
24 

Acta Cryst. (1962). 15, 24 

T h e  D e t e c t i o n  of  S u b - U n i t s  W i t h i n  t he  C r y s t a l l o g r a p h i c  A s y m m e t r i c  U n i t  

BY MICHAEL G. ROSSMA_~N X~I) D. M. BLOW 

M. R. C. Unit for Molecular Biology, Cavendish Laboratory, Cambridge, Englnnd 

(Received 27 February 1961) 

The number of structurally identical units within one unit cell often exceeds the number of general 
positions. The angular relationships between any two units, not related by space-group symmetry, 
can be found by rotating the Patterson function until  the rotated and original Patterson functions 
are brought into maximum coincidence. For such a rotation, the rotation function 

R = ~ [IFhl~{~ IFpl~G}] 
h p 

has a maximum value. G is an interference function which has large values only when the point p 
in reciprocal space is brought close to h by the rotation. 

Application of the R hmction to horse haemoglobin gives a dominant peak that  corresponds 
accurately to the relative orientation of the a and fl chains. 

Evidence is accumulat ing that m a n y  of the larger 
protein molecules are made up of identical,  or closely 
s imilar  sub-units.  The reasons for expecting this for 
the protein par t  of virus structures were set out by  
Crick & Watson (1956), and the prediction has been 
amply  confirmed in crystallographic studies of spher- 
ical viruses (Caspar, 1956; F inch  & Klug, 1959; Klug 
& Finch,  1960; Magdoff, 1960) and of one rod-shaped 
virus (Watson, 1954; F rank l in  & I-Iolmes, 1958). 
Harr ison (1959) has given crystallographic evidence 
tha t  the large protein, ferritin, is made up of a number  
of sub-units.  :By far the most remarkable  example,  
however, is haemoglobin (Perutz et al., 1960). Al- 
though this protein has four polypept ide chains, four 
t imes the molecular weight and exact ly  four t imes the 
iron content of the related protein myoglobin, chemical 
evidence showed tha t  there were two dist inct  kinds of 
polypeptide chain and tha t  their  composition was 
quite different  from tha t  of myoglobin. I t  was there- 
fore a surprise, (strongly supporting the view tha t  the 
spatial  configuration of a protein is important)  to f ind 
tha t  the haemoglobin molecule consisted of four similar 
units, each very  like the myoglobin molecule as deter- 
mined by  Kendrew and his collaborators (Bodo et al. 
(1959)), and arranged in a roughly te t rahedral  manner .  
I t  m a y  be noted tha t  in every case referred to above, 
the sub-unit  has a molecular weight of the order 2.104. 

While the viruses represent examples of exact but 
non-crystal lographic symmet ry  of the independent  
particles (e.g. five-fold rotat ion symmet ry  and non- 
integral  screw operations), the haemoglobin structure 
m a y  be said to have partial ,  approximate  symmetry .  
The symmet ry  is approximate  as the two chains are 
chemical ly distinct,  and to a small  extent  they  have 
different configuration. Moreover the operation which 
superimposes one chain on to another,  does not neces- 
sari ly superimpose the other back on to the first, so 
tha t  this s y m m e t r y  operation, which is only satisfied 
by  a part  of the molecule, is called partial.  

In  this paper we describe how we have detected the 
existence of this part ial ,  approximate  symmet ry  from 
a knowledge of the intensities alone. The effect of non- 
crystallographic symmetry ,  whether par t ia l  or total,  
results in decreasing the size of the structure to be 
determined, while the number  of observable intensities 
remains the same. This ' redundancy '  in information 
might  be used to help solve a structure. Also, the 
ideas presented here are as applicable to f inding the 
relat ionship between similar  molecules in different 
crystal  lattices, as they  are to f inding the relative 
orientation of molecules (or sub-units within a mole- 
cule) in the same crystal lattice. 

1. T h e  ro t a t i on  of Patterson syntheses  

Consider a structure of two identical  units  which are 
in different orientations. The Pat terson funct ion of 
such a structure consists of thi'ee parts. There will be 
the self-Patterson vectors of one unit ,  being the set 
of interatomic vectors which can be formed within 
tha t  unit ,  with appropriate  weights. The set of self- 
Pat terson vectors of the other uni t  will be identical.  
but  they  will be rotated from the first due to the 
different orientation. Final ly ,  there will be the cross- 
Pat terson vectors, or set of interatomic vectors which 
can be formed from one uni t  to another.  The self- 
Patterson vectors of the two units ~dll all lie in a 
volume extending from the origin by  the overall 
dimensions of the units. Some or all of the cross- 
Pat terson vectors will lie outside this volume. 

