~[Cr"]  = #~-'[MN(iu)] 

= :~-~{exp [NK(iu)]. (1.10) 

1.2.2. The Edgeworth asymptotic series 

The necessary Fourier inversion is usually not poss- 
ible in closed form, so that some approximation 
scheme is needed. For this purpose, it is customary 
to expand the cumulant-generating function around 
the origin in the space of the carrying variables u. 
Recentring ~ around its vector of first moments F ° = 
NUq [where Uq is the vector of Fourier coefficients 
of the prior distribution of atoms q(x)] causes the 
first-order cumulants to vanish, and the second-order 
terms may be grouped separately from the terms of 
third or higher order. Going back to characteristic 
functions gives 

rg = (Gaussian) xexp {power series starting with 
terms of o r d e r -  > 3}. 

Expanding the exponential expresses cg as a series 
of terms of the form 

(Gaussian) x monomial in the carrying variables. 

Each of these terms may now be subjected to Fourier 
inversion, giving rise to a Hermite function in the 
centrosymmetric case (Klug, 1958) or a Laguerre 
function in the non-centrosymmetric case (Naya, 
Nitta & Oda, 1965). One thus obtains an expansion 
of ~(F), asymptotic in powers of N -! /2  and valid in 
a neighbourhood of F °, called the Edgeworth series 
of ~(~3. 

The book-keeping of terms in this series is rather 
complex. Under the usual assumption of a uniform 
prior distribution q(x)= I/V, the structures of the 
moment- (or cumulant-) generating functions are 
rather sparse. This is easily seen by considering, for 
example, the expression for the general moment in 
PI" 

m~,j>.4 = [ q(x) fi [exp(2"rrih/.x)y'd3x, (1.11) 
V I - - I  

rl 
which vanishes unless ~=~ jlht = 0. As a result, the 
j.p.d, of Fh , , . . .  , Fh ,  depends only on those combina- 
tions of phases ~'=i j#(hl )  whose coefficients verify 
the above relation, the so-called 'phase invariants'. 
In a general space group, the pattern of non-vanishing 
moments is richer, and is associated with dependence 
relations with integral coefficients amongst the indices 
hi, h 2 , . . . ,  h n and their images under the point-group 
operations. If the prior distribution of atoms q(x) is 
not uniform, however, the generic moments will not 
vanish, but will be expressible in terms of the Fourier 
coefficients of q(x) via the structure-factor algebra of 
the space group (Bertaut, 1955c). Such generic 
moments will be typically about x / ~  times weaker 
than the special ones considered above, but there will 
be a great number of them. 

1.2.3. Exploitation of  joint distributions 

Joint probability distributions of structure factors 
are not used as such but serve as intermediates in the 
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construction of conditional distributions, which are 
derived from the j.p.d.'s by 'specializing' some of their 
arguments to known or assumed values. A typical 
practice is to substitute into the j.p.d, the observed 
values of the structure-factor moduli to obtain the 
conditional distribution of their phases. Such condi- 
tional distributions are the key instrument in the 
process of phase determination, since they enable one 
to make inferences about phases from the sole knowl- 
edge of moduli. 

The formal complexity of the Edgeworth series has 
so far hindered its full-scale use for constructing 
j.p.d.'s of large numbers of structure factors. The 
practical implementations of direct methods have 
instead evolved around the exploitation of small-base 
j.p.d.'s involving only the 'basis' reflexions giving rise 
to a single phase invariant; the conditional distribu- 
tion obtained by specializing the moduli to their 
observed values is then the probability distribution 
of that invariant. Estimates obtained from such 
'minimal' j.p.d.'s are of limited reliability, and a more 
elaborate procedure was devised by Hauptman 
(1975a, b): one first constructs a j.p.d, involving, 
besides the same basis reflexions, a set of suitably 
chosen satellite reflexions; the conditional distribu- 
tion obtained after substituting into this 'augmented' 
j.p.d, the observed moduli of all structure factors 
concerned is then integrated with respect to the satel- 
lite phases. By this mechanism the information con- 
tained in the moduli of the satellite structure factors 
is brought to bear on the estimation of the invariant, 
whose reliability is thereby increased. 

Formally, both types of small-base j.p.d.'s, minimal 
and augmented, are in effect marginal distributions 
of the complete j.p.d. ~ of all structure factors (an 
object so far unamenable to actual construction), 
obtained from the latter by integrating over the values 
of all structure factors but those originally used as 
arguments. This viewpoint, however artificial it may 
seem at this stage, will be useful in § 2.2. 

1.3. Algebraic formalism 

The task of collating the information contained in 
the multitude of probability distributions of 
individual phase invariants compiled by the current 
implementations of direct methods gives rise to intri- 
cate algebraic constructs, due mainly to Hauptman 
and Giacovazzo. Hauptman's nested neighbourhoods 
(or Giacovazzo's phasing shells) classify the sets of 
satellite reflexions suitable for constructing the 
augmented j.p.d.'s mentioned in § 1.2.3, while 
Giacovazzo's theory of representations exploits the 
rich patterns of relations connecting phase invariants 
and seminvariants to test further the consistency of 
their estimates. The purpose of this formalism is there- 
fore to describe the structure of those clusters of 
reflexions whose amplitudes eventually influence the 

distribution of a given phase invariant, and to organ- 
ize systematically the process of cross checking and 
combining the resulting estimates. 

This book-keeping of phase invariants is analogous 
to that which would be involved in collecting the 
terms of the Edgeworth series to build the j.p.d, of 
all structure factors under consideration, were this 
operation attempted. The Hauptman-Giacovazzo 
formalism thus performs, externally to the conven- 
tional (small-base) probability calculations, the same 
book-keeping tasks which would remain internal to 
the construction of large-base j.p.d.'s. 

2. Assessment and consolidation of the current 
methodology 

It emerges from the above survey that the central 
problem of direct methods is the construction of 
sufficiently accurate approximations to joint proba- 
bility distributions of large numbers of structure 
factors. The procedures in current use will now be 
subjected to closer scrutiny and will be shown to fall 
short of accomplishing this task in the best possible 
fashion. Two main infelicities are responsible for this 
lack of optimality: the non-convergence of the 
Edgeworth series, and the degradation of j.p.d.'s as 
they are reconstructed from their marginal distribu- 
tions. These two difficulties will be analysed in some 
detail, and a scheme which overcomes them both 
simultaneously will be proposed. 

2.1. Asymptotic expansions and the problem of large 
deviations 

The Edgeworth series is asymptotic in powers of 
N -'/2, but for a given N it is not convergent. A claim 
to the contrary found in the early literature (Haupt- 
man & Karle, 1954) is erroneous. As with all 
asymptotic series, the error is of the order of the first 
term neglected, so that such a series should be sum- 
med only as far as its smallest term: summing more 
terms will degrade rather than improve the accuracy 
of the result. The high-order expansions compiled by 
Klug (1958) and by Naya, Nitta & Oda (1965) are 
therefore largely of formal interest. As one attempts 
to use an asymptotic expansion further away from its 
centre, the magnitude of the error term increases, 
making the corresponding estimates unreliable. This 
troublesome behaviour of asymptotic series for size- 
able deviations from their centre demands that they 
should be used with much care if the results are to 
be trusted. 

The time-honoured custom of using a uniform prior 
distribution of atoms leads to asymptotic expansions 
centred around F °= 0. These will give good approxi- 
mations of j.p.d.'s for small structure factors, but if 
structure factors with large magnitudes are involved 
the c.p.d.'s of their phases obtained by specialization 
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(§ 1.2.3) may be totally unreliable. For example, a 
c.p.d, for the phases of seven magnitudes with I EI -> 
3.0 will consult the values of the Edgeworth series at 
distances from its centre in excess of eight times the 
width of the leading Gaussian term, where all 
accuracy is illusory. 

The heart of the matter is clearly that the best 
asymptotic expansion of a c.p.d, cannot in general be 
obtained by specialization of a pre-existing best 
asymptotic expansion of the initialj.p.d.: this procedure 
is legitimate only if the j.p.d, was expanded 
sufficiently near the point described by the informa- 
tion used in the specialization, so that the qualifier 
'best' may retain its validity after specialization. 

The difficulty just diagnosed is a consequence of 
the fact that all current direct methods commit them- 
selves rigidly at the outset to an Edgeworth series 
centred at F ° = 0. This practice gives rise to the ironical 
situation in which the approximate j.p.d.'s are most 
accurate where least useful, and least accurate where 
potentially most useful. 

2.2. Limitations due to the use of marginal distributions 

According to the analysis of §§ 1.2.3 and 1.3, cur- 
rent methods do not undertake to approximate large- 
base j.p.d.'s directly, but rather by piecing together 
marginal distributions of single invariants. This oper- 
ation is comparable to the reconstruction of a 
high-dimensional object from low-dimensional pro- 
jections, which requires that a large number of well- 
determined projections be available. 

Unfortunately, the latter requirement is impossible 
to satisfy. To obtain good estimates of individual 
invariants, large neighbourhoods must be used, which 
will unavoidably overlap if numerous invariants are 
involved. Let h be a satellite reflexion common to the 
neighbourhoods of n invariants. Then the informa- 
tion contained in I Fhl will be incorporated into all n 
estimates separately, and hence will carry an incorrect 
weight in the final result; at the same time, correla- 
tions between these estimates will be lost since eh 
will be integrated out of the n augmented distribu- 
tions (§ 1.2.3) as if it were a distinct variable in each 
of them. 

The intrinsic accuracy of this reconstruction pro- 
cedure is therefore limited. Furthermore, all the aug- 
mented j.p.d.'s used in estimating the invariants are 
inaccurate in the first place (§ 2.1). 

2.3. A robust approximation scheme 

In the light of the above findings, it appears that 
current direct methods have attained their already 
remarkable power in spite of a rather imperfect 
implementation of the concept of joint probability 
distribution, based on mathematical procedures 
which overlook two serious difficulties. It is thus clear 

that the full potential of Hauptman & Karle's original 
vision is still largely unrealized, and that the intrinsic 
power of their probabilistic approach is greatly under- 
estimated. 

The limitations inherent in the reconstruction of a 
j.p.d, or c.p.d, from marginal distributions indicate 
that a solution must be sought in the form of a better 
analytical method for directly approximating large- 
base distributions. A large-scale implementation of 
the Edgeworth series derived from a uniform prior 
distribution of atoms is inappropriate for this pur- 
pose, since it is expanded around a centre (F ° -  0) 
equally distant from all points of the locus defined 
by the phase circles. A more versatile approximation 
scheme is therefore necessary. 

2.3.1. Recentring of asymptotic expansions 

If a number of reflexions have large amplitudes, 
then their structure factors will sweep a very large 
region in F space as their phases vary, and there may 
exist no expansion of a prescribed j.p.d, involving 
these reflexions whose domain of validity would span 
that whole region. Under these circumstances there 
exists no uniform analytical representation of the 
j.p.d, in question which would be equally reliable for 
all values of the phases of these reflexions. There is 
therefore no such object, for practical purposes, as 
'the' joint distribution of a set of structure factors 
from which all conditional distributions required 
would be obtainable by specialization. 

This difficulty is formally identical to that encoun- 
tered in the theory of analytic functions of a complex 
variable (Whittaker & Watson, 1927; Ahlfors, 1966): 
only very rarely is it possible to approximate such 
functions everywhere by means of a single power 
series centred at the origin; in the general case, they 
have to be defined through a collection of locally 
convergent power series related to each other by 
analytic continuation, whose domains of convergence 
cover the entire complex plane. 

The same idea can readily be applied to the present 
situation by taking the following steps: 

(a) the unwieldy locus defined in F space by the 
phase circles can be broken up into small regions, 
each surrounding a point defined by assigning trial 
phases to large amplitudes; 

(b) in every such region the j.p.d, can then be 
approximated by a different asymptotic expansion, 
recentred away from the origin to the point rep- 
resentative of the phase information assumed, and 
valid only in that region. 

The j.p.d, of a set of structure factors will then be 
handled not as a single object, but as a collection of 
local c.p.d.'s each derived from a member of a 
sufficiently comprehensive set of distinct prior phase 
assignments. This procedure effectively breaks the 
deadlock associated with the traditional reliance on 
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an asymptotic expansion rigidly tethered to the origin 
0 of F space. 

In this way, the two difficulties diagnosed in the 
standard procedure are resolved simultaneously: the 
approximations obtained are now accurate (because 
one always uses their asymptotic expansions near 
their centres) and maximally informative (because 
they do not result from reassembling marginal distri- 
butions). 

2.3.2. Real-space counterpart of recentring 

Since the atoms are assumed to be of unit weight, 
and to be identically and independently distributed, 
it follows from the law of large numbers that the j.p.d. 
of any set of unitary structure factors is always centred 
around the vector of corresponding Fourier co- 
efficients of the prior distribution of atoms q(x) (some- 
times simply called the 'prior' in the sequel). Hence 
the process of recentring the asymptotic expansion 
ofj.p.d, around assumed values of some unitary struc- 
ture factors necessarily entails the use of a non- 
uniform prior q(x) which reproduces these assumed 
values. 

The procedure outlined in § 2.3.1 may then be 
rephrased in real-space terms as follows: 

(a) generate trial sets of phases for the very 
strongest reflexions so as to give a reasonable 
coverage of all possible joint values of their structure 
factors, and incorporate the prior knowledge corres- 
ponding to each choice into a non-uniform prior 
attached to that choice; 

(b) for each such choice, set up the conditional 
distribution of any other set of structure factors using 
the associated non-uniform prior. 

In these terms, some of the deficiencies of tradi- 
tional methods are more directly grasped. In actual 
practice, one never does start from the state of total 
ignorance represented by a uniform prior: most space 
groups require that three different phases of signs be 
specified in order to define the origin uniquely, and 
one usually chooses the largest three reflexions whose 
indices form a primitive set. Such a choice will already 
cause j.p.d, estimations to be attempted outside the 
range where the Edgeworth expansion around 0 could 
be relied upon to give accurate results. 

2.4. A new multisolution approach 

The guiding principle used above may be applied 
recursively. Let each initial trial set of phases chosen 
at step (a) be represented by a node of a tree. By 
examining the c.p.d, of new phases constructed at 
each node according to (b), different choices may be 
made for these new phases, leading to the construc- 
tion of additional branches from that node; the tip- 
node of each branch is then processed according to 

(a), and so on. This multisolution strategy will be 
formulated in greater detail in § 8.1. 

The hall-mark of this scheme is the constant updat- 
ing of the prior q(x) in the light of all the phase 
choices made. This constitutes a fundamental break- 
away from currently used multisolution methods: the 
latter do start off by generating distinct hypotheses 
by assigning trial phases to a subset of the strongest 
reflexions, but then proceed to estimate phase 
invariants on the basis of j.p.d.'s derived from a 
uniform prior throughout. 

To implement these ideas computationally, two 
main problems must be addressed. 

(1) Given some trial set of phases for a number of 
strong reflexions, how should this knowledge be 
reflected in the choice of a non-uniform prior distribu- 
tion of atoms? 

(2) Once a non-uniform prior distribution has been 
chosen, what is the optimal method for constructing 
the best asymptotic expansion of the j.p.d, of an 
arbitrary set of structure factors incorporating this 
prior knowledge? 

Problem 1 is addressed in § 3. Its discussion leads 
naturally to Jaynes's 'maximum-entropy principle' 
and its associated formalism, and to a shift of 
emphasis to real-space combinatorial arguments. 

Problem 2 may be treated from the 'classical' stand- 
point, i.e. by probability methods in reciprocal space. 
It may also be treated wholly within the framework 
of real-space combinatorial methods and of the 
maximum-entropy formalism. Both approaches are 
presented in § 4, and are shown to lead to equivalent 
results. It thus emerges from this study that the 
method of joint distributions amounts precisely to a 
reciprocal-space evaluation of the entropy of the elec- 
tron density function, as indicated earlier (Bricogne, 
1982). 

Finally, the uniqueness and optimality of the entire 
scheme is established in § 5 by proving its equivalence 
with a purely analytical solution to the approximation 
problem forj.p.d.'s by means of Daniels's saddlepoint 
method. 

3. Choice of  a non-uniform prior distribution of  atoms 

The requirement that the non-uniform prior q(x) 
should reproduce assumed values of some unitary 
structure-factor values leaves this function greatly 
underdetermined since its other Fourier coefficients 
remain unconstrained. A natural criterion for select- 
ing an 'optimal' q(x) out of all the admissible ones 
is that it should restrict minimally the range of struc- 
tures which can be generated under the initial 
assumptions. A quantitative formulation of this 
heuristic argument involves an appeal to Shannon's 
theory of communication, which will provide the 
basis for the justification of Jaynes's maximum- 
entropy principle. 
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3.1. The prior distribution of  atoms and the source 
entropy 

The most fruitful way to conceptualize the role of 
q(x) is to regard it as specifying the statistical structure 
of the source of random atomic positions used as the 
starting point of direct methods. 

This continuous source may be approximated by 
a discrete source at any finite resolution, as indicated 
in § 1.1. An important quantity associated with such 
a discrete source is its entropy per symbol H, defined 
by 

B 

H = - ~, qi log qi (3.1) 
i=1  

which measures the 'amount of uncertainty' involved 
in the choice of a symbol. Two theorems of Shannon 
(Shannon & Weaver, 1949, Appendix 3) provide a 
more direct grasp of the meaning of the source 
entropy: 

(1) H is approximately the logarithm of the 
reciprocal probability of a typical long sequence, 
divided by the number of symbols in the sequence; 

(2) H gives the rate of growth, with increasing 
sequence length, of the logarithm of the number of 
reasonably probable sequences, regardless of the pre- 
cise meaning given to 'reasonably probable'. 