Suppose the Pat terson funct ion is now superposed 
on a rotated version of itself. There will be no partic- 
ular  agreement  except when one set of self-Patterson 
vectors of one uni t  has the same orientation as the 
self-Patterson vectors from the other unit.  In  this 
position, we would expect a m a x i m u m  of agreement  or 
'overlap'  between the two. 

These ideas have often been used by  workers 
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looking for evidence about the orientation of sym- 
metrical groups like benzene rings in simple structures. 
Perutz et al. (1955) used similar considerations for 
predicting a structural resemblance between reduced 
human haemoglobin and horse methaemoglobin. 

In § 2 an expression will be developed which allows 
the overlap to be calculated directly from the ob- 
served intensities, for a given rotation. In § 3 the 
physical significance of the expression obtained will 
be considered. 

2. The  r o t a t i o n  f u n c t i o n  

Consider a point whose position r may be specified 
relative to three crystallographic axes at, ae, az by 
r = x~at + x2a2 + xsas. The position relative to another 
set of axes at ' ,  ae', a J  is given by 

x (  = ct~xt + c~.x~. + ct~x~ + d~ 
x9.' = C~lX~ + c2~x2 + c2sxa +dg. 
xa' = c~xt  + ca~x2 + caax~ + d~ . (1) 

Alternatively we can consider xt', x2', xa' as the 
coordinates of the point in the same axes, after it has 
been rotated and translated. For simplicity and 
brevity, matr ix  notation is preferable. All three of the 
above equations may  then be written 

x '  = [C]x + d .  

The d, ( i=  1, 2, 3) form a vector d which represents 
the translation between the origins of the two systems, 
while the c,~ form a matrix [C] representing rotation 
about the origin of the unprimed system. In  the 
application considered here, the translation d will 
always be zero, but  it will be retained for generality. 

Now consider any function ~(xt, xe, xs) periodic in 
a cell defined by a~, a2, a~. We define the overlap, R,  
of this function with a rotated and translated version 
of ~, within some volume U as 

R = ~(xt, x~, x~)~(x(, x~', x3')dxtdx~dx~ . (2) 

U 

I t  is clear tha t  R will take large values if the trans- 
formation relating the primed and unprimed systems 
has the property tha t  ~(x~, x~., xa) tends to be equal to 
~(xt', x2', xa') within the volume U. 

Since ~ is a periodic function it may be expanded 
in a Fourier series: 

~(xt,  xe, xa)= ( l /V)2 . '2 `2` lF(hx ,  h~, ha)l 
hl h2 ha 

× exp {i~ (~, ~, ~)} exp { - - 2 ~ i ( ~  +~x~.+~z~)} 
or more briefly 

~(x)=(1/V) ~7 IF(h)l exp [ i (ah--  ~a,x)], 
h 

where s 
~t , ,x  = 2z t  ~3 h~x~ . 

i = l  

Similarly we may  write 

~o(x')= (l/V) 2~ IF(p)I exp [i(ap-- (~p,x')] , 
p 

where the Fourier coefficient with indices (Pt, p~., pz} 
is written as IF(p)I exp [i0¢p]. 

Since only the exponents ~h,x, 9p, x, depend upon 
x, the overlap may thus be written 

R = ( 1 / V  2) 2`.~ U[FhII.Fp[ exp [i(ah + O~p)] 
h p L 

/7 

Writing the exponents more fully we have 

(~h,x + ~p,,e)= 2~(2` &x~ + 2." p~x~') 
i i 

= 2~  2`  (h~ + h()x~ + 2 ~ . ~  p~d~ , 
i i 

hi' = c11pl + c21p2 + c31ps 
h~' = c12pl + c22p2 + c32p3 
h3' = cl~pl + c~3p2 + c33pa (3) 

or more briefly 
h ' = [ C ] p ,  

where [C] is the transpose of [C], obtained by inter- 
changing its rows and columns. 

Substituting back in the expression for R, we now 
have 

R =  (1/V 2) ~v2` I[FhiiFp I exp [ i ( ah+  0¢p--2X~2` p~d~)] 
h p L i 

{SSS }1 x exp [--2~i.~Y (h~+h~')x~]dxldxedxa . 
i 

/7 

The bracketed integral is an interference function 
familiar in crystallography (see especially Patterson, 
1939). We will write its solution as 

(U/V)  x Gh, w exp [i/2h, h'], 

so tha t  we have, finally 

R= ( U/ VS) 2, 2` IFhl IEp]Gh, h" 
h p 

× exp [ i ( a h +  0 ¢ p - - 2 Y ~ p ~ d ~ + Z Q h ,  h,)] • (4} 

We quote as examples the expressions for G and .(-2 
when the integral is bounded by the faces of a parallel- 
epiped between A ~ - <  x~ < A~+; and by the surface 
of a sphere radius r with centre at ( A ~ + + A c ) / 2 .  