The entropy H of a source thus measures the 
strength of the restrictions placed on the permissible 
sequences of symbols, greater restrictions leading to 
lower entropy. In the case at hand, its maximum value 
Hma x = log B is reached when all symbols are equally 
probable, i.e. for a uniform prior distribution of 
atoms. When the prior is not uniform, the usage of 
the different symbols is biased away from this 
maximum freedom, and the entropy of the source is 
lower; by Shannon's theorem (2), the number of ' rea-  
sonably probable' structures with a given number of 
atoms decreases accordingly. 

The case of continuous distributions is a straight- 
forward extension of the previous results. A non- 
uniform prior distribution of atoms q(x) gives rise to 
a source of random atomic positions with entropy 

n = - ~ q(x) log q(x) d3x, (3.2) 
V 

the maximum value Hmax = log V being reached for 
a uniform prior q(x)= l/V. 

3.2. The maximum-entropy criterion 

We are now in a position to address the first prob- 
lem mentioned at the end of § 2, namely the choice 
of a non-uniform prior distribution of atoms q(x) 
from the knowledge of a limited set of its Fourier 
coefficients. 

By the two theorems of Shannon quoted above, 
the entropy H of the source defined by q(x) affords 
a quantitative measure of the extent to which the 

range of structures which can be generated with any 
likelihood has been narrowed down. Any reduction 
of the entropy of the source beyond that strictly 
necessary to accommodate the prior knowledge will 
be reflected by a correlative decrease in the number 
of 'reasonably probable' structures of prescribed size 
N, hence by an unnecessary commitment to a subset 
of all possible structures consistent with the initial 
data; this is equivalent to imposing extra constraints, 
not warranted by the data. 

If the knowledge of some unitary structure factors 
is to be reflected in a non-uniform prior distribution 
of atoms, the previous reasoning leads uniquely to 
choosing for q(x) the maximum-entropy distribution 
having the requisite Fourier coefficients, since it 
defines the source which reproduces the assumed 
prior information with minimum bias. This is a par- 
ticular instance of the 'M E principle' of Jaynes (1957, 
1968), which has been reviewed in detail in the context 
of crystallography by Wilkins, Varghese & Lehmann 
(1983). 

The quantity which measures most directly the 
strength of the restrictions introduced by q(x) is not 
the source entropy H(q)  itself, but rather the differ- 
ence H(q)  - Hmax, since the proportion of 'reasonably 
probable' N-atom structures in the ensemble of the 
corresponding source is exp {N[H(q)-Hmax]} .  This 
difference may be written 

n(q)-  n m a  x = - ~ q(x) log [q(x)/m(x)] d 3 x ,  
v 

where m(x)= 1/V is the uniform distribution which 
is such that H ( m ) =  Hmax. In some instances, extra 
knowledge may be available about non-uniformities 
in the distribution of atoms even before any structure- 
factor values are assumed: one then would use a 
non-uniform 'prior prejudice' re(x) to define the zero 
of the entropy scale. For instance, ifa rough molecular 
envelope U were known at the outset, one would use 

{(1 - a)Xw(X) + c~[ 1 - Xu(X)]} 
m(x) = 

[ a V + ( l - 2 a ) U ]  

with a small compared to 1, Xu being the indicator 
function of U. 

The final form of the ME criterion is thus that q(x) 
should be chosen so as to maximize, under the con- 
straints expressing the prior knowledge of some of 
its Fourier coefficients, its entropy 

6era(q) = -  ~ q(x) log[q(x) /m(x)]d3x  (3.3) 
V 

relative to the prior prejudice re(x) which maximizes 
H in the absence of such knowledge. 

3.3. The maximum-entropy formalism 

Jaynes (1957) solved the maximization problem just 
posed in the case of general linear constraints, thus 
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constructing a formalism of great power and utmost 
elegance. In this section, the basic equations will be 
derived for the purpose of later comparison with the 
'saddlepoint equations' in § 5.4. 

3.3.1. The maximum-entropy equations 
The most unbiased probability density q(x), under 

prior prejudice m(x), satisfying the constraint 
equations 

cCj(q)_= ~ q(x)C~(x) d3x = cj (j = 1, 2 , . . . ,  M), 
V 

(ME0) 

where the c~j(q) are linear constraint functionals 
defined by given constraint functions Cj(x), and the 
cj are constraint values, is obtained by maximizing 
the entropy of q relative to m defined by (3.3). An 
extra constraint is the normalization condition 

~o(q)-- S q(x)l d3x = 1, 
V 

to which it is convenient to give the label j = 0 so that 
it may be handled together with the others by putting 
C0(x) = 1, Co-- 1. 

By a standard variational argument, in constant 
use in statistical mechanics, this constrained maximiz- 
ation is equivalent to the unconstrained maximization 
of the functional 

M 

• Sz'm(q) + E Afigj(q), (3.4) 
j=O 

where the Aj are Lagrange multipliers whose values 
may be determined from the constraints. This new 
variational problem is readily solved: if q(x) is varied 
to q(x)+Sq(x) the resulting variations in the func- 
tionals 50= and cgj will be 

{ 3SP,,, = _j'. {-1 - log  [q(x)/m(x)l}aq(x) d3x 
v 

3~j = Jv Cj(x) 8q(x) d3x, (3.5) 

respectively. If the variation of functional (3.4) is to 
vanish for arbitrary variations 3q(x), the integrand in 
the expression for that variation from (3.5) must van- 
ish identically. Therefore, the maximum-entropy 
density qME(x) satisfies the relation 

M 

-1-1og[q(x)/m(x)]+ Y~ AjCj=O 
j = o  

and hence 

qME(x) = re(x) exp (Ao- 1) exp [ ~. AjCj(x)]. 
j = i  

It is convenient now to separate the multiplier )to 
associated with the normalization constraint by 
putting: 

Ao- l = - log  Z, 

where Z is a function of the other multipliers 
A~,.. . ,  AM. The final expression for qME(x) is thus 

qME(X)=z(A, , . . . , a^4)exp  J='AJCj(x). (ME1) 

The values of Z and A, , . . . ,  AM may be determined 
by solving the initial constraint equations. The nor- 
malization condition demands that 

Z(A,,...,A~)= ~ m(x)exp [ ~ AjCj(x)] d3x. 
V j = l  

(ME2) 

The generic constraint equations determine 
A~,.. . ,  AM by the conditions that 

vS (l/ Z)m(x) exp [ ~,=, AlCl(x)] Cj(x) d3x = cj 

for j = 1 , . . . ,  M. But, by Leibniz's rule of differenti- 
ation under the integral sign, these equations may be 
written in the compact form: 

O/OAj(logZ)=cj ( j = I , 2 , . . . , M ) .  (ME3) 

Equations (ME1), (ME2) and (ME3) constitute the 
maximum-entropy equations. 

3.3.2. Expression of the entropy 
The maximum value attained by the entropy is 

readily found: 

6e,,(qME) = -- J qME(x) log [qME(x)/m(x)] d3x 
V 

= - ! q~E(x) - log  z + Y AjG(x) d3x, 
j = |  

i.e., using the constraint equations, 
M 

~,,,(qME)=log Z-- Y hjCj. (3.6) 
j = l  

The latter expression may be rewritten, by means of 
(ME3), as 

M 

"= A'---O--OJOAj 
5e=(qME) = log Z -  E, (log Z), (3.7) 

which shows that, in their dependence on the a's the 
entropy and log Z are related by a Legendre transfor- 
mation (Lanczos, 1970). 

3.3.3. Generating properties of log Z 

The function log Z has useful generating proper- 
ties, of which equations (ME3) are the simplest 
instance. 

Introducing the notation 0k = O/OAk and 

(C)= ~ qME(x)C(x) d3x, 
V 
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we have 

Ok (log Z)  = (1 / Z )  OkZ = ( Ck) 

= Ck by (ME3). 

0j2k (log Z)  = Oj[( l / Z)  OkZ ] 

= (1/  Z)O~k Z - (1 /  Z ~) ,gjz o , , z  

= ( Q c ~ ) - ( Q ) ( c ~ )  

O3k (log Z)  = ( C, CjCk)-  [(C,)(CjCk) +( Cfl( CkCi) 

+(Ck)(C,G)] +2(C,)(G)(Ck). 

One recognizes the familiar expressions for 
cumulants: the partial derivatives of log Z with 
respect to the ;t's are cumulant averages of corres- 
ponding C's. This property will be further elucidated 
in § 5.4. 

In particular, the second partial derivative matrix 
has elements 

Oj 2 (log Z ) = ( G C k ) - - ( G ) ( C k )  

= ((Cj - (Cs))(Ck - (Ck))). (3.8) 

The Hessian matrix of log Z is thus a Gram matrix, 
hence is positive definite, so that log Z is a convex 
function of the X's. It is clear from the expressions 
above that this matrix is the covariance matrix of the 
deviations of the C's  from their maximum-entropy 
average values. 

3.4. The crystallographic M E  formalism in P1 

The general ME formalism for linear constraints 
is immediately applicable to the construction of a 
prior distribution of atoms from the knowledge of a 
set of trial structure-factor values (§ 3.3): it suffices 
to derive and solve the corresponding ME equations. 
This task will be carded out in stages, and will be 
shown to give rise in a natural fashion to the usual 
algebra of phase invariants and the the Hauptman-  
Giacovazzo formalism. The solvability of the ME 
equations will be studied in § 7, using results estab- 
lished in §§ 5 and 6. 

3.4.1. Notation and accessory results 

The standard formulae relating the prior distribu- 
tion of atoms q(x) and its normalized structure factors 
Uh will be written 

q(x) = (1 /V)  E Uh exp (-2"n'ih. x) 
h 

= (1 / V)[I + 2 E' I Uhl cos (27rh. x -  ~h)] (3.9) 
h 

Uh = ~ q(x) exp (27rih. x) d3x, 
V 

! 
where ~h denotes a summation over all h, and ~h a 
summation over unique non-origin reflexions (i. e. over 
a 'hemisphere'). 

A set of formulae which will be used throughout 
the forthcoming calculations relate to the generation 
of the modified Bessel functions I ,(z)  via 
Schl/Smilch's formula (Watson, 1944): 

+oo  

exp(zcos  t )=  ~ I , ( z )exp( in t )  
n = - - o o  

(3.10) 
+oo  

= ~ I,(z) cos nt 
r l = - - o o  

since L , ( z ) =  L(z )  or, equivalently, 
27r 

l I I,,(z)=~--~ exp(z cos t)cos nt dt. (3.11) 

0 

3.4.2. Case of  one structure factor in P 1 

Starting from a uniform prior prejudice m(x) = 1/V, 
let the constraint be the value of Un = lul l  exp (itPh). 
The constraint equations may be written 

I 
f q(x) cos (2~h.  x -  ~h) d3x--IU.I 
v (3.12) 

q(x) sin (2~h.  x -  tph) d3x = 0. 
V 

Let these two constraints be given Lagrange multi- 
pliers )t and/z ,  respectively. Then, by (ME2), 

Z(A, /z )=  ~ m(x) exp [;t cos (2zrh. x -  Cb) 
v 

+/z sin (2~rh. x -  ~h)] d3x 

= ( 1 / V )  j" exp{K cos [2zrh. x 
V 

--(~h + 0)]} d3x 

= lo(K), (3.13) 

where ; t = K c o s 0 ,  / z = K s i n 0 .  The constraint 
equations (ME3) give 

t (log Z)  --=/x ~ (log Z)  = 0 K OK 

~ -  (log Z)----K (log z )  = I s .I .  

The second equation determines K uniquely (see Fig. 
l) via the relation 

I,(K)/Io(K) = ]U,I. (3.14) 

Finally, by (ME1),the ME distribution satisfying the 
constraints is 

1 1 
qME(X)-- - -  exp [K cos (2zrh. x -  ~h)]- (3.15) 

v Io(K) 

Several remarks are in order concerning this first 
elementary calculation. 
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(1) If I u.I is small, then K~-21U, I since 
I ~ ( x ) / I o ( x ) - x / 2  as x - 0 .  Then, by linearizing the 
exponential, the above result is indistinguishable 
from the usual one-term Fourier series (3.9): 

qME(x)'= (1/V)[1 +21U.I cos (2~rh. x -  fp] .  

(2) If Iu.I is large, the correspondence between 
I ud and K becomes noticeably non-linear (cf. Fig. 1). 
A full expansion of (3.15) using (3.10) gives 

q~E(x) 

=( l /V)  1 + 2 ~  /o--~K) COS[n(27rh. Xl~h)] , 
n > 0  

(3.16) 

which shows that the spectrum of the prior distribu- 
tion has been extrapolated beyond the one datum 
provided by the prior knowledge. The application of 
the ME principle has extended the spectrum in order 
to suppress the familiar series-termination 'ripples'. 
The latter would constitute spurious detail not war- 
ranted by the given data: the rest of the spectrum is 
unknown,  rather than known to be zero. 

(3) If IU, I tends to 1, its maximum possible value, 
ME the ME distribution q (x) tends towards a limiting 

singular form which may be written 

qME(x) = (1/V)8[ qb,(x)], 

where 8 is Dirac's 8 function, and @h(x) = 2rrh. x - ~0h 
modulo 2rr. This limiting form is thus the tensor 
product of a regular array of a functions along h and 
of a uniform plane distribution in the planes h.  x = 
~0h mod 2w. It is a much more intelligent guess at the 
true nature of a distribution for which IGI = 1 than 
is the corresponding one-term Fourier series (which 
would exhibit negative regions as soon as IGI > ½). 

(4) The sine constraint in (3.12) ends up playing 
no role (/z = 0) because the ME solution satisfying 
the cosine constraint alone automatically satisfies the 
sine constraint as well, by remaining 'maximally non- 
committal' with regard to the choice of enantiomorph. 

(5) The approximate relation K - 21U,I comes from 
the fact that we applied a constraint to only one 
reflexion of the Friedel pair (+h , -h ) .  It is easily 
checked that, should we also impose the Friedel- 
related constraint as if it were independent, we would 

I, (x) 
Io (x) 

1.0 

I%1 

l l l . . . .  I . .  , l  . . . . . .  I . . . .  l . . . .  I . . . .  . . . . .  I . . . . . . . . . .  

0.0 1.0 2.0 3.0 4.0 K X 

F i g .  1. T h e  f u n c t i o n  l l ( x ) / lo (x ) .  

be led to the same answer as that defined by (3.14) 
and (3.15) Therefore, redundant constraints are 
properly weighted down in an automatic fashion. This 
conclusion is of general validity (Jaynes, 1968), and 
will be of some relevance for special reflexions in 
higher space groups. 

(7) The relative entropy 

Z,,(q) = log 10(K)- KIu.I 
does not depend on the phase (Ph, since no origin is 
fixed. For small Iu.I, log Io(K)-----(K/2) 2= 
I Uhl 2, SO that 6era(q) = - I U ,  I in accordance with Wil- 
son's statistics. 

3.4.3. General  case o f  M structure factors  in P 1 

Let the prior knowledge of structure factors per- 
taining to h~, h 2 , . . . ,  hM be written 

q(x) cos (2 7rhj . x - -  tPh;) d3x = ] Uh, I 
V 

j" q(x) sin (2~rhj. x - ~hj) d3x = 0 
V 

(3.17) 

for j = 1, 2 , . . . ,  M, and let these constraints have 
multipliers ;tj = Kj cos 0j and /~j = Kj sin 0j, respec- 
tively. Then, for a uniform prior prejudice re(x) = l / V, 
(ME2) leads to 

Z(AI,/~l, • • •, ,~M, tzM) 

if - V exp [;y cos (2~rh~. X--~h,) 
j i 

v 

+tzj sin (27rhj. x -  ~h,)]) d3x 

I 
=-~ f exp { •  Kg cos [2rrhj.x--(~h +0j)]} d3x 

I=I  

=-V j=l l,.j(t<j) 
k mj  = --co 

V 

xexp {imj[2rrhj. x -  (¢hj + Oj)]}) d3x 

+o0  +CO +o0  

= E ~ . . .  E 
m l  = - - o o  m2 = - - d o  mM=--oo 

= l , n ~ ( K l ) ] m 2 ( K 2 ) . . .  I m M ( K M ) .  

V . x  
V 

M ]} 
- ~ mj(tphj + 0j) d3x. 

j = l  

(3.18) 
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All integrals vanish, except those corresponding to 
M-tuples of integers (rnl, m2, . . . ,  raM) such that 

M 
E mjhj = O. (3.19) 

j = l  

Therefore, since I_,,,(K)= Ira(K), the final expression 
for Z reads 

Z"~- E ImI(KI)'''Ir?IM(KM) 
~_.M= I mjhj=O 

XCOS [ ~ mj(qghj+Oj) ] . (3.20) 
j = l  

The equations (ME3) by which the multipliers may 
be determined are now 

-~s (log Z) = l ghsl 

(log Z) = 0 

or equivalently 

{ ._O_a (log Z) = I u,,; cos 0r 
OKj (3.21) 
1 a 

0-~j (log Z)  = - I uh ,  I sin 0 r. 