In both cases 

3 
~(~h,h'----- 7 g ~  (h~ + h( )  ( A , -  + A,+) . 

i=1 

For the parallelepiped 

a sin ~ ( h ~ + h ( ) ( A ~ + - A c )  (5} 
Gh'h'=i=11--I z l ( h , + h ( ) ( A , + - A , - )  

and for the sphere 

3 (sin 2 j r H r - 2 z e H r  cos 2~Hr)  
Gh, h' = (2 7tHr) 3 

where 
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where H is the distance of the point 

( (h i+hi ' ) ,  (h~Th~'), (ha+ha')) 

from the origin in reciprocal space. 
In  the application of R with which we are concerned, 

the above, generalized, form for R may be simplified. 
Since it  is desirable to have a form dependent only 
on the intensities, we choose to calculate the overlap 
of the two Patterson functions. The Fourier coefficients 
are all real, and, according to convention, will be 
written [Fh[ 2, [Fp[ 2, while ah and ap are zero. Trans- 
lations of the origin are not required; thus d = 0. The 
symmet ry  of the Patterson function means tha t  it is 
always convenient to integrate over a volume U 
symmetrical about the origin so that  f2 - 0. Thus for 
overlap of the Patterson function without translation, 
we have 

.R = ( U / V  a) ,,~ 2 lFh] 2 IFpl2 Gh, h ' "  (6) 
h p 

The vector h' ,  given by (3), is the position of 'the 
reciprocal-lattice point p after a rotation specified by 
the matrix [C]. For this reason the above expression 
is referred to as the rotation function. 

The result (6) has been given by Patterson (1952) 
in a context chiefly concerned with crystallographic 
symmetry.  He shows tha t  the generalized Faltung 
integrals, of which R is an example (equation (2)), 
may be regarded as symmetry  functions which show 
the extent to which given symmetry  operations are 
obeyed by the structure. In this paper, we show that  
the extension to non-crystallographic symmetry opera- 
tions has a useful application. 

3. The  phys ica l  s ignif icance of t h e / {  function 

The maximum value of 3 (sin 27~x - 2 ~ x cos 2 ~x) / (2 ~x)a 
is 1.00 (see Fig. 1). I t  is never greater than 0.086 out- 
side the range - 0-725 < x < + 0.725. Hence all terms 
in (6) for which JHr I >0.725 may well be neglected 
if U is assumed to be a sphere of radius r. Conversely, 
G will be a maximum when H--0 .  Now H is the dis- 
tance of the point (hl+h~',  h2+h~', hs+ha') from the 
origin of reciprocal space. Therefore, from (3), G= 1 

/1 
--2"0 --1"0 / ,  O~ ~, 2"0 

, li0 ,.,,,";--",-.~, I 

Fig. 1. The interference function 
G----3 (sin 2zx--2~x cos 2zlx)J(2zx) a 

applicable for roughly spherical sub-units. 

for the non-integral values of (pl, p2, pa) which satisfy 
the three simultaneous equations 

plcll  + p~cm + pacla = - -  hi 
plC21 + p2C22 + paC2a = - -  h2 

plca~ + p2c32 + pacaa = - ha. (7) 

In other words the integral reciprocal-lattice point 
hi, h2, ha has been rotated to the non-integral reciprocal- 
lattice position (pl, p2, pa). The summation (6), how- 
ever, includes terms only for which (pl, p2, pa) are all 
integral, where IFpl 2 can be measured. At integral 
values of (pl, p2, pa) close to the non-integral point 
given by the solution of the above three simultaneous 
equations, H will be small, and only at such points 
can G have a large value. 

The argument in the preceding sections has been put  
in terms of the rotation of the self-Patterson function 
of the sub-units. An identical argument might be given 
in terms of the rotation of the Fourier transform of the 
self-Patterson function within an infinite unit  cell. 
This would be a continuous transform. We would 
rotate the point hi, he, ha to the point pl, p2, pa in 
order to superimpose the transform of two identical 
units. The limitations of the finite unit cell require 
us to interpolate the value of the continuous transform 
at non-integral points by means of 

(U/V)  2~IF]2Gh, h,. 
p 

The actual number of significant terms in the summa- 
tion over p depends on the rapidity with which the 
transform changes. 