Finally, the ME distribution (ME1) is 

" { } q M E ( x ) = - ~ e x p  ~ KjCOS[21rhj.x--(~0h,+0j)l . 
j = |  

(3.22) 

These results call for a number of comments. 
(1) If M < 3 and h i , . . . ,  hm are linearly indepen- 

dent, then condition (3.19) is fulfilled only for m~ = 
m2 = m3 = 0, hence 

M 
Z =  H Io(Ks). 

j=l  

This is the direct product of the Z functions (3.13) 
associated with individual constraints; the equations 
for the K's are uncoupled and all have the form (3.14); 
finally, the solution qME(x) is the direct product of 
independent functions similar to (3.15), one for each 
j = 1 , . . . ,  M. Expansion of qME(x) as was done in 
(3.16) shows that spectrum extrapolation takes place 
through a 'tangent-like' formula: 

( U h i + h j )  ME = Uhi Uhj. (3.23) 

The entropy is still independent of the phases, since 
the latter may be chosen arbitrarily to fix the origin. 

(2) Interaction occurs between the different con- 
straints whenever a dependence relation with integral 
coefficients can be formed between the hi, as 

expressed by (3.19). It is no longer the case that we 
may solve separately for the multipliers associated 
with each constraint: they are now extensively cou- 
pled through numerous interaction terms. In par- 
ticular, the sine constraints (with multipliers/xj) are 
no longer automatically satisfied, which reflects the 
fact that the initial data may now contain enan- 
tiomorph-sensitive information. The entropy 

M 
 em(qME) = log Z -  Y, Kjl Uh, I cos 0j 

j = l  

then depends, as does Z, on all the phase invariants 
that may be constructed from the phases of the initial 
data. 

(3) The degree of interaction between reflexions 
may be estimated if one recalls that 

I,,(x)~-(1/lnll)(x/2) I"j as x = 0 .  

Therefore, the term in Z associated with the depen- 
dence relation ~ M rnjhj = 0 will be approximately of j = l  
size 

M 
1-I ( l / Imjlt) l  Uh, I 

j = l  

since for most reflexions Kj is of the same order of 
magnitude as I Uh,]. In terms of[El 's  , which are related 
to the ] Ul's by ]E hi = ] Uh]x/N where N is the number 
of atoms, this quantity will be of order (1/xf-N)X)~ I 
in the usual ranking of strength (Klug, 1958). The 
strongest interactions will thus occur between clusters 
of reflexions involved in the familiar low-order rela- 
tions with small coefficients (triplets, quar te t s , . . . )  
for which Zj~! [mj[ is lowest. 

(4) The primitive concept in the present analysis 
of the structure of the Z function is not that of an 
individual phase invariant, but of an integral depen- 
dence relation between the structure-factor indices. 
This point of view renders obvious the existence of 
'kinship relations' amongst phase invariants, since it 
is possible to re-group the terms of an original depen- 
dence relation so as to produce new relations between 
linear combinations of the initial indices. For 
example, 

h + k + l + m = O  

may be re-read 

or  

or  

(h + k )  + l  + m  = O 

( h + l ) + k + m = O  

(quartet on h, k, 1, m) 

[triplet on (h + k), !, m] 

[triplet on (h + !), k, m] 

( h + m ) + k + l = O  [triplet on (h + m), k, l]. 

This process corresponds exactly to that of forming 
'cross vectors'. Such families of invariants are inter- 
nally coupled, since the occurrence of one member 
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in the Z sum automatically implies that of any other 
member present in the initial data. Similarly, new 
relations can be derived from an initially given one 
by adding and subtracting an arbitrary vector; new 
cross vectors may then be generated by the above 
process. 

It is therefore clear that the entire formalism of 
neighbourhoods (phasing shells) and representations 
(Giacovazzo, 1980) is implicit in the structure of the 
Z function. 

(5) Finally, an abridged notation for the expression 
of the general Z function (3.20) will be established. 

The indices h l , . . . , h M  being given, let K be 
defined by 

I K =  meT/M ~ mjhj=0 . (3.24) 
j = !  

If r is the rank of the system of index vectors 
( h l , . . . . ,  hM), then K is a sublattice of 7/M of rank 
M - r ,  and 7/M/K is a sublattice of rank r. With the 
notation Oj = ~,, + 0j, qbj(x) = 2¢rh~. x -  0r, and the 
shorthand 

M 

Im(~:)= l-I I,.,(s:./) 
j = l  

M 
(m. (I))(x)= Y~ m, qb,(x) 

j = l  

M 
m . q r =  X m, ¢,,, 

j = l  

we may write 

Z(K, 0)=  E Ip(K)exp(ip.alr). (3.25) 
pe K 

3.5. The crystallographic ME formalism for a general 
space group 

The presence of space-group symmetry greatly 
enriches the pattern of interaction between phases 
which ultimately determines the value of the entropy, 
since each reflexion acquires several 'aliases" through 
the operation of the point group. The generalfzation 
of the ME equations from the P1 case is thus by no 
means a trivial task, particular care being needed to 
ensure that special and invariant reflexions are treated 
correctly and efficiently. 

3.5.1. Notation and definitions 

Let G denote the space group of the crystal modulo 
its subgroup A of lattice (i.e. primitive) translations; 
G is finite, and let I GI denote the number of its 
elements. Each element g of G acts in real space as 
a Euclidean motion: 

S g ( x )  = R g ( x )  + t g  modulo A, 

where Rg is an orthogonal transformation in the point 
group, and tg is the associated non-primitive transla- 
tion. Indexing by the elements of G itself provides 
the notational convenience that the indices carry the 
group law of G directly. For example, if uv= w 
(u, v, w c G), then the group structure of G is reflected 
by the identities 

R~ = R~R~ 

tw =R,,to +tu modulo A, 

the latter being known as the Frobenius congruences. 
Considerable gains in clarity and notational ease 

will be afforded by the use of an algebraic construc- 
tion basic to group representation theory, that of the 
integral group ring of a finite group. Given an 
arbitrary finite group G, its integral group ring 7/G 
consists of all formal sums of elements of G with 
coefficients in 7/: 

y =  ~. m(g)g 
geG 

between which addition and multiplication are 
defined by 

Y~ a(g)g + Y. b(g)g = ~ [a(g)+b(g) ]g  (3.26a) 
g e G  g e G  geG 

[ Y~ a(g)g][ ~. b(h)h]= y~ a(g)b(h)gh 
geG heG g,h~G 

= E c(k)k, 
k e g  

where 

c(k)= ~ a(g)b(g-~g) (3.26b) 
k e g  

and scalar multiplication is defined by 

s[ ~ a(g)g]= E sa(g)g. (3.26c) 
g e G  geG 

An equivalent construction of 7/G is to view it as the 
ring of integer-valued functions on G, with multipli- 
cation defined by convolution over G (Curtis & 
Reiner, 1962). 

3.5.2. The maximum-entropy equations: first version 

A temporary form of the ME equations will first 
be derived, without regard to special or invariant 
reflexions, for the purpose of examining the pattern 
of phase interactions brought about by the space- 
group symmetry. 

Starting from the unitary structure-factor 
expression (3.9), we may express the symmetry 
assumption by writing that q(x) is invariant under 
averaging by G: 

q(x)=(1/IGI) Y. q(Rgx+tg). (3.27) 
geG 
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Substitution into (3.9) yields for Uh the expression 

Uh = j" q(x){(l/IGI) 
v 

x ~ exp [27rih. (Rsx +tg)]} d3x, (3.28) 
gEG 

where the factor 1/IG I is necessary since the integral 
is over the whole unit cell rather than the asymmetric 
unit. 

If prior knowledge of the values of Uh, , . . . ,  UhM 
is assumed, the constraint equations generalizing 
(3.17) are 

I 1 q(x)~-~ E c°s[2~rCR-jhj)'x 
uj~G 

V 

+27rhj" t"~ - tPhJ] dSx = I Uhjl (3.29) 

I 1 q(x)rd [ Y'. sin [2~('au, hs). x 
uj~ G 

v 

+2¢rhj. tuj - ~0h j ]  d3x = 0. 

Assigning them multipliers Aj =Kj cos 0j and /z s = 
K s sin 0j, respectively, and starting from a uniform 
prior prejudice m(x)= l/V, we obtain for the Z 
function 

I f  { ~ [ ~ l  [2'rr('R.jhj) . x Z V exp ~ cos 
.= uj~G 

V 

+2¢rhj.t.,j--(tPhj+0S)] } d3x (3.30a) 

if {1~1 [27rCRujhj) x = I-[ -~ exp cos 
j =  ujE G 

V 

+27rhj. tuj- ~j} d3x, (3.30b) 

where ~bj = ~0hj + 0j. A full expansion would involve 
an (M. I GI)-fold summation over (M. I GI)-tuples of 
integers m(j, uj), with j running from 1 to M and uj 
running over G for each j. At this point, the burden 
of notation may be greatly lightened by using the 
integral group ring 7/G introduced above, defining, 
for each j =  1 ,2 , . . . ,  M, 

%= Z m(j, us)u s 
uj~G 

a(%)= Y. m(j, uj)Ru~ 
uj~G 

t(%)= E m(j, uj)tu, 
uj~G 

r / (~)= Z m(j, u.i ) 
uje G 

ujeG 

x exp [-2wihj. t(o'j)]. 

Then, using the shorthand 

~r = ( c ~ , , . . . ,  ~M) 

M 

n . , = X n(~j )s / j  
j = l  

and defining 

K =  cre(ZG) M ~ tR(%)hj=0 (3.31) 
j = l  

it is straightforward to verify that 

Z(K, 0) = #,, ~ exp (i-q. 0). (3.32) 

Comparison with (3.24) and (3.25) shows that, for- 
mally, the structure of the Z function remains the 
same as it was in P1, provided the notion of depen- 
dence relation between the h's over the ring 7/ of 
ordinary integers is replaced by that of dependence 
relation over the integral group ring 7/G. This formal 
simplicity amply justifies the introduction of Z G. 

The ME equations themselves retain their usual 
form (3.21 ). 

3.5.3. The maximum-entropy equations: second 
version 

The previous formulation is valid for any set of 
reflexions h~, . . . ,  hM in any space group. Whenever 
special or invariant reflexions are present, however, 
it is not the simplest nor the most economical although 
remark (6) in § 3.4.2 guarantees its correctness. The 
optimal form of the ME equations will be derived by 
simplifying the structure-factor expressions (3.28) as 
much as symmetry allows so as to obtain the most 
succinct expansion possible when going from (3.30a) 
to (3.30b). To carry out this task in greatest generality, 
a few more definitions are needed for which Lang 
(1965) may be consulted. 

A reflexion hj ~ 0 being given, let Gj be the isotropy 
group of hi, i.e. the subgroup of G consisting of those 
g ~ G such that 'Rghj = hj; let Ghj denote the orbit 
of hj under G, i.e. the set of all vectors 'Rghj as g 
runs through G; and let G~ Gj denote the collection 
of right cosets of Gj in G. It is a consequence of 
Lagrange's theorem that 

IGI = IG/Gjl. IGjl = IGhjl .  IGjl 
where II means 'number of elements of'. Therefore, 

1 
]O I ~ exp [2¢rihj. (Rgx +tg)] 

g~G 

IGjl 
= I G--T y" exp [2~ihs. (R,x +t~)] 

~G/Gj 

_ 1 ~ exp [2¢rihj.(R~x+t~)], 
IGIGjl ~G/O,  
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the latter expression being independent of the choice 
of coset representatives 3' in G~ Gj, as may be checked 
by invoking the Frobenius congruences. 

Further complication occurs if bj is a centric 
reflexion, i.e. if Ghj contains -hi. In this case there 
exists g E G such that 'Rghj =-hi, and the value of 
the phase ~o(bj) is restricted to ~rbj.tg modulo 7r 
(which only depends on the coset of g modulo Gj by 
vii'tue of the Frobenius congruences). Such an ele- 
ment g acts on the fight on the cosets in G/Gj, and 
g2 acts as the identity. Therefore, the cosets may be 
partitioned into two disjoint classes by picking one 
coset in each of the two-coset orbits of this action. 
Let Fj be one such class: then the reduced orbit Fjbj 
contains once and only once the Ffiedel-unique half 
of the full orbit Ghj. Thus, I r j l  = ½IG/Gjl, and 

1 
IG/Gjl ~ exp [2rribj. (R,x +tv)] 

~EG/Gj 

= 1 ~ exp [27ribj. (e.yx+tv)] 
Ir j l  ~ ,  

since every term was repeated twice in the first 
expression. 

Finally, putting Fj = G~ Gj if bj is acentric, we may 
rewrite the Fourier transform relations (3.9) between 
q(x) and its structure factors as 

q(x) = + { l + 2 ~" l Uhl 

x ~ cos [27r(tR~h). x +2rrh. t r -  (Ph]} 

r~r(h) (3.33) 

× ~ exp [2~ihj. ( R ~ x + x + t ~ ) j  d x, 

~ r j  (3.34) 

where Y." stands for a summation over unique non- 
origin reflexions only. Comparison of (3.34) and (3.28) 
shows that the optimal ME equations may be obtained 
by replacing, in all the definitions given in § 3.5.2, 

Y~ or I-I by Z or l-I , 
uj~G uj~G uj~rj uj~rj 

IGI within the range o f j  by I~1, 
and 

M 

(7/G) M by I-I 7/Fj. 
j = l  

Here ZFj is the set of formal sums of elements of Fj 
with the additive structure (3.26a); it has in general 
no multiplicative structure but retains the 7/G-module 
structure which was needed to derive (3.32). 

With these modifications, formula (3.32) is optimal, 
and equations (3.21) incorporate the correct multi- 
plicity factors for acentric reflexions. In the case of 
a centric reflexion hi, whose phase is restricted to toj 
modulo 7r, the first equation (3.21 b) alone should be 
used, with Kj now a signed magnitude in the direction 
defined by toj so that its sign cos 0j may be removed. 

The crystallographic maximum-entropy formalism 
is now complete. 

4. Effective construction of conditional distributions 
of  structure factors from a non-uniform prior 

Having specified the statistical structure of the source 
of random atomic positions by the choice of qME(x), 
we may use it in two distinct but equivalent ways (see 
Fig. 2) to generate the vector F of structure factors 
corresponding to a generic N-atom structure: 

the upper path is that followed in the classical 
formulation of direct methods, where each random 
atomic position x produced by the source gives rise 
to a vector X(x) of contributions to the structure 
factors; these vectors are accumulated in structure- 
factor space (C") over N successive atoms to make 
up the vector F (see § 1.2); 

the lower path is an equivalent one in which the 
N successive atoms are accumulated in their boxes 
in real space to produce a 'message' in the form of 
a random structure p; this random structure is then 
subjected to a Fourier transformation, yielding the 
same vector F of structure factors. 

Such a source generates not only a set but an 
ensemble of messages, i.e. in Wiener's terms 'a reper- 
tory of possible messages, and over this repertory a 
measure determining the probability of these 
messages' (Wiener, 1949). In the present case, this 
probability measure reflects the fact that different 
random structures - and hence different sets of struc- 
ture factors - will occur with different frequencies (or 
statistical weights) in the ensemble: it constitutes pre- 
cisely the conditional probability distribution of F (or 
p) given the prior knowledge incorporated into 
qME(x). 

Fig. 2. The stochastic structure factor generator of direct methods. 
S: source of random atomic positions x; Acc: accumulates atoms 
in real space into a random structure p; Acc*: accumulates 
random vectors X(x) of atomic contributions into a random 
vector F of structure factors. 
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In virtue of the equivalence of the two above paths, 
calculating the relative frequency of a full vector of 
structure factors (i.e. the joint probability of its com- 
ponents) amounts precisely to evaluating the statis- 
tical weight of the corresponding atomic configur- 
ation in the ensemble of the source (Bricogne, 1982). 
The latter task may be carded out by means of elemen- 
tary combinatorial considerations similar to those 
used in statistical mechanics, as will be shown in 
§ 4.1. Alternatively, the analytical methods of § 1.2 
may be employed to construct directly (§ 4.2) a local 
approximation to the c.p.d, of U = F / N  in the vicinity 
of the vector U ME of Fourier coefficients of the non- 
uniform prior qME(x). Since this c.p.d, has been 
recentred, only the leading Gaussian term of the 
Edgeworth asymptotic expansion (the 'central limit 
theorem approximation') needs to be evaluated 
(§ 4.2.1). By sole consideration of this Gaussian term 
all hitherto known formulae for estimating phase 
invariants can be rederived and generalized with 
extreme ease (§ 4.2.2). Finally, the branching problem 
is formulated and illustrated in § 4.3. 

4.1. Real-space combinatorial models 

Let us first discretize the source, as was done in 
§ 1.1. The number of different sequences of N sym- 
bols resulting in a specific configuration where box i 
contains n~ atoms is given by the multinomial 
coefficient: 

N!  s 
where ~ ni = N. 

h i !n2! . . ,  ns!' i=1 

Hence the statistical weight (or relative frequency) of 
this configuration n = (n~, n2 , . . . ,  riB) in the ensemble 
of random structures generated by the source defined 
by qME is 

N!  
~ ( n ) =  q]', q~2 . . ,  q ~ .  

nt[ n 2 [ . . ,  nB! 

Using Stirling's formula, we may approximate the 
logarithm of ~(n) as 

log ~(n) -~ N log N -  N 

B B 

- ~, (ni log ni - n~) + ~ ni log q, 
i = l  i = l  

B B 

= - N ~. ( n , / N )  log ( n , / N )  + N ~, ( n , / N )  log q, 
i = l  i = l  

or, finally, 

B 

log ~(n)----- - N ~ p, log (Pi/q,), 
i = l  

where p~ = n~/N is the fraction of the atoms found 
in box i, i.e. the relative frequency of occurrence of 
symbol i in the original 'message'. 

Putting p = (1/N)n,  the final result reads 

~(p) -- exp [ Nreq,.,ffp)] 

where 

(4.1) 

B 

~qME(p) = -- E P' log (p,/q,) (4.2) 
i = 1  

is the entropy of distribution p relative to the prior 
qME, as already defined in § 3.2. 

Generalizing to continuous distributions in the 
obvious way, we conclude that the logarithm of the 
statistical weight of a particular normalized density 
function or "map' p(x) depends on its entropy relative 
to the prior qME(x): 

6eqME(p) = -- ~ p(x) Iog [p(x)/qME(x)] dax. (4.3) 
v 

If we now retrace our steps, it is clear that: 
(a) given some prior knowledge, the conditional 

probability of a vector of structure factors measures 
its statistical weight in the ensemble of the source 
specified by the ME prior qME(x) incorporating that 
knowledge; 

(b) the statistical weight of that vector is that of 
the corresponding map in the corresponding 
ensemble, because the Fourier transform is a l-1 
unitary (hence volume-preserving) transformation; 

(c) the statistical weight of a map is a simple func- 
tion of the entropy of that map relative to the prior 
q M E ( x ) .  

We may therefore conclude that the construction of  
conditional probability distributions o f  structure factors 
envisaged by Hauptman & Karle amounts precisely to 
a reciprocal-space evaluation of  the entropy functional 
~eqME(p) (Bricogne, 1982). Entropy calculations thus 
afford a quantitative formulation of the qualitative 
geometric considerations put forward by Schenk 
(1981) to illustrate the intuitive basis of direct 
methods, since they provide an exact numerical esti- 
mate of how 'likely' various configurations of atoms 
are when some structure factors assume known 
values. 

4.2. Construction of  c.p.d.'s by classical methods 

The ME prior qME(x) may be written 

qME(x) = (1/V)[1 + u(x)] 

with 
u(x) = ~ U~ E exp [-27rih.  x]. (4.4) 

h # 0  

The spectrum of qME(x) is extrapolated by the process 
of entropy maximization beyond the data provided 
by the prior knowledge, as shown for example by 
(3.16) and (3.24). The c.p.d, of the vector U of yet 
unknown unitary structure factors will be centred 
around the vector U ME of extrapolated Fourier 
coefficients of qME. 
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4.2.1. The central limit theorem approximation 
The deviation 8U = U -  U me, whose Fourier trans- 

form will be denoted by 8p(x), will have by the central 
limit theorem a Gaussian distribution obtained as the 
first term of the Edgeworth series. Using as indices 
a full Bragg sphere of non-origin reflexions h, this 
Gaussian may be written 

~(6U)ocexp {-(I/2)N(SU)nQ-*(SU)}, (4.5) 

where X H denotes the Hermitian transpose of a vector 
X, and Q is the covariance matrix of 6U (§ 3.3.3); 

= U h - k -  (4.6) Qhk ME U~EU_~. 

Thus Q - K - W ,  where K is the Kar le-Hauptman 
matrix of qME (which will be written K = KH[qME]) 
and W = uME(uME)" is (up to a normalization factor) 
a projector. 

It will now be shown that the quadratic form in 
the exponent of (4.5) may be simplified as follows: 

(~iU) n Q-t(SU) = 0iU) n K- 1(SU) (4.7) 

whenever 8Uo = O, i.e. if 8U does not alter the nor- 
malization of qmE. For this purpose, recall that K is 
a convolution operator corresponding to pointwise 
multiplication by qME(x) in real space. Since qME(x) 
is always everywhere positive, K is invertible (Goh- 
berg & Fel'dman, 1974) and 

K-'=KH[1/qME]. (4.8) 

To prove (4.7) assume that Y=Q-~X,  so that X =  
( K -  W)Y. Then 

hence 

K Y  = X + W Y  

Y = K-~(X +WY); 

Q - ' X =  K- '  {X + WK-'[X + W K - ' ( . . .  )]}. 

This expansion is valid because W is a small enough 
perturbation of K that it does not alter its positive 
definite character. Therefore, putting A = S U  and 
replacing W by u M E ( u M E )  H, w e  obtain 

A H Q - I A =  AnK-IA 

+(AHK-IuME)((uME)nK- 'A ) 

+(AnK-tuME)((  uME)nK-IuME ) 

x(uME)nK-IA)  + . . .  

All terms but the first vanish if (uME)HK-IA = 0, Le. 
by Parseval's theorem if 

qmE(X)(1/qME(x)) 8p(x) d3x=0  
v 

or equivalently 6Uo = 0. This proves identity (4.7), so 

that we may write 

~(SU) oc exp{-(½) N(SU)n K- ~(SU)}. (4.9) 

We may now use (4.8) and invoke Parseval's 
theorem to rewrite (4.9) as 

~(Sp)oCexp{-(½)N f [SP(X)]2d3x] (4.10) 
q M E ( x )  

V 

for any variation 6/9 such that J v 8p(x) dax = 0. This 
new expression has a very simple interpretation in 
real space. The role of the non-uniform prior qME(x) 
is to create a differential cost for the addition of new 
features at different locations in the unit cell: it is less 
costly, in terms of loss of conditional probability, to 
introduce new detail of given local root-mean-square 
value at places where qME is large than where it is 
small. 

If qME results from the knowledge of some low- 
resolution structure factors, then carrying out phase 
extension by maximizing ~(3p)  would amount to 
constraining high-resolution features to appear in 
regions where density has already been laid out by 
the construction of qME. This procedure would thus 
perform, in a statistical fashion, the operation of 
'auto-enveloping' of the electron density by its low- 
resolution level surfaces which has recently been 
investigated by Cannillo, Oberti & Ungaretti (1983). 

The equivalence of (4. l 0) with the result previously 
obtained in §4.1 by combinatorial methods 
[equations (4.1) and (4.2)] is readily established. The 
gradient of 6eqme(p) in the subspace of yet unspecified 
U's is zero at U ME by the very definition of qME, 
while its Hessian H(~)  is defined by 

] 
8p(x) 8p(y)J = U-[l/qME(x)]8(x--Y)] 

(where 6 is Dirac's 6 function) so that (4.10) follows 
from (4.1) by a local quadratic approximation of 
Oq°qmE(p) near p = qME. 

4.2.2. Comparison with classical formulae 
In order to relate the expressions obtained for 

to more standard ones in the literature, we may use 
the expansion 

1/q ME= V [ 1 - u + u 2 - u 3 +  . . . ]  (4.11) 

valid if lu(x)l < 1 for all x, and rewrite (4.10) as 

~(SU)ocexp {-(½)N n,oE 18u.I ~ 

+(½)N E 8U.U~_KSUK 
H#K~O 

-(½)N E 6UH' rUE I treE r~ r } L./H-K v K _ L U V L  + . . . .  
H # K # L ~ 0  

(4.12) 
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It will now be shown that a complete theory of the 
estimation of invariants from their second-neighbour- 
hood magnitudes may readily be derived by consider- 
ing only the leading (Wilson) term of this expansion. 

Grouping the contributions to this term from H 
and - H  gives the expression 

~(~U)ocexp[-NY.'IUH- U~I 2] (4.13) 
H 

with summation over a hemisphere as in (3.9). Each 
factor of this product can be written (in normalized 
form) 

2NIUH I exp { -N[ I  UH] 2 +1 UH~EI= 
-21UHI IUH~I COS (~OH-- ~ M E ) ] }  (4.14) 

and may be treated in two different ways according 
as H is, in the terminology of § 1.2.3, a 'basis' or a 
'satellite' reflexion for invariant qb: 

(1) if H is such that • = ~ H - - ~  0ME, (4.14) gives the 
c.p.d, of qb as 

1 
~ ( ~ )  - - -  exp (X cos ~)  (4.15) 

27rlo(X) 

with X = 2 N  I Unll u~EI- This is essentially Sim's for- 
mula (Sim, 1959) since the denominator in the 
exponent of the latter would be Y,j~ ~ f~ = N( l  / N)  2 = 
1/N; 

(2) if H is such that I u~EI is sensitive to the value 
of ~, (4.14) may be used to derive the marginal 
probability density for IUH[ by integration over ~0S. 
This leads to a Rice distribution (Rice, 1944): 

L(I UH[) = 2N] UH[ exp { -N[I  UH[ 2 

+IU~HEI2]}Io(2NIUHIIU~I) (4.16) 

in which • is a parameter via I UH~Z I. By a standard 
Bayesian argument (see Edwards, 1972), the quantity 
L(I UHI °bs) affords the a posteriori probability or likeli- 
hood ~H(~)  of ~. 

By means of these two simple devices, the distribu- 
tion of any invariant qb can be obtained in a swift 
and automatic fashion. The triplet case is simplest, 
since it involves only a Sim factor. If  Uh and Uk are 
given, then by (3.23) 

ME lull exp [i(~0h +q~k)] 

SO that q~ = ~on-~o ME for H =  h + k ,  and (4.15) yields 
the standard result. Invariants of arbitrary order r > 3, 
written q~ = Y'-~=I ~o(hj) with Y-~=l h i = 0 ,  lead to more 
complex formulae. If  U ( h t ) , . . . ,  U(hr-l) are given, 
then • = ~ H  --  ~°~ IE for H = hr  since 

g ( h r )  M E =  1"-[ [g(hj)l e x p  go(hi) 
j= t  t 

By (4.15) there will be a Sim factor 
1 

~o(~)  - - -  exp (X cos ~ )  
2,rio(X) 

with 

X=2N N IU(hj)l. (4.17) 
j= !  

But the assignment of a particular phase ~0(h,) to 
I U(hr)l will generate other sizeable contributions to 
(4.13) whose extrapolated magnitudes will depend on 
qb, so that Rice factors (4.16) may be constructed to 
sharpen further the estimation of qb. The indices H 
of these magnitudes constitute the second neighbour- 
hood N2(~) of • (Hauptman,  1975b). No general 
rule has yet been given to identify N2(~),  but such 
a rule emerges naturally from the present approach. 
Let Jt and J2 be two subsets of { 1 , 2 , . . . ,  r} forming 
a partition of that set and containing at least two 
elements each, and define 

H =  X hi,, K =  X hie. 
jlEJI j2eJ2 

Then H + K--0,  so that 

O ME= n O(hA)+ l-[ O(-hj2), 
jlEJI j2EJ2 

and hence the extrapolated modulus 

I UH~I---- / H I U(hj,)l 2 + H I U(hj2)l 2 
t Jl EJI J2eJ2 

1/2 

+2 1:I IS(hj)l cos • (4.18) 
j----I 

depends on • and gives rise to a Rice factor 

x Io(2N[ UHI I UHMEI). (4.19) 
The second neighbourhood N2(~) is thus in one-one 
correspondence with the distinct partitions (Jl, J2), 
whose total number s is easily obtained: l (r) 

S~-2m=2 

= ~  [ ~ o  ( r ) _ ( ; ) _ ( r r l ) _ ( 0 ) _ ( : ) ]  

= ½12 r -  2r-- 2], 

i. e. 

S = 2 r -  1 _ r -  1. (4.20) 

The final expression for ~ is thus 

~(~)ocexp [-2(s-1)N ~ [U(hj)l cos ~] 
j = l  

x II /o(2NIUHI IUH~EI) (4.21) 
H~ JC'2(qb) 
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each H ~ N2(qb) being labelled by a partition (Jr, J2) 
and the corresponding I u~°l being given by (4.18). 

For r = 4, s is equal to 3 and (4.21) is the Hauptman 
quartet formula (Hauptman, 1975a). For r = 5 (s = 10) 
and r = 6 (s = 25), (4.21) is a sharper version of the 
results of Fortier & Hauptman (1977a, b) and Haupt- 
man & Fortier (1977a, b). The ease with which (4.21) 
has been obtained here for arbitrary r may be con- 
trasted with the exceedingly lengthy calculations 
found in the papers quoted for r = 4, 5, 6. 

The mechanism used is very simple, and consists 
essentially of a maximum entropy extrapolation fol- 
lowed by a recourse to Wilson's statistics. It is 
straightforward to verify that the further terms in 
expansion (4.12) give rise respectively to the third 
and higher neighbourhoods of a given invariant, and 
that space-group symmetries could readily be incor- 
porated by analysing the structure of U ME according 
to the methods of § 3.5.3. It is therefore clear that 
unlimited numbers of new formulae of forbidding 
complexity could be derived ad libitum by a system- 
atic dissection of (4.12). Little would be gained, 
however, by pursuing these formal developments 
indefinitely for the purpose of estimating single 
invariants, in view of the remarks made in § 2.2. 
Rather, (4.12) should be used to derive the conditional 
distribution of several phase invariants simul- 
taneously. Yet for numerical applications (§ 7) (4. I0) 
is much more convenient: it acts as a generating 
function for all the families of invariants involved, 
and hence affords a means of manipulating them and 
of summing over them in closed form without having 
to explicitly enumerate and collect large numbers of 
terms. 

Finally, it may be remarked that (4.11) diverges as 
soon as lu(x)l exceeds 1 for some x, i.e. as soon as 
the prior knowledge incorporated into qME(x) 
demands that qME should deviate from its mean value 
1/V by more than that value. The domain of conver- 
gence of (4.12) shrinks accordingly, and the first- 
neighbourhood approximation (4.21) becomes 
poorer. This remark further illustrates the conver- 
gence problems analysed in § 2.1. 

some yet unphased moduli. For M acentric reflexions, 
for instance, the geometric locus of points satisfying 
the moduli constraints is a product of M circles, 
i.e. an M-dimensional torus embedded in 2M- 
dimensional space. Such a manifold is multiply con- 
nected, and the distance of a point to that manifold 
does not define a convex function: as a result, the 
entropy functional 6eq~E, in spite of its global con- 
cavity, will possess a multitude of local maxima when 
restricted to that manifold. In other words, the condi- 
tional distribution ~(SU) becomes highly multimodal 
when moduli constraints on the components of 8U 
are enforced. Under these circumstances, any phase- 
extension procedure based on the use of conditional 
distributions (§4.2.1.) will necessarily encounter 
ambiguities - a phenomenon which will be called the 
'branching problem'. 

Direct methods deal with this problem by means 
of the 'phase function' of Riche (1970, 1973), supple- 
mented by the device of 'magic integers' (White & 
Woolfson, 1975), which allows a coarse global survey 
of the multimodality of ~ to be performed in about 
a dozen directions at a time. But this method uses an 
approximation of ~ by a product of triplet distribu- 
tions (§ 2.2), which is of limited value. An algorithm 
for locally exploring the full conditional distribution 

in several hundred directions simultaneously will 
be presented in § 7.2. 

Structures resulting from phase extension along an 
incorrect branch (i.e. by picking the wrong con- 
strained maximum of a c.p.d. ~ )  will be compatible 
with the Patterson function and hence will frequently 
exhibit some correct clusters of high-resolution 
features; in view of the real-space interpretation of 
a c.p.d. (§ 4.2.1) these correct fragments must lie in 
regions where the low-resolution prior qME is large, 
in order to produce a local maximum of ~, but some 
may be placed in a wrong region of high prior proba- 
bility. Thus, the well-documented artefact of direct 
methods whereby correct molecular fragments are 
occasionally found misplaced (Karle, 1976) is a 
manifestation of the branching problem. 

4.3. Multimodality and branching 

The exact form (4.1) of ~ is the exponential of a 
relative entropy 

~(rp)--- exp [NY'q~E(q ME +3.o)] (4.22) 

and it was established in § 4.2.1 that the Hessian of 
6eqME is always negative definite. Therefore, 5eqME is 
a globally concave functional of its argument with a 
unique maximum at 3p = 0, and the same holds for 

if its argument is left unconstrained. 
Once a c.p.d. ~ has been constructed, however, its 

exploitation usually entails its maximization under 
additional constraints provided by the knowledge of 

5. Maximum entropy and the saddlepoint 
approximation 

An alternative derivation of all the results of §§ 3 and 
4 will now be presented which is totally independent 
of the concept of entropy and hence of Jaynes's 
heuristics. It uses an analytical device, the 'saddle- 
point method', first introduced into the statistical 
literature by Daniels (1954), to construct directly an 
optimal approximation to the Fourier integral (1.10). 
The results obtained will be shown to be identical to 
that defined by (4.5) [or (4.10)] and (ME1) to (ME3), 
so that the two-step process described above will 
receive a final and rigorous justification. 
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The mathematical origins of the saddlepoint 
method go back to the work of de Laplace (1820), 
and its systematic study is mainly associated with the 
names of Riemann and Debye (see Copson, 1965; 
de Bruijn, 1970; Erdrlyi, 1956). Its use in statistical 
physics by Darwin and Fowler (Fowler, 1936), later 
clarified by Khinchin (1949), is intimately related to 
the present work (§ 5.4). In its applications to proba- 
bility theory, the saddlepoint method affords a tech- 
nique for obtaining consistently optimal asymptotic 
expansions for distributions of sums of independent 
identically distributed random variables over a wide 
range of values of their arguments, and not only near 
the sum of their first moments. Daniels's original 
treatment deals with one-dimensional problems but 
its generalization to the multidimensional case, which 
is needed here, offers little difficulty. 

The saddlepoint method is best understood by 
reference to the construction of the Edgeworth series 
outlined in § 1.2.2 in which the cumulant-generating 
function log M was expanded as a power series in 
the carrying variables u about the origin Uo=0, 
leading to an asymptotic expansion for ~(F)  valid 
only near its centre F ° = N U q .  The essence of 
Daniels's method is to let the choice of point Uo (about 
which log M is to be expanded) be dependent on the 
value of F for which an accurate evaluation of ~(F)  
is being sought. The criterion used in this choice is 
that all substantial contributions to integral (1.10) 
should become maximally concentrated in a small 
neighbourhood of that point as N--> m. The optimal 
value of Uo turns out to be complex, so that some 
preliminary technical results relative to the analytical 
continuation of log M must first be established. 