If r is large, causing H r  to increase rapidly as H 
increases, then most of the terms in the summation 
are negligible. That  is, when r is large the rate of 
change of the transform between reciprocal-lattice 
points is small, necessitating the inclusion of fewer 
terms in the interpolation process. Generally r des- 
ignates the limits of the self-Patterson function, so 
tha t  the size of the sub-unit determines the number 
of terms in the interpolation summation. 

4. Rota t ion  of a set  of oblique axes  

In order to calculate the rotation function R corre- 
sponding to any desired rotation, all tha t  remains is 
to calculate the corresponding matrix [C]. This prob- 
lem has been treated from the crystallographic stand- 
point by Patterson (1959). The crystallographic axes 
will in general be unequal and oblique, and the least 
clumsy procedure appears to be: 

(i) to transform the coordinates to a Cartesian 
form ; 

(ii) to transform the resulting coordinates to a rotated 
set of axes*; 

* N o t e  t h a t  n e w  c o o r d i n a t e s  a r e  d e f i n e d  b y  r e f e r e n c e  to  
a se t  of  a x e s  w h i c h  h a s  b e e n  r o t a t e d  r i g h t - h a n d e d l y .  T h i s  
m e a n s  t h a t  t h e  n e w  c o o r d i n a t e s ,  u s e d  w i t h  t h e  o r ig ina l  axes ,  
r e su l t  in left-handed r o t a t i o n  of t h e  s t r u c t m ' e .  T h e  o p p o s i t e  
c o n v e n t i o n  w a s  u sed  in P a t t e r s o n ' s  (1959) p a p e r ,  a n d  th i s  
h a s  b e e n  a d j u s t e d  in T a b l e  l(b).  
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- s i n  01 cos 02 sin 0a 
+ cos 0~ cos 0 a 

- s i n  01 cos 0~ cos 0~ 
- c o s  0~ sin 0~ 

sin 01 sin 0~ 

T a b l e  1 

(a) Matrix p in terms of Eulerian angles 01, 0s, 0~ 

cos 01 cos 0s sin 03 sin 0~ sin 03 
+ sin 0~ cos 0 a 

cos 01 cos 0~. cos 03 sin 0 s cos 03 
--sin 01 sin 0~ 

--cos 0~ sin 0~ cos 0 s 

(b) Matrix p in terms of rotation angle n and the spherical polar coordinates ~a, ~0 

cos ~. sin v 2 cos yJ cos ~0(1 --cos n) --sin s ~0 cos ~ sin qp( 1 - c o s  y.) 
+ sin s y~ cos s ~0(1 -- cos ~) -- sin ~ sin ~0 sin ~ -- cos yJ sin 

sin y~ cos y~ cos ~0(1- cos ~) cos ~ --sin yJ cos y~ sin ~p(1 --cos ~) 
-b sin ~f sin ~9 sin ~ -k cos ~" ~f(l -- cos ~) + sin y) cos 99 sin 

-- sin~ yJ sin ~ cos ~0(t-- cos ~) --sin ~ cos ~ sin ~0(1-- cos ~) cos~. 
+cos ~# sin ~ --sin *fl cos ep sin ~¢ +s in  s ~a sin ~ ~9(1 --cos ~) 

(iii) to  r e t u r n  t h e s e  c o o r d i n a t e s  t o  t h e i r  c rys t a l l o -  
g r a p h i c  fo rm.  

I n  m a t r i x  n o t a t i o n ,  t h i s  m e a n s  

[ C ] = [ a ] [ p ] [ ~ ] .  (8) 
I n  t h i s  e q u a t i o n  

( a l  s i n a 3  s in  co 0 0 \ 
[ ~ ] - -  a l c o s a 3  au a . ~ c o s o c l ) ,  (9) 

a~ s in  a8 cos w 0 a3 s in  a~ 

is t h e  m a t r i x  w h i c h  t r a n s f o r m s  t h e  o b l i q u e  c rys t a l l o -  
g r a p h i c  f r a c t i o n a l  c o o r d i n a t e s  x, t o  C a r t e s i a n  coor- 
d i n a t e s  Xt .  a i  a re  t h e  c r y s t a l l o g r a p h i c  i n t e r a x i a l  ang le s  
a n d  sinop=(cosa2-cosalcosa3)/sinalsinas. W e  h a v e  
chosen  to  r e t a i n  t h e  d i r e c t i o n  of t h e  X2 ax i s  a l o n g  a2, 
a n d  to  se t  X1 a l o n g  a2 x as, for  c o n v e n i e n c e  in  t h e  
m o n o c l i n i c  s y s t e m  (see F ig .  2). 

x2,a2 

in  t w o  d i f f e r e n t  c r y s t a l  l a t t i ce s ,  t h e  ai  a n d  a i  in  [a ]  
a n d  [~] a re  d i f f e ren t .  