5.1. Analytic continuation of Fourier transforms 

Let f be an absolutely integrable complex-valued 
function of m real variables, i.e. 

f = f ( s ) ,  S :  (Si, S2, • • • , Sin), 

and let q~ be its inverse Fourier transform: 

The result of this analytic continuation is described 
explicitly by 

q~(t - ix) = 5 f(s) exp [i(t - ix). s] d" s  
R m 

= ~ f(s) exp (x. s) exp ( i t .  s) d" s  
R "  

= ~ [ f  exp (x .  s)](t) 

o r  

~ [ f ] ( t -  ix) = ~ [exp  (x. s)f](t). (5.2) 

Thus, adding to each tj an imaginary part - ~  (j = 
1 , . . . ,  m) is reflected by an exponential modulation 
of the original function f. 

For every t, q~(t - ix)  considered as a function of 
x is of exponential type in its growth properties 
(Schwartz, 1966, p. 271). In particular, if the (compact) 
support of f spans both strictly positive and strictly 
negative values in every direction in s space (which 
we will abbreviate by saying t h a t f  is of class E) then 
Iq,(t-ix)[ grows exponentially in all directions in x 
space for any fixed t. 

The original function f(s) may be recovered from 
qb by the usual inversion formula: 

1 
f ~(t)  exp ( - i t  s) d~t. (5.3) f(s) = (27r)---------~ - 

R ,n 

But the integrand may be continued analytically 
without singularities into C m, and by the m- 
dimensional generalization of Cauchy's theorem 
(H/Srmander, 1973) the above integral is not changed 
by giving to each integration variable t~ an arbitrary 
imaginary part -rj .  Therefore, 

f(s) - 
1 

/ qb(t-  ix) exp [ - i ( t -  ix). s] dr"t 
(2~r) ~" 

R "  

(5.4) 

for any x~ R m (see for instance Rudin, 1973, p. 180). 

~ ( t ) =  o~[f](t)= ~ f(s) exp(it .s)dms (5.1) 
R m 

(note the slightly different normalization, in that there 
is no factor of 2~r in the exponent). 

Suppose f has compact support, that is, vanishes 
identically outside a closed bounded subset of R m. 
Then, by the Paley-Wiener theorem (Paley & Wiener, 
1934, p. 12), • may be analytically continued into a 
function of m complex variables, analytic in the 
whole of C m. This theorem was generalized by 
Schwartz (1966, p. 272) to the case where f is a dis- 
tribution (in particular, a measure) with compact 
support. 

5.2. Families of conjugate distributions 

Let f now be a probability measure with compact 
support in R m, and let its inverse Fourier transform 
tb be extended analytically by (5.2). Then the usual 
characteristic function C(T) and moment-generating 
function M(x) associated with f (see Klug, 1958) are 
defined in terms of • by 

C(T) = q~(T), T ~ R" (5.5a) 
M ( x ) =  ~ ( - i 7 ) ,  x~R" .  (5.5b) 

These formulae may be used to extend functions C 
and M themselves into functions of m complex 



430 MAXIMUM ENTROPY AND THE FOUNDATIONS OF DIRECT METHODS 

variables by putting 

C(T + i't) = ~(T + i't) (5.6a) 
M('t + iT) qb(T- ix). (5.6b) 

The positivity off(s),  and hence o f f ( s )exp  (x. s) for 
all "t e R ' ,  implies by (5.2) that Iq~(T-i't)l is always 
a maximum for T = 0 for any "t; or equivalently by 
(5.6b) that IM('t + iT)I always has a maximum on the 
m-fold product of real axes T = 0  [M is a 'ridge 
function' (Lukacs, 1983)]. In this subspace, M('t) is 
always real-valued and positive; furthermore, as was 
noted in § 5.1, M('t) is of exponential growth if f is 
of class E. 

Under these hypotheses we may define, for any 
"rE R m, 

exp (x. s)f(s) 
f.~(s) = 

exp ('t. s)f(s) d"s  
R ' n  

1 
= M('t-----) exp ('t. s)f(s), (5.7) 

which is also a probability measure with compact 
support. The family {f,(s)},~R m is called a family of 
conjugate distributions (Khinchin, 1949, p. 79). It is 
clear from (5.2) that the characteristic functions of 
the f ,  are all related by analytic continuation. 

Using the moment-generating properties of M, it 
is straightforward to calculate the first moments 
(st) ('to) and covariances rjk('to) of conjugate distribu- 
tion f,o(S): 

0 
, T = T  ° (sj)('t0) = Orj (log M)I (5.8a) 

,~k('to) = ( ( sj - ( sj)  )(  sk - ( s O  ) )(  "to) 

02 
- - - ( l o g  M)l,=,o. (5.8b) 

Orj Ork 

Since f is of class E, it is non-degenerate (i.e. it is not 
concentrated in any strict linear subspace of Rm), 
hence [rjk('to)] is positive definite for all "to. Therefore, 
log M("t) is a strictly convex function, and con- 
sequently its gradient will assume every value in its 
range once and only once. By (5.8a) this range con- 
sists of all the first moments of the family of conjugate 
distributions, and it can readily be shown that these 
consist of all the interior points of the convex hull of 
the support (ICS) o f f  (see Rockafellar, 1970). Thus 
a one-to-one correspondence between the vectors (s) 
ICS f and "t ~ R" is set up by the equation 

V (log M ) =  (s). (5.9) 

In other words (Khinchin, 1949), for any vector So 
ICSf, there exists a unique member f~o of the family 
of conjugate distributions {f,},~Rm which has math- 
ematical expectation So. 

5.3. The saddlepoint approximation 

In the standard probabilistic formalism, reviewed 
in § 1.2, the main source of difficulty resides with the 
step summarized in (1.10), i.e. calculating the Fourier 
transform of the Nth power of the characteristic 
function C of the distribution P(X) of random vector 
X. 

Let q(x) be the prior distribution of atoms. Let the 
set of reflexions h~ , . . . ,  h, comprise ma acentric and 
mc centric reflexions, and let m = 2ma + m~. Let X(x) 
denote the m-dimensional random vector of real com- 
ponents of the contributions to Fh , , . . . ,  Fh,, of a point 
atom of unit weight placed at x. Then the distribution 
P(X) of X has compact support and is of class E. If 
C and M denote its characteristic and moment- 
generating functions, respectively, then 

C ( t ) = M ( i t ) =  ~ P(X) exp(it .X)dmX 
R m 

= j" q(x) exp [it .  X(x)] d3x. (5.10) 
V 

Equation (1.10) may therefore be written in full as 

~(F) = ~ [ C  N](F) 

'S (2rr)" cN(t)  exp ( - i t .  F) d " t  
R m 

'S 
(2rr)m MN(it)exp(- i t .F)  d~t 

m 

'S - (2rr)" exp{N[logM(it)- iU.t]}dmt 
R m 

(5.11) 
N 

where U = (1 / N)F = (1 / N) Yg-, Xj is the vector of 
unitary structure factors, treatecl as an m-dimensional 
real vector as far as scalar products are concerned. 

The fundamental problem in the probabilistic for- 
malism of § 1.2 is to find a good approximation of 
for arbitrary values of U which may not lie in the 
immediate vicinity of the first-order moments Uq of 
P, which are the Fourier coefficients of q(x). When 
N--> oo, the main contribution to the integral is con- 
centrated near t = 0 since, as noted previously, M(it) 
has maximum modulus there. One may therefore 
expand log M(it)  as a power series near t = 0  
and proceed as described in § 1.2.2 to obtain 
the Edgeworth series of ~(F). As discussed at 
length in § 2.2, this series is only accurate near F = 
NUq. 

For a given value of F, however, we may use the 
extra freedom afforded by (5.4), and assign to t any 
imaginary part without changing the value of the 
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integral. Changing t to t - i , r  gives 

~(F)  - , f  (27r)m exp {N[log M(x + it) 
R m 

- i U .  ( t -  ix)]} dmt 

= e x p ( - F ' x ) ( 2 ~ ) m  f exp{N[ logM(x+i t )  
R ,n 

- i U .  x]} dmt. 
(5.12) 

For any given x, M(x + it) still has maximum modulus 
at t = 0 ,  so that an Edgeworth-type series can be 
constructed. But it is possible, by appropriate choice 
of x, to further ensure optimal concentration to a 
neighbourhood of that point of all significant contri- 
butions to the integral. Assuming that F is feasible, 
i.e. that U belongs to the interior of the convex hull 
of the support of P, we may choose for x the unique 
value Xo such that: 

V (log M)[.=.o,,=o = u (5.13) 

whose existence was proved in § 5.2 (equation 5.9). 
Then not only will the modulus of the integrand be 
maximum at that point, but its phase will be stationary 
since 

V[log M(xo + i t ) -  iU.  t]lt=o = U -  U =0.  (5.14) 

This value Xo of x is called the saddlepoint of the 
integrand since at that point the modulus of the latter 
is simultaneously a maximum in the t subspace and 
a minimum in the x subspace. Its defining equation 
(5.13) is called the saddlepoint equation. 

Expansion of log M to second order near Xo gives 

log M(xo + it) ----- log M('ro) + iU.  t 
m 

-½ Y, t-Ijk('ro)tjtk, (5.15) 
j,k=l 

where H(xo) = [/-/jk(X0)] is the Hessian matrix of log M 
at Xo. We may thus write 

= exp { N [log M(xo) -  U.  x0] 

x(2- ~ exp --(N/2)j.k=, ~] Hjk(Xo)tjtk dmt. 
R "  

The evaluation of the integral is standard (Cram6r, 
1946), so that finally 

~(F)~- {N/[(2¢r) m det H(%)]} '/= 

× exp { N [log M(xo) - U.  Xo]}. (5.16) 

This expression was called by Daniels the saddlepoint 

approximation to ~(F).  It is only the first term of an 
asymptotic expansion, but it is as accurate in the 
neighbourhood ofF  = N U  [where U and Xo are related 
by the saddlepoint equation (5.13)] as the first term 
of the Edgeworth series near its centre, the latter 
corresponding to the particular case where Xo = 0. 

The saddlepoint approximation does therefore pro- 
vide a means of constructing consistently accurate 
estimates of the j.p.d, of a set of structure factors in 
the vicinity of any prescribed feasible values of its 
arguments. 

5.4. Relation to the maximum entropy method 

It will now be shown that the results just obtained 
are exactly identical to those of the ME method 
presented in §§ 3 and 4. 

It is clear that the principle of the saddlepoint 
approximation consists in using, when calculating 
integral (5. l 1), not the original distribution P(X) itself, 
but the conjugate distribution 

P,o(X) = [exp (Xo. X)/M(Xo)]P(X) (5.17) 

whose characteristic function is 

M(xo + it) 

f 
R m 

P,o(X) exp ( i t .  X) dmX 

M(xo) exp (Xo. X)P(X) exp (it.  X) dmX 
R m 

, f  M(xo) exp [Xo. X(x)]q(x) exp [i t .  X(x)] d3x. 

V 

This may be rewritten 

M(xo + it)= ~ q,o(X) exp [it .  X(x)] d3x 
V 

where 

(5.18) 

q(x) 
q,o(X) = M(xo---~ exp [Xo. X(x)]. (SP1) 

On the other hand, it will be recalled that, by (5.10), 

M(xo) = S q(x) exp [xo. X(x)] d3x (SP2) 
V 

and that the value of xo is determined by (5.13): 

0 
0~ (log M)l,=,o = Uj. (SP3) 

Comparison of the latter three equations with 
(ME1), (ME2) and (ME3) in § 3.3.1 shows complete 
identity, up to an obvious change in notation: 

the Z function (ME2) is the M function (SP2), 
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which explains its generating properties pointed out 
in § 3.3.3; 

the Lagrange multipliers defined by (ME3) are the 
coordinates of the saddlepoint defined by (SP3); 

the saddlepoint approximation (5.16) near F = NU 
amounts to a normal approximation of the j.p.d. 
constructed on the basis not of the initially given prior 
q(x), but of a revised prior distribution (S P1) identical 
to the maximum entropy distribution (ME1) con- 
sistent with the assumed value of U under prior preju- 
dice q(x). 

Furthermore, comparison of (5.16) with (3.6) and 
(4.1) shows that the saddlepoint approximation is 
nothing other than 

~(F) - exp [ N6eq(q~.o)] (5.19) 

as had been derived by combinatorial arguments in 
§4.1. 

Finally, the conclusions reached in § 5.2 regarding 
the uniqueness and the condition of existence of a 
solution to the saddlepoint equations (5.9) settle the 
same question for the ME equations. 

This rather striking result is not without precedent. 
The analytic proof of the maximum-entropy principle 
given here is an exact parallel of the Darwin-Fowler 
formulation of statistical mechanics (Fowler, 1936), 
which also bypasses the established route - explicit 
combinatorial enumerations followed by an appeal 
to Stirling's formula - by means of a direct saddle- 
point approximation to the thermodynamic partition 
function. Both results can ultimately be rationalized 
by recalling that Stirling's formula itself can be estab- 
lished by a saddlepoint approximation to Euler's F 
function (de Bruijn, 1970). 

5.5. Approximation of conditional distributions 

The conclusions obtained in this section may be 
rephrased in the context of the problem, formulated 
in §§ 2.1 and 2.3, of optimally approximating c.p.d.'s 
of structure factors. They are embodied in the fol- 
lowing. 

Theorem: The recentring of a joint probability dis- 
tribution ~ around an arbitrary feasible vector F, 
a necessary prerequisite to obtaining accurate 
conditional distributions by specialization in the 
vicinity of F, may be accomplished by using Daniels's 
saddlepoint approximation. The latter procedure is 
mathematically equivalent to updating the prior dis- 
tribution of atoms to the maximum-entropy prior 
compatible with the assumed value of F, then con- 
structing a normal approximation to ~ from this 
non-uniform prior. 

This theorem completes the proof that the two-step 
approximation scheme for conditional distributions, 
outlined in § 2.3 and developed in §§ 3 and 4, con- 
stitutes a uniquely defined optimal implementation 
of the basic principles of probabilistic direct methods. 

6. Maximum entropy and determinantal methods 

Harker & Kasper (1948) deduced from the positivity 
of the electron density a set of algebraic inequalities 
involving the structure factors, which were later 
shown by Karle & Hauptman (1950) to be the simplest 
members of a large family of determinantal 
inequalities. The same determinants were sub- 
sequently used by Tsoucaris (1970) to devise an 
alternative method of constructing approximate joint 
distributions of structure factors when prior knowl- 
edge of some of them is assumed: the maximum 
determinant method (MDM for short). 

Under both guises - algebraic and probabilistic - 
determinants have close ties with the maximum- 
entropy method (MEM). It will be shown in this 
section that the ME equations are solvable if and 
only if the initial data satisfy the Karle-Hauptman 
inequalities (§6.1.2), and that the asymptotic 
behaviour of determinants of large order defines an 
entropy-like quantity which is related to the entropy 
ofj.p.d. 's rather than maps (§ 6.3). The relative merits 
of the Jaynes ME method and of the MDM will be 
compared in § 6.4. 

6.1. Determinantal inequalities 

6.1.1. Origin 

The positivity of p(x) is equivalent to the positive 
definiteness of the Hermitian form: 

f~--~ Tp(f)= ~ f(x)p(x)f(x) d3x, (6.1) 
V 

where f is any square-summable periodic complex- 
valued function with the same period lattice as p. This 
in turn is equivalent to the positive definiteness of 
the restriction of Tp to the linear span 
of [exp (21rihl . x), . . . , exp (27rih,, . x)] for any 
( h i , . . . ,  h,), in which Tp is represented by the matrix 

[Tp]o=[Uh_h,] (i , j= l , 2 , . . . , n ) .  (6.2) 

Hence the determinants of all such matrices must be 
positive (Karle & Hauptman, 1950). Kitaigorodskii 
(1961) showed, by elementary operations on rows and 
columns, that a Karle-Hauptman (KH for short) 
determinant depends only on invariant combinations 
of the phases of its component structure factors. An 
alternative proof may be given directly from the defi- 
nition: 

det[Tij]= ~ e(o')T,.~t,~T2.,,t2)... T..,.c,, ~ 
or ~ S n 

= ~ E ( o ' ) U h l - h o . ( l , U h 2 - h , ~ , 2 , . . .  U h . - h . ~ , . , ,  
o 'E S n 

(6.3) 

where the summation is over all permutations o- of 
the symmetric group on n letters S,, and e(cr) is the 
signature of permutation o-. Since any permutation is 
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a product of disjoint circular permutations (Car- 
michael, 1937), each term of this sum factors into 
terms corresponding to cyclic permutations, whose 
phases are obviously phase invariants. 

6.1.2. Solvability condition for the ME equations 

Let M structure-factor values be given, and let qME 
be the corresponding ME prior. Fourier analysis of 
qME according to (4.4) then yields extrapolated 
Fourier coefficients U~ E which are such that 
(Uh~-hk) ME= Uhj--hk if h j - h k  is also one of the M 
reflexions for which a constraint value has been given. 
Suppose then that a subset of m reflexions may be 
chosen (say hi, h 2 , . . . ,  h,,) so that all reflexions of 
the form h j - h k  (j, k =  1 , 2 , . . . ,  m) belong to the 
initial set of M constraint reflexions, up to Friedel 
equivalence. Then the m x m determinant 

8" = det [ Uhj--hk -- Uhj Uhk ] (6.4) 

is necessarily positive, since by (3.8) and (4.6) it is a 
Gram determinant. But 8" is equal to the (m + 1)× 
(m + 1) determinant 

1 U(-h  0 

U(h 0 1 

d,.+l = U(h2) U(-hl  +h2) 

U(h~) U(-h,  +hm) 

U(-h2) U(-hm) 
U(hl-h2) . U(hl -hm) 

1 (6.5) 

since it may be obtained from dm+~ by the following 
operations [called the 'Chio pivotal condensation 
process', see Eves (1966)]: subtract from the (j + 1)th 
column the product by Uh, of the first column, for 
j = 1, 2 , . . . ,  m; then expand dm+~ along its first row. 
Consequently, if a negative KH determinant d,,+~ can 
be constructed from the initial data, the ME equations 
cannot be solved since the positivity of 8m and the 
relation 8,. = d,,+t are then contradictory. The KH 
inequalities are thus necessary conditions for the ME 
equations to be solvable. They are also sufficient 
conditions, since they imply that the vector U =  
(U h , , . . . ,  Uh~) of given first-order moments is an 
interior point of the convex hull of the support of 
P(X) (see § 5.3), so that the saddlepoint equations 
(which are equivalent to the ME equations) may be 
solved. 

6.2. Determinants and joint distributions 

6.2.1. The maximum determinant rule 

Tsoucaris (1970) proposed a method for construct- 
ing the conditional distributions of large families of 
structure factors when prior knowledge of the ele- 
ments of a KH determinant is available. His pro- 
cedure consists of applying the central limit theorem 
(CLT) after obtaining the covariance matrix of the 
family of structure factors by reinterpreting Sayre's 
equations (Sayre, 1952) as the calculation of an 

ensemble average: 

(El+hjEl+hl,) l  = Uhj_hk.  (6.6) 

The covariance matrix is thus a KH matrix. If the 
elements of such a matrix of order m are known, then 
the values of E ,+h , , . . . ,  E~+hm which maximize the 
CLT approximation to their joint distribution are 
those values which maximize the determinant of the 
(m + 1) x (m + 1) KH matrix obtained by bordering 
the previous matrix with (U~+h,, . . . ,  U~+hm). 
Tsoucaris summarized these findings in his maximum 
determinant rule: 'among all the combinations of 
phases compatible with the condition of non-nega- 
tivity of a Karle-Hauptman determinant, the most 
probable combination is the one that leads to the 
maximum value of this determinant'. 

6.2.2. Scope and limitations of the method 

The maximum-determinant method has had a num- 
ber of successful applications to the solution of 
organic structures and to phase extension for proteins 
at high resolution (de Rango, Mauguen & Tsoucaris, 
1975). Conceptually, it constitutes a major step 
towards the systematic exploitation of prior knowl- 
edge concerning some structure factors in order to 
sharpen probablistic relations between others. It does 
not achieve this goal in an optimal fashion either 
from a theoretical or a practical standpoint, as will 
now be discussed. 

Tsoucaris's construction is ingenious, yet its justifi- 
cation by means of Sayre's equations has the character 
of a deus ex machina. Sayre's equations are not of a 
probabilistic nature: they are exact relations satisfied 
by the Fourier coefficients of any structure consisting 
of equal resolved spherical atoms. This logical incon- 
sistency may be remedied by observing that, in the 
construction on which the MDM is based, implicit 
use is made throughout of the idea of a non-uniform 
prior distribution q(x) which would yield the assumed 
values for the Fourier coefficients contained in the 
known determinant; one can then use the standard 
formula (1.11) for calculating moments, and obtain 
the desired result (6.6) without any need for Sayre's 
equations. This prior distribution q(x), however, is 
never explicitly mentioned in the MDM, let alone 
specified with any degree of uniqueness as was done 
at length in § 3.3. In particular, the method of ME 
extrapolation by Fourier analysis of the ME prior, 
which affords a device for giving the most non- 
committal values to unspecified Fourier coefficients, 
has no equivalent here. 

From a practical point of view, the rigid format in 
which the available knowledge of some structure fac- 
tors must be presented - namely as a collection of 
elements filling exactly a KH determinant - is some- 
what of a strait jacket, and makes the M D M extremely 
vulnerable to missing or unreliable data. Finally, the 
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MDM requires computations of size proportional to 
n 3 for n reflexions, which becomes prohibitive for 
large n. 

By contrast, the construction of c.p.d.'s given by 
(4.10), which is equivalent to the form (4.5) on which 
the MDM is based, possesses a number of consider- 
able advantages: 

(1) all the available initial data are used both in 
the construction of U ME and of the covariance matrix 
Q; 

(2) no limitations are imposed by the fact that the 
data may not fill up the whole of matrix K; 

(3) the inversion of K is carried out by fast Fourier 
transform (FFT), hence at a cost proportional to 
n log n for n reflexions instead of n3; 

(4) the linear regression calculations used in the 
MDM (de Rango, Tsoucaris & Zelwer, 1974) are 
replaced by maximum-entropy extrapolation. 

Another source of difficulties, which has so far gone 
undiagnosed but would preclude the unsupervised 
use of the MDM ab initio, is the branching problem. 
Like the entropy functional, a positive KH deter- 
minant is a strictly concave function of its arguments, 
but the non-convexity of the moduli constraints (§ 4.3) 
will cause it to have a profusion of local maxima 
when considered as a function of the phases alone. 
Thus the maximum-determinant rule will not in general 
define a unique combination of phases. No provision 
exists in the current implementation of the MDM for 
dealing with this problem. 

6.3. Determinants and entropy 

The relation between the MDM and the MEM is 
an intricate one, which is further complicated by a 
confusion of terminology owing to the possibility of 
defining three entropy quantities in the present con- 
text. If q(x) is a prior distribution of atoms, p(x)= 
(1/Fo)p(x) a normalized electron density, and ~(E) 
the joint distribution of a collection of (quasi-normal- 
ized) structure factors, then one will encounter 

(1) ~q(p) = -  ~ p(x) log[p(x)/q(x)]d3x, 
V 

the Shannon-Jaynes entropy of p relative to q, used 
in this paper; 

(2) ~ ( ~ ) =  - ~ ~ (E)  log ~ (E)  dZmE, 
R2 m 

the Shannon entropy of the j.p.d, of a set of m struc- 
ture factors; 

l I (3) if(p) = -~ log p(x) d3x,  

V 

the Burg entropy of p, which will be introduced in 
§ 6.3.3. 

Britten & Collins (1982) and Piro (1983) have shown 
the equivalence of the MDM with the MEM for 

entropy ~g(~), while Narayan & Nityananda (1982) 
have shown its equivalence to the MEM for entropy 
~-(p). In this section, all these methods will be com- 
pared after a few mathematical results have been 
established. 

6.3.1. A theorem of Shannon 

It was shown by Shannon (Shannon & Weaver, 
1949, pp. 89-90) that, given a positive definite M × M 
symmetric matrix Q, the ME multivariate distribution 
having Q as its covariance matrix is the Gaussian 
distribution 

C~o(X) = [(2"n') M d e t  Q]-~/2 exp ( -½'XQ- 'X)  

and that the corresponding maximum value of the 
entropy is 

~"(Q) = - j" ~Q(X)log ~Q(X) dMX 
R M 

-~(M/2)( l+ log27r)+½1ogdetQ.  (6.7) 

Essentially the same result holds for complex-valued 
random variables and a positive-definite Hermitian 
matrix Q. 

6.3.2. A theorem of Szeg6 

The relation discovered by Karle & Hauptman 
between the positivity of a periodic function and the 
existence of determinantal inequalities satisfied by 
its Fourier coefficients had been known to 
mathematicians since the work of Toeplitz (1911) and 
Carathrodory (1911). Hermitian forms such as Tp in 
(6.1) are referred to as Toeplitzforms, and an abundant 
mathematical literature is devoted to them (e.g. 
Grenander & Szegr, 1958). One of the central results 
of the theory of Toeplitz forms is a theorem of Szeg6 
(1920), according to which, in the notation of (3.9) - 
with p instead of q - and (6.5), 

lim (d,,) '/" = exp [(l/ V) J logp(x)d3x], (6.8) 
m~cX3 V 

provided the increasing families {Uh,}~<_j<_,,, even- 
tually exhaust all the Fourier coefficients in a suitably 
isotropic fashion as m->oo. Szeg5's original proof 
dealt with Fourier series in one variable only. 
Narayan & Nityananda (1982) provided a proof 
adequate for crystallographic purposes, although 
many proofs of a stronger result were already avail- 
able in the multidimensional case (Widom, 1960, 
1975; Linnik, 1975). 

6.3.3. The Burg entropy 

The quantity on the right-hand side of (6.8) is the 
geometric mean of the values of p, and it is a maximum 
when p is uniform [p(x)= 1/V]. Furthermore, the 
concavity of the logarithm function implies that the 
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functional 

~(p) = (1 / V) ~ log p(x) d3x (6.9) 
V 

is strictly concave. Therefore, ~-(p) has many of the 
attributes of the Shannon entropy, although it lacks 
its combinatorial interpretation and the property of 
additivity for independent sources of uncertainty. 

Burg (1967) proposed that the ME principle should 
be implemented using the 3-(p) entropy, and his work 
has attracted many followers (see for instance Haykin, 
1979). The content of Szeg/5's theorem may then be 
phrased: if ~ is an m-dimensional Gaussian distribu- 
tion whose covariance matrix is an m x m Toeplitz 
matrix defined from p, then maximizing the Shannon 
entropy of ~ is equivalent, as m--> oo, to maximizing 
the Burg entropy of p. 

6.3.4. Entropies in terms of  structure invariants 

Let u(x) be defined by 

p(x) = (1/V)[1 + u(x)] 

so that 

and hence 

(6.10) 

u(x)= E Uhexp(-27rih.x) (6.11) 
h ~ O  

u(x) d3x = O. (6.12) 
V 

If u(x) is always strictly less than 1 in absolute value, 
we may use the power-series expansion 

l o g ( l + u ) =  ~ [ ( -1)" - ' /n]u"  (6.13) 
n = !  

and use its analytical continuation otherwise. 
The Jaynes entropy 5~(p) relative to a uniform prior 

q(x) = l / V  and the Burg entropy 5¢(p) are then readily 
obtained: 

1 1 f u2(x ) d3 x 5e(p) = - ~ -~ 
i/ 

V 

(--1)"-' 1 f + Y'~ n(n - 1) V un(x) d3x 
n = 3  

V 

1 1 f u2(x ) d3 x J (p )  = - log  V -  ~ -~ 

V 

+ ~ .  (-1) "-~1 f u.<x)dSx. 
n=3 n V 

V 

(6.14) 

The two expressions are formally very similar, except 

for a different balance between successive terms, and 
show clearly that the change of sign in going from 
- p  log p (for 5 0 to log p (for 0 ~) is a consequence of 
the alternation of signs in the expansion (6.13) for 
log (1 +u). 

In terms of Fourier coefficients, the common quad- 
ratic integral is 

l l  f l y .  V uE(x) d3x = - 2 h*O I Uhl2 (6.15) 

by Pai'seval's theorem, and it gives rise to Wilson's 
statistics. The expression of the higher-order terms, 

,f V u"(x) d3x = Y. I Uh,I... I Un.[ 
hi + . . .+hn  = 0  

xcos (~Ph, + ..- +~Ph.), (6.16) 

together with the alternating signs in (6.14), show 
that both entropy maximization procedures will 
endeavour to make triplet invariants positive, quartet 
invariants negative, etc., although these will be given 
different relative weights. In particular, the maximiz- 
ation of 5¢(p) gives greater relative weight to triplet 
invariants than does that of if(p). 

6.3.5. Comparison of  the M D M  and the ME methods 

We may recapitulate the results obtained above by 
their formulation in a crystallographic context: 

(1) the MDM differs from the Jaynes MEM 
developed in §§ 3 and 4; 

(2) the MDM is equivalent, by Shannon's theorem 
(§ 6.3.1), to maximizing the Shannon entropy of the 
CLT approximation to the joint distribution ~(E) of 
the structure factors (Britten & Collins, 1982; Piro, 
1983); 

(3) the MDM is equivalent, by Szeg/5's theorem 
(§ 6.3.2), to maximizing the Burg entropy of p(x) 
(Narayan & Nityananda, 1982). 

Thus the Burg MEM constitutes the real-space 
counterpart of the MDM, in exactly the same fashion 
that the Jaynes MEM is the counterpart of the method 
of joint distributions (§ 4.1). 

6.4. Jaynes entropy versus Burg entropy in crystal- 
lography 

At this point, the question inevitably arises: which 
is the 'better' form of the maximum entropy principle? 
This issue is still the object of much controversy in 
other disciplines (see Levine & Tribus, 1979), but in 
crystallography Jaynes's viewpoint possesses a num- 
ber of decisive advantages. 

Firstly, Jaynes's entropy 5¢(p) is the exact real- 
space counterpart of the full joint probability distribu- 
tion ~(E) of the structure factors, whereas the Burg 
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entropy J-(p) is the counterpart of the CLT approxi- 
mation to ~(E). Therefore, the Burg MEM is only a 
second-order approximation to the Jaynes MEM. 
Furthermore, this CLT Gaussian approximation to 
~(E) is centred around E = 0, so that the warnings 
issued in § 2.1 concerning the use of such approxima- 
tions far from their centre apply to the MDM and 
hence to the Burg MEM. In contrast, the Jaynes MEM 
is equivalent to the saddlepoint approximation to 
~(E), which always uses the CLT in an optimal 
fashion around any given value of E. 

Secondly, the Jaynes MEM is analytically and com- 
putationally the more robust of the two. The integrand 
of if(p) approaches -oo wherever p(x) approaches 0, 
while that of ~(p)  approaches 0 under the same 
circumstances. The solution of Burg's ME equations 
is obtained as the squared modulus of the inverse of 
a finite Fourier sum, while that of Jaynes's is the 
exponential of such a sum (§ 3.3.1) and hence affords 
a better safeguard against exaggerated 'peakiness'. 

Thirdly, the Burg entropy of p(x) does not possess 
a clearly defined probabilistic interpretation in real 
space. It does possess one in reciprocal space, by 
virtue of its relation to the Shannon entropy of ~(E): 
in this light, the MDM appears as a prescription to 
maximize the uncertainty, in the distribution of the 
structure factors E, hence to minimize the commit- 
ment to any particular value of E. However, there is 
no underlying stochastic model in reciprocal space 
which would lead naturally to maximizing such an 
entropy, so that the rationale for proceeding in this 
way is rather more ad hoc than that by which Jaynes's 
ME principle introduced itself in §§ 3.2 and 4.1. 

Ultimately, the superiority of Jaynes's formulation 
lies in the fact that it affords the most natural 
framework in which to pursue the specific purpose 
of crystallographic direct methods, namely to analyse 
quantitatively the statistical implications of a real- 
space combinatorial approximation to the rules of 
chemistry. When direct methods reach a state of 
maturity where the crudeness of the present stochastic 
model of independent Bernoulli trials becomes the 
major source of limitations, this model will have to 
be upgraded to one taking into account the non- 
independence of the atoms (§ 1.1). Burg's MEM, not 
having explicit combinatorial foundations of this 
kind, would not admit as natural a generalization as 
Jaynes's. 

7. Entropy maximization algorithms 

A fundamental process in the construction of the 
prior qME (§ 3) and in the local survey of a c.p.d. 
~(SU) (§ 4) is the maximization of an entropy func- 
tional 5e when a constraint functional ~¢ is required 
to assume a given value. In the construction of qME, 

will be a residual reckoned from the constraint 
values specified for some structure factors, while in 

the exploration of ~ it will be a weighted observa- 
tional residual based on the measured moduli of yet 
unphased structure factors. Several procedures are 
available in the former case (§ 7.1). In the latter case, 
these procedures are inadequate because of the 
branching problem, and a new method is required. 
An algorithm developed by the present author, which 
gains complete control over branching, is presented 
in § 7.2. A preliminary numerical application to a 
small protein is described in § 7.3. 

7.1. Algorithms for the construction of a ME prior 

Computational methods suitable for this purpose 
fall into two categories, according to whether they 
rely on the analytical ME formalism (§§ 7.1.1, 7.1.2) 
or on purely numerical optimization procedures 
(§ 7.1.3). 

7.1.1. Solving the ME equations by Newton iteration 

In the case of linear constraints given by the prior 
knowledge of some structure factors, we may invoke 
Jaynes's ME formalism. It was shown previously that 
the ME equations have a unique solution (§§ 5.2 and 
5.4) if the constraint values obey the Karle-Hauptman 
inequalities (§ 6.1.3). The crystallographic ME 
equations obtained in §§ 3.4 and 3.5 were derived 
mainly for formal comparison with standard direct 
methods; for computational purposes, a different 
writing is more appropriate. 

Let M = 2ma + mc be the total number of indepen- 
dent real components of the ma acentric and m~ 
centric structure-factor values given as data, and 
define the constraint functions Cj(x) and constraint 
values cj by 

1 
~ ,  exp[27rihk. (Rvx+tv)]= C2k-,(x)+iC2k(X) Ir l 

and 

U(hk) =c2k-,+ic2k ( k = l , . . . , m , , )  (7.1a) 

for acentric reflexions, 

1 
levi exp [2rrihm~ .k .  (R~x +t~)] 

= exp (iak)C 2 m  a +k(X) 
and 

U(h,,a+k ) = exp (iOZk)C2,,,a+k (k = 1 , . . . ,  me) 
(7.1b) 

for centric reflexions, where the phase ~O(hm~+k) is 
restricted to ot k mod 7r. With this notation the con- 
straint equations (3.34) and the ME equations assume 
their canonical forms (ME0), (MEI), (ME2), (ME3). 