T h e  m a t r i x  [p] (Tab le  1) speci f ies  t h e  r o t a t i o n  
o p e r a t i o n .  [p] d e p e n d s  on  t h r e e  v a r i a b l e s ,  a n d  in  t h i s  
work ,  we  h a v e  u s e d  t w o  d i f f e r e n t  f o r m s  of t h e m .  

A r o t a t i o n  c a n  be  spec i f i ed  b y  t h e  t h r e e  E u l e r i a n  
ang l e s  01, 02, 03, w h o s e  s i gn i f i c ance  c a n  be m o s t  
r e a d i l y  seen  b y  r e f e r e n c e  t o  F ig .  3. T h e  r o t a t i o n  
o p e r a t i o n  [p] cons i s t s  of (i) a r o t a t i o n  of t h e  C a r t e s i a n  
axes  b y  01 a b o u t  t h e  X3 axis ,  (ii) a r o t a t i o n  02 a b o u t  
t h e  n e w  p o s i t i o n  of t h e  X1 axis ,  a n d  (iii) a r o t a t i o n  03 
a b o u t  t h e  n e w  X3 axis .  T h e s e  ang l e s  a r e  p o s i t i v e  if 
t h e y  a re  c lockwise  w h e n  l o o k i n g  a l o n g  t h e  r e l e v a n t  
a x i s ,  as  i n  t h e  u s u a l  r i g h t - h a n d e d  c o n v e n t i o n . *  
T a b l e  l ( a )  g ives  [p] in  t e r m s  of E u l e r i a n  angles .  

T h e  E u l e r i a n  ang le s  a re  s o m e w h a t  d i f f i cu l t  t o  
v i sua l i se ,  a n d  a re  p r e f e r r e d  o n l y  b e c a u s e  t h e y  s h o w  
u p  t h e  s y m m e t r y  of t h e  r o t a t i o n  f u n c t i o n  in  a con- 
v e n i e n t  w a y ,  as  is s h o w n  in  t h e  f i n a l  sec t ion .  I t  is  
e q u a l l y  poss ib l e  t o  s p e c i f y  a s ing le  r o t a t i o n  b y  a n  

X3 

X1 

O3 

Fig. 2. Relationship of the orthogonal axes X~, Xs, X a to the 
crystallographic axes x 1, Xs, x 3. 

[a]  = 

' l / a l  sincca sinco 0 0 / 
1/a~tanaltanw-- 1 / a 2 t a n a 3 s i n c o  l/a2 -- 1 / a~ . t ana l  

- -  1 / a s s i n a l t a n c o  0 1/assinal / 
(10) 

is t h e  i n v e r s e  of [~]. I n  t h e  case w h e r e  t h e  r o t a t i o n  
f u n c t i o n  is u s e d  to  c o m p a r e  t h e  o r i e n t a t i o n  of u n i t s  

, .  . . . . .  . 

IX2 

Fig. 3. The Eulerian angles 01, 02. 0.~ relating the rotated axes 
XI' ,  Xs', X 3' to the original unrotated orthogonal axes 
X 1, X~, X 8. 

* This convention agrees with tha t  of Goldstein (1951), 
who gives a clear account of the Eulerian angles, together 
with an interesting discussion of the different sign conventions 
adopted by various authors. 
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Fig. 4. The  var iables  y; and  q~, polar  coordinates  which specify 
a di rect ion abou t  which the axes m a y  be r o t a t e d  th rough  
an angle g. 

angle u about a given axis. Patterson (1959) has quoted 
the [p] matrix in terms of this rotation and the 
direction cosines of the rotation axis. In the matrix 
of Table l(b) we have reduced this to a system of 
three variables by writing the direction cosines in 
terms of spherical polar coordinates ~, ~ of the rota- 
tion axis (Fig. 4). For convenience in the monoclinic 
system, we have retained Xe as the unique axis, 
while ~, ~ and ~ again follow the right-handed con- 
vention. 

The relationship between the two sets of variables 
may be established by comparison of the elements of 
the two matrices (Table l(a) and (b)). One finds 

cos (~/2) = cos (0~/2) cos 

tan(p = - cot (02/2)sin (01 2+-0a ) -  sec ( ~ )  

cos (p tan yj = cot ( ~ )  . ( l l )  

Since ~ and yJ can always be chosen in the range 
0 to g, these equations suffice to find (~¢, ~, ~) from 
any set (01, 0e, 0a). 

5. Application the horse haemoglobin 

Horse haemoglobin crystallizes in space group C2 with 
half a molecule per asymmetric unit. The two halves 
of the molecule are related by a crystallographic 
two-fold axis. Perutz et al. (1960) have shown that 
each half molecule consists of two similar configura- 
tions, each representing approximately the structure 
of myoglobin. Although these are not quite identical, 
the rotation function showed accurately their relative 
~)rientation. 

About 1000 independent reflexions with a spacing 
greater than approximately 6 J~ were used. The volume 
U for integration was a parallelepiped specified by 
the limits xl---±al/4, x2= ± a2/2, xa= +. aa/2 in the 
unrotated Patterson. For any one set of Miller indices 
(hi, he, ha) eight different sets of (pl, p2, pa) were 
considered for interpolation. These eight reciprocal- 
lattice points lay at the corners of the reciprocal- 
lattice unit cell containing the non-integral position 
given by solution of (7). However, four of these eight 
points were always on the site of systematic absences. 
Thus, essentially, a four-point interpolation was used 
to determine the amplitude of the transform at the 
non-integral position given by (3). 

The value of each intensity was packed in the store 
of the computer EDSAC 2 as ten binary bits. In this 
way all 1000 intensities could be accommodated in 
just over half the free store. The position of any one 
intensity in the store was entirely determined by its 
Miller indices. This method of packing not only 
avoided listing of indices, but avoided time-consuming 
hunting procedures to find any particular IFpl 2 value. 
I t  is important to note that, when (hi, he, ha) rotates 
to the non-integral position (hi', he', ha'), the point 
(hi, he, ha) related by the monoclinic symmetry does 
not rotate to (hi', he', ~a'). Thus a single summation 
involved approximately 2000 independent values of 
IF~] 2, each multiplied by the appropriate summation 

p 

taken over four terms. The 8000-term summation 
needed to determine the value of R for a particular 
set of Eulerian angles took the machine 3~ minutes. 

Expression (6) shows that the rotation function, R, 
is a necessarily positive function, chiefly because of 
overlap of the origin peaks of the Pattersons. Values 
of R well away from the important peaks are mostly 
in the range 380+40 units on the scale adopted. 
The origin peak of R (no rotation) is 621 units, and 
the peak at (85 °, 40 °, 95 °) is 504 units. After sub- 
tracting the mean background, this peak is about half 
the origin peak, and considerably greater than the 
random fluctuations. 

The results for points around the largest peak are 
shown in Fig. 5. Its maximum occurs at 01=85 c, 
02=40 °, 0a=95 °. The amount of rotation, and the 
direction of the rotation axes, can be ~ound by sub- 
stituting these, and symmetry-related Eulerian angles, 
into expressions (11). The following two pairs of axes 
are then found: 

A1, A 2 : ~ = 1 8 0 ° + 3  °, F = 9 0  °, ~ =  20 ° . 
Aa, A 4 : ~ = 1 8 0  °, ~0=90°+2 °, q~=ll0 °. 

These four axes, whose positions are plotted on a 
stereogram in Fig. 6, are inter-related by the crystallo- 
graphic two-fold axis. They are themselves close to 
being two-fold axes, and with the crystallographic 
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Fig. 5. A plot  of the  R funct ion,  for horse haemoglobin ,  in te rms  of the  Euler ian  angles 01, 02, 0 a in the  v ic in i ty  of the  large peak.  
The peak  corresponds  to the  non-crys ta l lographic  opera t ion  t h a t  ro ta tes  the  a chain into the  /~ chain. He igh t s  are given on 
an a rb i t r a ry  scale: one uni t  corresponds to 26.8 e.4//~ s. The  origin has a height  of 621 units .  
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Fig. 6. S te reogram showing the  direct ions of the  non-crystal lo-  
graphic ro ta t ion  axes  A z . . .  A 4 of the  horse haemoglobin  
molecule.  The haem normal  directions,  I, I I ,  I I I  and IV, 
found  f rom electron spin resonance da ta ,  are also shown. 
Po in t s  above  the  X Z  plane are ind ica ted  b y  dots,  points  
be low b y  circles. 

axis, form an almost orthogonal set. If the axes all 
passed through one point, the molecules would very 
nearly have the point group 222. 