Equations (ME3) may be written 

V~, (log Z ) = e  (7.2) 
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so that they can be solved by Newton's method 
(Agmon, Alhassid & Levine, 1979). Let k <° be the 
vector of trial Lagrange multipliers at iteration i, and 
define 

z(i): I m(x)exp [~_~ )k~i)Cj(x)] d3x (7.3) 
V j = l  

c~')= ~ qU)(x)Cj(x) d3x. (7.5) 
V 

Then the new iterate k "+° will be defined by 

k ~+l) = k u) + [H (log ZU))]-~(e - eU)), (7.6) 

where H (log Z ~°) is the Hessian matrix of Z u). It was 
shown in § 3.3.3 that 

[H (log ZU))]jk = j" q(i)(x)Cj(x)Ck(x)d3x - c~ ')c~ ). 
V 

(7.7) 

The product Cj(X)Ck(X) can be linearized by Bertaut's 
structure-factor algebra (Bertaut, 1955c, 1956, 1959a, 
b; Bertaut & Waser, 1957) so that the integral on the 
right-hand side of (7.7) may be expressed as a finite 
linear combination of real and imaginary parts of 
Fourier coefficients of qU). The Newton iteration 
scheme for solving the crystallographic ME equations 
is thus completely specified. 

7.1.2. Exponential modelling 

Newton's method becomes expensive as M 
increases, since the cost of inverting H (log Z u)) grows 
as M 3. For very large M, the inversion technique used 
in § 4.2.1 provides considerable savings by making 
the size of computations proportional to M log M. 
Expanding the data to P1, H (log Z ~°) is simply the 

= o f (  constructed from the matrix Q~O Ku)_W~O 4.6) 
Fourier coefficients of qCO,restricted to the subspace 
spanned by the expanded set of reflexions. If M is 
large enough we may ignore this restriction, neglect 
the small perturbation W ~° to K u), and use (4.8) to 
obtain an approximate inverse: 

[H (log Z~')] - ' =  KH(1/q¢i)). (7.8) 

Step (7.6) can then be carded out much more 
economically by defining 

M 

w<i)(x) = - l o g  Z u) + Y~ h(i)Cj(x) (7.9a) 
j = l  

qd)(x) = (1/V) exp [toU)(x)] (7.9b) 

c~ O= ~ qd)(x)Cj(x) d3x 
V 

$O)(x)= ( I /  V) 1+2  ~ Irjl(cj-cJ 
j = l  

(7.9c) 

(7.9d) 

6A~') = J [6(')(x)/q(°(x)]Cj(x) d3x (7.9e) 
V 

and replacing (7.6) by 
A ( i + I )  j = A.i + 6A~ i). (7.10) 

This real-space scheme is essentially the 'exponential 
modelling' technique used by Collins & Mahar  (1983) 
to impose positivity. The above analysis shows that 
it also yields a solution with maximum entropy under 
the given structure-factor constraints. 

In the author's experience, this algorithm tends to 
be very unstable, because of the division operation 
in (7.9e), but stability can nevertheless be secured by 
suitably reshaping and attenuating the shifts. The 
large-scale solution of the ME equations can therefore 
be accomplished with computational complexity 
M log M, since the steps are either pointwise oper- 
ations (in real or reciprocal space) or fast Fourier 
transformations. A complete solution typically 
requires about 30 cycles involving four Fourier trans- 
formations each. 

7.1.3. The Skilling algorithm 

Entropy maximization by solving the ME equations 
always entails fitting the constraint values exactly, 
making the results vulnerable to inaccuracies which 
may be present in the data. Most frequently the con- 
straint values cj ( j= 1 , . . . , M )  under which the 
entropy 5¢ is to be maximized are not known exactly 
but rather have a variance tr ] attached to them. Gull 
& Daniell (1978) proposed that in such cases the 
maximum of 5¢ should be sought under the unique 
constraint that the 'reduced chi-squared' statistic 
(Cram6r, 1946) 

M 

~ = ( 1 / M )  Y'. [ (C~" 'C--c~bS)lo)]  2 (7.11) 
j = l  

be equal to 1 (not 0), and they developed a numerical 
method to carry out this maximization. This method 
was used by Collins (1982) on data from rubredoxin. 
Unfortunately, it is beset with severe instability prob- 
lems which greatly impair its effectiveness. 

Recently, Skilling and his collaborators have de- 
signed a more sophisticated algorithm which has met 
with considerable success in a broad variety of image- 
reconstruction problems (Bryan & Skilling, 1980; 
Burch, Gull & Skilling, 1983). This algorithm will 
now be described to introduce notation and concepts 
to be used in § 7.2. 

For computational purposes, a prior distribution 
q(x) will be handled as a column vector of sample 
values [still denoted by q(x)], or as the column vector 
U of its Fourier coefficients. These column vectors 
are the coordinates of the same vector in an abstract 
vector space v of dimension a~, but referred to two 
different bases which are related by the Fourier trans- 
form and its inverse. Scalar products between vectors 
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in v are defined by 

(q,, q2) = V ~ q,(x)qz(x)d3x (7.12a) 
V 

in the real-space basis and 

(U,, Uz)=Z U,(h)U2(h) (7.126) 
h 

in the reciprocal-space basis, and by Parseval's 
theorem (i.e. the unitarity of the Fourier transform) 

(q,, q2) = ( Ut, U2) (7.13) 

if q, and Ui ( i = 1 , 2 )  are related by the Fourier 
transform. 

At a maximum of Se under constraint (7.11) on c¢, 
the gradients VSe and V c0 are collinear. In order to 
move towards such a solution from a trial position, 
we need to represent the dependence of V5 ~ and V c¢ 
on position in v, which involves the ~c × N Hessian 
matrices H(~)  and H(~¢). The size of these matrices 
precludes their use in the whole of v, but they may 
be used in a subspace of v with smaller dimension n. 

Skilling's algorithm (Burch, Gull & Skilling, 1983) 
defines such a search subspace by n search vectors 
{v~(x), i =  1 , . . . ,  n}, where n is 3, 4 or 6, constructed 
from VSe, V~, and their images under the action of 
H(5"), H(~),  or both. A vector Xo in this subspace is 
parametrized by a column vector Xo of n coordinates. 
In a neighbourhood of the current trial solution q(x), 
the variations of 6e and c¢ in this subspace may be 
approximated by the quadratic models 

{~ (Xo) = 6P(0) + 'SoXo +(½)'XoHo(.-~)Xo (7.14a) 

(X0) ~(0) +'CoXo +(½)'XoHo(~C)Xo (7.14b) 

whose coefficients are given by 

[So],=(v,, Vre) (7.15a) 

[ Co]i = (l.),, V (~) ( 7 . 15b )  

[Ho(~)]o =(v,, H(~)v.i) (7.15c) 

[Ho(~C)]u =(v,, H(~C)v~). (7.15d) 
These scalar products may be evaluated either in real 
or in reciprocal space, by virtue of (7.13). Both Vre 
and H(re) are simplest in real space (§§ 3.3.1 and 
4.2.1) so that (7.15a, c) are best calculated by (7.12) as 

[So], = ~ v/(x){- 1 - l o g  [q(x)/m(x)]} dSx 
v 

[Ho(Se)]  0 = ~ -[vi(x)vj(x)/q(x)] d3x, 
V 

where q(x) is the current estimate of the solution. On 
the other hand, V ~  and H(C¢) are simplest in 
reciprocal space and (7.15b, d) are best evaluated by 
(7.12b). 

Matrix H0(b ~) is symmetric, hence can be diagonal- 
ized in an orthonormal basis of eigenvectors; as H(~)  

is negative definite in the whole of v, these eigenvec- 
tors can be rescaled to produce an orthogonal basis 
of the search subspace {ei, i = l , . . . ,  n} in which H(b D) 
is represented by minus the identity matrix. In terms 
of coordinates X~ in this new basis, the quadratic 
models (7.14) become 

{ 5~(X,) = 5"(0) + 'S,X,-(½)'X,X, (7.16a) 

~(X,) = ~ (0 )+ 'C tX ,  +(½)'X,H,(~)X,. (7.16b) 

These models are local, and are accurate only for 
small enough values of their arguments. Since non- 
quadratic behaviour comes mainly from the entropy 
5°, Skilling suggested the use of the 'entropy metric' 

~(X~) = 'X~X~ (7.17) 

to measure the size of the readjustments X~ which 
has to be kept small at each iteration. 

Further simplification may be obtained by 
diagonalizing Ht(~¢) as RAR -~, where R = 'R -~ is an 
orthogonal matrix and A is diagonal. Putting Y =  
R-  ~X~, A = R-  t S~ and B = R-  ~ C~, we may cast the 
quadratic models of re, c¢ and ~ in the final form: 

6P(Y) = ~(0) +(½)'AA 

- (½)'( Y -  A)( Y -  A) (7.18a) 

, ~(V) = W(O)-(½)'BA-'B 

+(½)'(Y+A-'B)A(Y+A-~B) (7.18b) 

~ (Y)=  'YY. (7.18c) 

Maximizing 5" under constraints on the values of 
and ~ leads to a condition of the form 

V y ( ~ - g 5 ~ +  v /2~)  =0,  

Le. 

A Y + B +I. t (Y-A)+ vY=O , 

which yields a parametric representation of the sol- 
ution: 

y,(I.t, v)=(tza,-b,)/(A, +tz + v) ( i=  l , . . . , n )  

(7.19) 

in terms of the Lagrange multipliers/z and v (which 
must be positive). 

To solve for/x and v the Skilling algorithm pro- 
ceeds as follows. Let * ~aim be the target value of c¢ 
given by (7.11), and let dmax be the maximum value 
of ~ allowed (typically 0.2). The absolute minimum 
value attainable by c¢ in the subspace is 

~mi. = ~ ( - A - ' B ) =  ~(O)-(½)'BA -~B; (7.20) 

but to allow some flexibility for the maximization of 
if, the target value of the current iteration is redefined 
as  

~aim = m a x  [(2) (~gmi n "+(1) (~(0), ( ~ m ] -  
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The largest/z achieving this value is then determined 
by (7.19) and (7.18b) with v =0.  If ~ [  Y(/z, 0)]> dma~, 
v is increased to apply a 'distance penalty' and/z  is 
redetermined. If Raim proves inaccessible within the 
distance limit imposed, Rai m is increased towards R(0) 
and the process is repeated until an acceptable sol- 
ution Y(/z, v) is found. The shifts along the original 
search directions are then obtained by backward sub- 
stitution through the various basis changes, and are 
used to increment q(x). 

This algorithm is very stable and is of computa- 
tional complexity X log N for N reflexions. 

7.2. An algorithm for determining the branching 
structure of c.p.d.'s 

The Skilling algorithm was intended as a general- 
purpose tool for a wide range of applications in- 
volving maximum-entropy reconstructions from 
incomplete or noisy data. As such, it is ideally suited 
to the construction of a ME prior qME when the 
available structure-factor values are affected by nor- 
mally distributed errors giving rise to a convex con- 
straint function R. 

The X-ray phase problem, however, owes its unique 
difficulty to the non-convexity of its observational 
(amplitude) constraints, which gives rise to the 
branching problem. Skilling's algorithm cannot deal 
properly with such constraints: its solution method 
for multipliers/~ and v systematically ignores nega- 
tive eigenvalues of H(R), and its search subspace is 
too small to allow the multimodality of ~ on level 
surfaces of R to manifest itself to any extent. The 
exploration of conditional distributions would there- 
fore have to be carded out by blindly assigning ran- 
dom trial phases to the structure factors whose c.p.d. 
is to be surveyed, then solving each set of enlarged 
ME equations thus obtained to calculate the final 
entropy - a most unwiedly procedure. 

An enhanced algorithm will now be described 
which overcomes this limitation, and effectively sol- 
ves the branching problem, by enlarging the search 
subspace and by using a different solution method 
which allows the detection of multimodality under 
non-convex constraints. 

The search subspace should always contain V6e 
and V R since their eventual collinearity must be 
checked; but instead of supplementing them with 
their products by H(fi e) or I-I(R), for which the 
coefficients of the quadratic models are expensive to 
compute, we may construct extra search directions 
from the Fourier contributions of a selected set of 
reflexions. With the notation of (7.1 a, b), these may 
be written 

vj(x) = Cj(x) (j = 1 , . . . ,  M). (7.21) 

The only factor limiting the size of M is that the 
diagonalization of an M x M real symmetric matrix 

must remain an easy operation, so that M may be 
200, 300 or more. The coefficients of the quadratic 
models for Y and R are easily obtained by (7.15). In 
particular, all the components of So are Fourier 
coefficients of - 1 - log [q(x)/m(x)], and 

[Ho(6e)]u = - J [C,(x)Cj(x)/q(x)] d3x 
V 

may be expressed as a linear combination of real and 
imaginary parts of Fourier coefficients of 1/q(x) by 
Bertaurs structure-factor algebra, as was done in 
§ 7.1.1 for (7.7). A considerable expansion of the 
search subspace may thus be achieved very economi- 
cally by taking advantage of the specific form of the 
constraint functions encountered in crystallography. 

Once this extended quadratic model is set up in 
the form (7.18), the multipliers /z and v are deter- 
mined by a method which takes into account the 
distance restriction ~ (  Y)_< dma x at the outset rather 
than at the end of the solution process. It is convenient 
to introduce the functions 

~(~, ~)= ~[ Y(~, ~)] 

~(~, ~)= ~[ Y(~, ~)] 

whose partial derivatives are readily evaluated from 
(7.18) and (7.19). The solution method goes as follows. 

(1) If the absolute minimum Rmi, of R [see (7.20)] 
is reached within the squared distance dmax, set m = 0, 
/"1 = 0, R(ml~n = Rmin, and go to (3). 

(2) Put /z  = 0 and find v such that ~(0,  v)= dmax. 
By (7.18c) and (7.19) this leads to the equation for v: 

D(v ) -  ~. [bi/(A i + p ) ] 2  dmax (7.22) 
i=1 

with the condition v > 0. If the constraint function R 
is convex, all the hi are positive, and there is a unique 
positive root v; if R is not convex, however, there 
may be many admissible roots for this equation (see 
Fig. 3). The latter are easily found by locating the 
minima of D(v) between consecutive double poles 
[i.e. solving D'(v) -- 0 for v > 0 by Newton's method] 
and comparing the corresponding minimum values 
of D to dmax: if m of them are less than dmax, there 
are m extra pairs of roots of (7.22) besides the leading 
root. The branches of the graph of d associated with 
minima of R may be identified by noting that along 
such a branch one must have OR(0, v)/av> O, since 
the minimum reached by R increases if the weight v 
of the antagonist constraint ~ is increased. It is 
readily verified that 

oR(O, v)/av +(v/2) a~(o, v)/av=O 

so that v must satisfy D'(v)< 0 and hence only the 
leftmost root of each pair belongs to a branch where 
R is a minimum. There are thus m + 1 admissible 
roots (or branches) vt (l = 1 , . . . ,  m + 1). 
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(3) For each admissible u~, calculate the minimum 
value of ~ attainable ~g(tm~,= ~(0, Vt), and set the 
target value 

~(~,)m = max [ ( 1 - a ) c g ( 0 ) + a ~ , ,  ~*im] (7.23) 

with e.g. a = 0.5 or 0.75, so as to leave some freedom 
to maximize Se on that patch of the hypersurface 
cg = ~(~?m contained within the region 9 <- dma x. Move 
onto this hypersurface by resetting 1.' to the value u~ 
defined by ~(0, u~)= qg(ati)m, which can be obtained by 
Newton's method. 

(4) To maximize Se under the constraints on ~ and 
9,  increase ~t and decrease u while keeping 
~[Iz, u(tz)]= ~i)m, until either 9[/z, u(tz)]= dmax or 
u = 0. Here u is defined as a function of tz so as to 
keep ~ constant, hence by the implicit function 
theorem 

( d u )  = _ ( 0 c ¢ / 0 ~  (7.24) 

The final values (/z*, u*) define parametrically by 
(7.19) the shift Y(tz*, u*), and hence the correction 
8U (° to be applied in order to move along the lth 
branch from the current solution. 

J 

D(~) 

. x  

(a) 

! '  ' , i :  . . 
' ! i  I , ,  

(b) 

Fig. 3. Graphical solution of equation D(u)= dm.x. (a) Convex 
constraints: no branching. (b) Non-convex constraints: possible 
branching. 

In the construction of a prior qME, the ~ function 
is convex (m = 0) and hence no branching occurs; in 
this mode, the algorithm is then equivalent to that of 
Skilling but with a more analytical solution method. 

In the exploration of a c.p.d. ~(~Sp) defined by 
(4.22), on the other hand, we have 

V[~qME(q ME + '~p)]l ~p =0 = 0 (7.25) 

SO that 

9 = 215e(0)- re], (7.26) 

Relation (7.26) shows that the 'entropy metric' 9 ,  
introduced by Skilling on heuristic grounds, has a 
very natural interpretation as (twice) the decrease of 
log ~. Therefore the branching structure in (7.22) is 
also that of re and hence of ~ :  the present algorithm 
yields an explicit parametrization of the branching 
behaviour of conditional distributions. 