There are two sets of measurements with which 
these results may be compared. Associated with each 
quarter of the haemoglobin molecule is a planar haem 
group, whose orientation has been determined by 
electron-spin resonance (Ingram et al., 1956). The 
directions of the haem normals are shown in Fig. 6, 
and are consistent within 6 ° with the directions of the 
pseudo axes found by the rotation function. Cullis et al. 
(1961) at tempted to determine the direction of the 
pseudo rotation axes by  examination of the polypep- 
tide chain directions in the 6 A resolution Fourier map 
of haemoglobin. The at tempt showed up clearly the 
slight differences between the quarter-molecules, but 
the result agrees within 6 ° with the position of the 
rotation function peak. 

The rotation matr ix  [C] corresponding to the peak 
of R is 

- 1.0098 -0 .0126 +0.3429\ 
+ 0.0014 - 0.9982 - 0-0485~ 
-0.0573 -0 .0736 + 1.0080/ 
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6. R e s o l u t i o n  

The full range of Eulerian angles was not explored, 
using all the data. I t  would have taken about 50 hr. 
on EDSAC 2 to cover all independent Eulerian angles, 
taken at 20 ° intervals. Instead, a survey was made 
using a very restricted amount of data. Each summa- 
tion was therefore much faster, and a smaller number 
of points needed to be evaluated. Complete coverage 
of all reflexions with spacing over 20 ~ and at 30 ° 
intervals of the Eulerian angles took under 1 hr. 
The highest non-origin peak fell in the same region 
as the maximum of the rotation function, found by 
using all 1000 independent reflexions. 

I t  is useful to know the smallest change of Eulerian 
angle which will give a significant effect. Roughly 
speaking, it is that  rotation which moves the most 
distant reciprocal-lattice points through one reciprocal- 
lattice translation. If h is the highest hi, h~ or ha index, 
angles less than 2 sin -1 (1/2h) are insignificant. This 
gives, in our case, 3.5°; the closest angular intervals 
used, namely 5 °, are of the same order. A survey 
around the peak was first done with larger intervals 
of 20 ° and 10°; 5 ° intervals were used only to obtain 
the exact peak position. 

The peak may be 'sharpened' in exactly the same 
way as a normal Fourier synthesis, by weighting down, 
or omitting, the inner reflexions of the reciprocal 
lattice. As an experiment, only those reflexions be- 
tween 10 /~ and 6 A_ spacing were used. Fig. 7 shows 
a line section passing near the peak using this partial 
data, and, for comparison, all the data. The partial 
data shows greater background variations because of 
the smaller number of reflexions involved. 

400 

300  
/~0 ° 700 1000 

200 , , , , , , ,  , , 

Fig. 7. A line section of R(01=80 °, 09=40 °, 03) passing near  
the  large peak. Upper  line: All reflexions, with spacing 
greater t han  6 A. Lower line: Only reflexions with spacing 
between 10 and 6 A included. 

7. S y m m e t r y  proper t ies  of the  rotat ion function, R 

As the amount of computing required is critical, it is 
particularly important to know what range of angles 

needs to be explored before all independent rotation 
operations have been considered. This will depend on 
the point group of the rotated object, and in this final 
section, we explain how this range may be determined. 

Although there are compelling reasons (which will 
appear) for carrying out the computation in terms of 
the Eulerian angles (01, 02, 0a), it is often much easier 
to think of the rotation in terms of (~, % ~). If the 
(01, 02, 0a) cannot be visualized directly, they can be 
interpreted in terms of (~, % ~) by the use of equations 
(11), or by comparing the elements of the matrix [p]. 

In both systems, a given rotation operation can have 
several different expressions: 

(a) If any angular variable lies outside the range 
0 to 2~, it can be brought into this range by adding 
an integral multiple of 2~, without affecting the 
rotation operation. Thus we can write 

[p (~¢, % (p)] -- [p(~c+2~nl, v2+2~n2 , ~+2~n8)] , 

where na, n2, n8 are integers. 
(b) Referring to Fig. 4, if ~ is greater than ~ the 

rotation operation is the same as one in which q~ is 
increased by ~ and ~ becomes 2~-~0. Thus 

[P(~, W, ~)] - [P(~, 2 ~ - ~ ,  ~ + ~ ) ] .  

(c) Note that  a rotation ~ about any axis is equiv- 
alent to a rotation - z  about an oppositely directed 
axis. Thus 

P[ (~ ,  ~ ,  ~ ) ]  = [ p  ( - ~, ~ - ~ ,  ~ + ~ ) ]  • 

All these identities can be checked by substituting 
into [p] (Table l(b)), and seeing that  no element is 
changed. 

All rotation operations are therefore included in 

0 _ < ~ <  27~, 
0 _ < ~ 0 < ~ ,  
0 < ~ < ~ .  

The corresponding relationships in (01, 02, 03) are: 

[9 (01, 0~, 08)] -- [9 (01 + 27enl, 02 + 2~n2, 03 + 2~n3)],  
[p (01, 02, 03)] -- [p (01 + ~,  - 02, Oz + ~ ) ] .  

The full range of rotation operations is 

0_<01< 
0 _< 02<2~ 
0 < 0~<2~,  

So far, we have considered physically identical 
operations, which lead to identical expressions of the 
[9] matrix. In addition, point-group symmetry in the 
rotated object (in our case, the reciprocal lattice) will 
cause the same value of the rotation function to be 
found for physically distinct rotations. The point group 
of the haemoglobin reciprocal lattice (2/m) will be 
used for illustration. 

(d) Equal rotations about directions related by the 
point group symmetry will give the same result. 
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Thus, in haemoglobin, where the dyad  relates points 
with coordinates q~ and (p + ~, we have 

R ( g ,  % q ) = R ( z ,  W, q~+ ~) . 

Taking this in conjunction with (c), we find tha t  
the mirror-plane symmet ry  

R ( g, % q~ ) = R ( - ~ , r~ - y) , q~ ) 

is automat ica l ly  produced, showing tha t  the rotat ion 
operations have the same symmet ry  for point  groups 
2 and 2/m. This is true because only proper rotations 
(rotation without  inversion) are considered. 

The corresponding relat ionship for the Euler ian 
angles is 

R(01, 02, O ~ ) = R ( ~ - 0 1 ,  02, 7~-08) . 

(e) Two consecutive rotations about  different axes 
are always equivalent  to a single rotat ion about  some 
other axis, given by  mult ipl icat ion of the two rotat ion 
matrices. If  [pl] represents the crystallographic rota- 
t ion of 7~ about  a2, and [p] a general rotat ion (~, yJ, ~), 
then  the rotat ion [p] [p~] is a complicated function of 
z, y), ~. However, in Euler ian  angles such relation- 
ships take a simple form. For a two-fold rotat ion 
about  Xe before a general rotat ion one finds 

R(O~, 02, 0~)=R(O~, O~ + ~, 7~-03) , 

so tha t  the range of rotations can be expressed quite 
simply.  For this  reason the required range of angles 
can only be expressed convenient ly in terms of the 
Euler ian angles, and for this reason they  are preferred 
for computation.  

e, 

% 

3 

-o t f i -o  
O- . . . . . . .  .- . . . . . . .  4:)- . . . . . . .  i" . . . . .  - 0  

IO. i -o : lo- 
t ! o -  
o . . . . . .  -I . . . . . . .  o -  . . . . . . . . . . . . .  , o  ,, 

~, , • i ( 

-e; . . . . . .  i . . . . . .  

o .  , o ÷  

Fig. 8. Diagram showing equivalent values of the Eulerian 
angles for rotations of an object with point group sym- 
metry 2/m. 

To collect all these relationships together in a form 
famil iar  to crystallographers,  i t  is convenient to 
consider the s y m m e t r y  of R in a three-dimensional  
space with orthogonal coordinates 01, 02, 08. Postulate  
(a) above tells us tha t  equivalent  points lie on a latt ice 
with spacing 2~ in each direction, and the other rela- 
t ionships m a y  be indicated by  constructing a conven- 
t ional space-group diagram (Fig. 8). The space group 
in this case is No. 56 ( P b n b  retaining the order 
01, 0e, 0~). The size of the asymmetr ic  unit ,  giving the 
range of angles which needs to be explored, m a y  be 
expressed 

0 < 01 < ~/2 
0 _ < 0 2 < ~  
0 < 0 3  < 2 ~ r .  

We are indebted to Dr M. F. Perutz for allowing us 
to use the three-dimensional 6 J~ haemoglobin data, 
and to the Director of the University of Cambridge 
Mathematical Laboratory for making the EDSAC 2 
computer available. We are grateful for most useful 
discussions with I)r V. Heine and I)r A. Klug, and 
to Mrs I). Thomas who has given assistance in the 
preparation of this manuscript. 
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