7.3. Example of the construction of a maximum-entropy 
prior 

A numerical application of the algorithm just 
described to data from the small protein Crambin 
(Hendrickson & Teeter, 1981) will now be described 
to illustrate the novel process of construction of a 
ME prior. A full account of the calculations which 
are being carried out on Crambin will be published 
separately. 

Measured diffraction amplitudes to 1.5 A resol- 
ution, together with phases calculated from a refined 
model, were kindly provided by Dr W. A. Hendrick- 
son. The calculated phases were associated with the 
observed moduli to a resolution of 3.0 A, giving a 
total of 749 Fourier coefficients, and an error model 
was constructed for each reflexion by assigning to 
both radial and tangential components of the error 
the standard deviation of the experimental modulus. 
The constraint function c¢ was taken to be the reduced 
X 2 statistic (7.11) of this Gaussian model, for which 

(~aim----1"0 was chosen. Entropy a target value * 
maximization was performed iteratively by the 
method of § 7.2, starting from a conventional 3 
map in which values below 0.1 were reset to 0.1, 
using four search directions: VSe, V~, the difference 
map, and the current map. Convergence was obtained 
in 50 cycles taking 2 min of CPU time each on a 
VAX 11/780 computer (the progress of the calcula- 
tion is summarized in Table 1). 

The results are illustrated in Figs. 4(a), (b), (c) by 
displays of section 0 of the density functions; all 
functions are on the same scale and were contoured 
at the same absolute levels. Fig. 4(a) is a conventional 
Fourier synthesis at 3/~ resolution, and contains 
extensive negative regions due to series-termination 
effects. Fig. 4(b) is the 3 A ME prior distribution of 
atoms compatible with the same data: it is everywhere 
positive, and is much sharper since the series- 



G. BRICOGNE 441 

termination effects have been suppressed (decon- 
voluted) by extrapolating the spectrum. This sharpen- 
ing is meaningful, as may be ascertained by detailed 
comparison with the conventional map at 1.5/~ resol- 
ution (Fig. 4(c)). The two most noticeable changes 
occur at the bottom of the maps, at a proline residue 
(Pro 5, to the left) and an aromatic ring seen sideways 
(Phe 3, to the right). 

Fourier analysis of the 3 A, ME prior to 1.5/~ 
resolution gave values of U ME between 3.0 and 1.5/~ 
which were compared to the known values of these 
structure factors. As shown in Table 2, about 1200 
reflexions (i.e. a quarter of the reflexions in this range) 
with I ud->0.01 had their phases predicted with a 
mean absolute error of 45°: the extrapolated values 
U ME around which all conditional distributions of 
high-resolution structure factors would be recentred 
are thus already a fairly good estimate of the correct 
values. The Gaussian c.p.d. (4.22) of the deviations 
from U ME has not yet been completely surveyed, but 
it is nevertheless clear that its stringency is much 
greater than that of the c.p.d, which would result from 
an appeal to Sim's formula (which is often used in 
phase extension). Indeed, the final value of the 
entropy (Table l) implies that, for N = 440 atoms, 
this c.p.d, contains about 360 bits more information 
than that derived from Sim's formula (i.e. with qME = 
l /V);  this amounts to specifying an extra 360 phases 
with a mean absolute error of 45 °. It ought to be 
stressed that this phase prediction has been accom- 
plished without in any way consulting the amplitude 
information available beyond 3 A resolution. 

Table 1. Summary of  entropy maximization at 3-0 A, 

Cycle X 2 Entropy cos (VSe, V c~) 

0 518-47 -0.37841 0.61052 
5 123-44 -0.46712 0.83445 

l0 45-67 -0.51370 0-83316 
15 21.52 -0.53762 0.82436 
20 11.45 -0-55234 0.81684 
25 6-69 -0.56176 0.82152 
30 4.03 -0.56915 0.84931 
35 2-48 -0.57445 0-88163 
40 1.61 -0.57755 0.88834 
45 1.13 -0.57714 0.95896 
50 1.07 -0-57528 0.96451 

Work is in progress to explore systematically the 
conditional distribution of high-resolution structure 
factors, and in particular the branching behaviour of 
the phase-extension process (§ 4.3) as described by 
(7.22). 

8. A recursive ab initio phasing strategy for 
macromolecules 

Ab initio phase determination by direct methods may 
be conceived as a succession of phase extension steps 
(§ 4.3), with explicit book-keeping of the possible 
branching behaviour throughout the calculation. The 
algorithm proposed in § 7.2 provides the tactical 
device required to carry out each step; the final task 
is to design a strategy by which these individual steps 
can be organized globally. 

(a) (b) (c) 

Fig. 4. Section 0 of Crambin maps. (a) Conventional Fourier synthesis at 3 ,~ resolution. (b) Maximum-entropy prior from 3 A data. 
(c) Conventional Fourier synthesis at 1-5 ~ resolution. 
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Table 2. Comparison of extrapolated and true phases 
Reso lu t ion  shells  are o f  equal  th ickness  in (d*)  2 by steps o f  1/36. 

N u m b e r  Mean  abso lu te  
Shell  o f  ref lexions er ror  (°) 

1 78 2.56 
2 135 2.57 
3 179 2.58 
4 177 2.61 
5 187 38.70 
6 172 45-94 
7 166 48.70 
8 178 48.53 
9 155 49-45 

10 128 45.97 
11 80 48-16 
12 58 42-07 
13 51 37.23 
14 47 33.66 
15 26 50.61 
16 20 38.55 

8.1. Multisolution algorithm 

The analysis carded out in § 2 showed the necessity 
for a multisolution algorithm (§ 2.4) in any calculation 
involving the construction and exploitation ofj.p.d. 's 
and c.p.d.'s of structure factors, but it left undefined 
the mechanism by which successive sets of trial phases 
were to be generated. The study of the branching 
problem and its solution in § 7.2 provides such a 
precise rule: each trial phase set need only be enlarged 
by moving along the branches leading from the corre- 
sponding ME prior to the local maxima of a con- 
ditional distribution derived from that prior. This 
completely specifies, in a recursive fashion, a general 
procedure for ab initio phase determination which 
accommodates branching explicitly, and is thus free 
from the risk of becoming uncontrollably trapped 
around false solutions. 

The management of such a recursive computation 
is a complex task, which is best accomplished by 
using as a book-keeping device a multisolution tree 
representing the various phase choices made and the 
parentage relations between them. Well-established 
programming techniques are available to carry out 
these constructions (Nilsson, 1971), and an example 
of their implementation may be found in the well 
known chess-playing program of Spracklen & 
Spracklen (1978). 

The root node of the tree consists of the origin- 
fixing phases, and its first ramification occurs with 
the choice of enantiomorph. The subsequent growth 
of the tree is governed by four fundamental processes 
taking place at each node: 

(1) updating the prior distribution of atoms q(x) 
to the ME distribution compatible with the phase 
choices made up to the current node, using any of 
the methods described in § 7; 

(2) constructing the c.p.d, of unphased structure 
factors on the basis of that ME prior as a quadratic 
model in a large search subspace (§ 7.2); 

(3) locating the maxima of this (usually multi- 
modal) c.p.d, when moduli constraints are activated, 
as indicated in § 7.2, equation (7.22); 

(4) expanding the current node by creating a 
branch leading to a new tip node for each of these 
maxima. 

Such a tree would quickly grow to an unwiedly 
size if all the alternatives were allowed to develop at 
the same pace. It is thus desirable to supervise the 
growth of the tree so as to maximize the chance of 
finding the correct set of phases without having to 
develop too many of its branches.  For this purpose, 
a mechanism akin to natural selection may be used: 
at each stage, the tip nodes of the current tree are 
assigned a score depending 

(a) on the currently achieved value of the entropy, 
which (as was shown in § 3) measures the size of the 
population of still reasonably probable structures 
attached to that node; 

(b) on its ability to confer a high likelihood to the 
observed moduli in the second neighbourhood of the 
basis reflexions by means of the Rice likelihood func- 
tions (4.16) or of their centric equivalents. 

This score then determines the priority with which 
each node will be allowed to 'ramify' in step (4). 

Any phase information available from multiple 
isomorphous replacement or anomalous scattering 
can be incorporated into the definition of the con- 
straint function c¢ further to help direct the growth 
of the tree. Non-crystallographic symmetry may be 
exploited by using as extra search directions not the 
functions (7.21) themselves, but combinations of them 
into which the non-crystallographic symmetry has 
been built beforehand; the algorithm of § 7.2 will 
then also point out the ambiguities inherent to the 
process of imposing such symmetries. 

8.2. Estimates of strength reconsidered 

The algorithm just described will accumulate ever- 
increasing amounts of prior information along each 
path down the multisolution tree, and will construct 
at every node much more accurate conditional dis- 
tributions than would be obtained by specializing 
structure factors to their assumed values in a joint 
distribution still based on a uniform prior distribution 
of atoms, since asymptotic expansions are always 
used with small arguments (§ 2.3.1). But these new 
distributions might only indicate accurately that the 
phase relations are no stronger than those obtained 
by the classical formalism. This is not the case: the 
new distributions will also be much more stringent. 

It was shown earlier (§ 4.2.2) that the second-neigh- 
bourhood formulae for estimating phase invariants 
are equivalent to applying Sim's formula, using as a 
'known part' the ME prior qME, but deriving the c.p.d. 
of the deviations ~ U - - U - U  ME on the basis of a 
uniform prior re(x) = l / V  [which leads to the Wilson 
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term in (4.12)]. By contrast, the full c.p.d, constructed 
here uses qME both as its known part (for recentring) 
and as its prior distribution of atoms to obtain all 
terms of (4.12) in closed form. 

The resulting increase in strength may thus be 
accurately monitored by consideration of the entropy 
Oq°m(q ME) of the ME prior qME relative to a uniform 
prior prejudice m(x) = l/V. This quantity (see § 3.2) 
measures the extent to which the current prior knowl- 
edge imposes further restrictions on the range of still 
reasonably probable structures compared to the state 
of maximum ignorance expressed by m: for N atoms, 
this range is restricted by a further factor 
exp [N,~,,(qME)]. A numerical estimate of this factor 
given in § 7.3 (2360 for a ME prior determined from 
749 reflexions) indicates that this gain in strength is 
considerable. 

Previous estimates of the potential usefulness of 
high-order probabilistic relations between phases 
(Klug, 1958) must therefore be revised, and much of 
the ensuing pessimism can be mitigated. Individual 
high-order relations do remain weak, but the above 
algorithm provides a way of organizing great numbers 
of them around 'seeds' of prior choices capable of 
bringing about their mutual reinforcement. 

It is noteworthy that this new algorithm will be 
minimally impaired by large inaccuracies in the 
amplitude measurements. In the standard approach, 
such inaccuracies would make individual phase rela- 
tions unreliable, and no method exists to remedy this 
situation. By contrast, large standard deviations 
would allow ff'm(q ME) to reach less negative a value 
under constraint (7.11), so that only the overall 
strength of phase relations would decrease. The new 
method is thus 'robust', which is of some relevance 
if it is to be applicable to very large structures yielding 
rather noisy data. 

8.3. Hierarchy of struture in macromolecules 

In spite of the gain in strength provided by this 
new multisolution strategy, it would still seem very 
difficult to deal with a protein structure of (say) 10 000 
atoms without an enormous amount of data and great 
computational expenditure. But the situation appears 
worse than it actually is, because the crude stochastic 
approximation to chemistry used throughout direct 
methods (§ 1.1) leads to conceiving such a structure 
as a 'perfect chaos' of 10000 totally independent 
atoms. In reality, biological macromolecules incor- 
porate a high degree of structural hierarchy (Schulz 
& Schirmer, 1979) in order to be abte to fold repro- 
ducibly. This is reflected in reciprocal space by 
considerable modulation, at low resolution, of the 
Gaussian shape of the radial intensity distribution 
which a 'chaotic' structure would closely follow. As 
shown in Fig. 5, there are marked intensity peaks 
corresponding successively to: 

(a) the packing of individual molecules in the crys- 
tal lattice ( - 3 0  ~ ) ;  

(b) the tertiary structure of each molecule (--10- 
12/~); 

(c) the secondary structure of each tertiary struc- 
ture element (-5.5/~,  for a-helices, ---4.7 A for fl- 
sheets). 
Similar phenomena may be observed in crystals of 
nucleic acids. These peaks correspond to fluctuations 
from uniformity which would only occur with any 
likelihood for a much smaller number of independent 
elements than the total number N of atoms. This 
violation of Wilson's statistics was first investigated 
by Luzzati (1955) by means of combinatorial argu- 
ments similar to those used in this work. 

Well-marked troughs are found in resolution ranges 
which separate scales of structural elements corre- 
sponding to successive levels of structure. These 
troughs define privileged intermediate stages in the 
multisolution process. At each of these resolutions, 
the structure may be considered as constructed from 
pseudo-atoms or group scatterers whose number Ne~ 
(the 'effective N ' )  is much smaller than N, and for 
which a non-uniform prior distribution is available 
by virtue of the choices made for the strong reflexions 
of the previous intensity peaks (i.e. of the previous 
levels of structure). These two factors will cause the 
strength of the phase relations used in determining a 
protein structure to be much greater than would nor- 
mally be expected if no advantage were taken of their 
structural hierarchy. 

C o n c l u s i o n  

The critical assessment of the current methodology 
of direct phase determination presented at the begin- 
ning of this article brought to light two main weak- 
nesses of the traditional approach which undermined 

i 
....,/ " A 

":%. 

Fig. 5. Modulation of the radial intensity distribution associated 
with the structural hierarchy of proteins. The data shown are 
from a pea lectin, and were kindly made available by Professor 
F. L. Suddath. The peak at 4.7 ~ resolution reflects the high 
proportion of g-sheet present in this structure. 
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both the accuracy and the strength of the phase 
relationships which were being derived: the lack of 
an adequate treatment of information regarding the 
non-uniformity of the prior distribution of atoms, and 
the approximation of joint distributions by products 
of marginal distributions. 

The theoretical foundations of direct methods were 
enlarged by examining the real-space counterpart of 
the classical formulation in reciprocal space. Jaynes's 
maximum-entropy principle was then shown to cap- 
ture precisely the hitherto missing concept required 
to design a procedure for the proper handling of prior 
information assumed or acquired in the course of 
phase determination: interactions among phases are 
optimally generated and propagated by constantly 
updating the prior distribution of atoms so as to reflect 
all the information available at each stage. 

The mathematical techniques by which these prin- 
ciples are put to use have been considerably 
strengthened. The effective construction of condi- 
tional probability distributions of very large numbers 
of structure factors, which are the fundamental tools 
of direct phase determination, no longer appears as 
an impossible task. It can be carried out accurately 
and efficiently within the framework of a multisol- 
ution strategy. The conditional distributions pro- 
duced are stronger and more accurate than those 
derived from any previously available method, and 
can be obtained and exploited with computations of 
size Nlog.N" for N reflexions. Explicit description 
and control of the branching problem have been 
achieved, and the multisolution algorithm proposed 
here can take advantage of the structural hierarchy 
of macromolecules. The concept of entropy played a 
ubiquitous role at all stages of the design and of the 
implementation of this scheme, although an 
autonomous formulation of it was given within the 
more traditional language of classical direct methods. 

These theoretical developments, together with the 
preliminary numerical results obtained so far, seem 
to warrant a much more optimistic attitude than has 
hitherto prevailed towards the feasibility of phase 
determination ab initio for macromolecules. 

I am most indebted to Trinity College, Cambridge, 
for an extended Research Fellowship during the 
tenure of which this work was undertaken. 

I wish to thank Dr. A. Klug and Dr D. Sayre for 
stimulating discussions at various stages of this 
research. 
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Abstract 

Mul t ip l e  Laue  rock ing  curves o f  perfec t  crystals  show 
a n a r r o w  cent ra l  p e a k  wi th  a wid th  o f  some  10-3s  
arc a n d  an  a d d i t i o n a l  osc i l la tory  structure.  The  finite 
s t ruc ture  o f  these  curves is ana lyzed  for  two- and  
three-crys ta l  Laue  a r rangement s .  These  profi les  can  
be used  for  precise  de t e rmina t i ons  o f  s t ruc ture  factors  
a n d  for  an  ex tens ion  o f  smal l -angle  sca t te r ing  experi-  
ments  to the  ex t reme smal l -angle  reg ime where  large 
objects  a n d  long- range  par t ic le  cor re la t ions  b e c o m e  
visible.  An  ex t remely  h igh  angu la r  r e so lu t ion  can  be 
ach ieved  w i thou t  s ignif icant  r educ t i on  o f  the  

in tens i ty ,  owing  to a d e c o u p l i n g  o f  the  a n g u l a r  
r e so lu t ion  f rom a n g u l a r  wid th  o f  the  beam.  The  
ana ly t i ca l ly  ca l cu la t ed  rock ing  curves are c o m p a r e d  
to n u m e r i c a l  results  a n d  to expe r imen ta l  results  and  
show g o o d  ag reemen t  wi th  both .  

Introduction 

The d y n a m i c a l  d i f f rac t ion  o f  X-rays  a n d  neu t rons  
on  mul t ip le -per fec t -c rys ta l  a r r angemen t s  has  been  
s tud ied  extens ive ly  du r ing  the  pas t  years.  M o n o l i t h i c  
and  po ly l i th ic ,  p l a n e  a n d  bent ,  s tat ic and  v ibra t ing  
systems have  been  discussed.  D y n a m i c a l  focus ing  
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