
electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

The Computational Crystallography Toolbox: crystallographic
algorithms in a reusable software framework

Ralf W. Grosse-Kunstleve, Nicholas K. Sauter, Nigel W. Moriarty and Paul D.
Adams

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2002). 35, 126–136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox

computer programs

126 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 20 September 2001

Accepted 19 October 2001

2002 International Union of Crystallography

Printed in Great Britain ± all rights reserved

The Computational Crystallography Toolbox:
crystallographic algorithms in a reusable software
framework

Ralf W. Grosse-Kunstleve, Nicholas K. Sauter, Nigel W. Moriarty and Paul D.

Adams*

Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 4-230, Berkeley, California 94720, USA.

Correspondence e-mail: pdadams@lbl.gov

The advent of structural genomics initiatives has led to a pressing need for high-

throughput macromolecular structure determination. To accomplish this, new

methods and inevitably new software must be developed to accelerate the

process of structure solution. To minimize duplication of effort and to generate

maintainable code ef®ciently, a toolbox of basic crystallographic software

components is required. The development of the Computational Crystal-

lography Toolbox (cctbx) has been undertaken for this purpose. In this paper,

the fundamental requirements for the cctbx are outlined and the decisions that

have lead to its implementation are explained. The cctbx currently contains

algorithms for the handling of unit cells, space groups and atomic scatterers, and

is released under an Open Source license to allow unrestricted use and

continued development. It will be developed further to become a comprehen-

sive library of crystallographic tools useful to the entire community of software

developers.

1. Introduction

Macromolecular crystallography is one of the most powerful tools

available to elucidate the three-dimensional structures of proteins. As

a result of the near completion of the Human Genome Project and

the creation of several pilot Structural Genomics centers (Service,

2000) in the United States, there is a pressing need for high-

throughput protein structure determination. However, the determi-

nation of a macromolecular structure is often a very time-consuming

labor-intensive process, even after the experimental diffraction data

have been collected. Given the large number of genes targeted by the

Structural Genomics centers, it is clear that new software must be

developed to accelerate this procedure.

Crystallography has often made use of the latest advances in

computing hardware. This is dictated by the requirements of the

algorithms that are typically used in crystal structure determination.

Many algorithms are iterative (e.g. structure re®nement) or stochastic

[e.g. multi-solution direct methods like Shake-and-Bake (Weeks &

Miller, 1999) and SHELX (Sheldrick & Gould, 1995)] and each

iteration or trial is often computationally expensive. In contrast,

advances in software technology have been slower to propagate

through the ®eld, with the dominant programming language in

crystallography still being Fortran (Backus, 1954).

In order to solve structures, the crystallographic community has

traditionally used a diverse set of software, often combined in an ad

hoc fashion. We will explain why this approach is inadequate for the

tightly integrated large-scale projects that are needed to meet the

challenges of high-throughput structure determination. In light of

this, it is essential that better mechanisms be developed for the

organization of computational crystallography software. This

requires ¯exible and reusable software components that many

researchers can use to accelerate the development of increasingly

high-level software systems.

To better understand the possible approaches to developing new

software, it is instructive to look at the way large modern software

systems are written. They typically feature object-oriented design,

databases, graphical user interfaces, distributed computing, and

platform independence. Object-oriented programming is a funda-

mental tool in the repertoire of modern computer science. However,

until now its potential has not been fully realised in crystallography.

In this paper we will discuss the main features of object-oriented

programming and how these relate to accelerating the development

of a large maintainable software system for crystallographic appli-

cations. Based on this discussion, we describe the major design

decisions and important features of the ®rst set of libraries that we

have currently released as part of the Computational Crystallography

Toolbox (cctbx).

2. Methods

2.1. Fundamental goals

Our ®rst goal is to design and implement reusable software

components for macromolecular structure determination that lend

themselves to integration into large modular layered software

systems. The availability of these reusable components will reduce

the duplication of effort by different research groups writing new

crystallographic applications. The fundamental requirements for a

reusable software component include that it (i) performs a well

de®ned task, (ii) communicates input and output parameters exclu-

sively through a well de®ned interface, (iii) supports a mechanism to

recover cleanly from unforeseen conditions (errors or exceptions),

and (iv) otherwise imposes no unnecessary restrictions on the systems

into which it is to be integrated. It must also be possible to have an

arbitrary number of simultaneously active independent instances of

electronic reprint

the software component. For example, a software component that

handles a list of Miller indices and associated data such as experi-

mentally measured diffraction intensities should allow multiple lists

to coexist independently. Software components that meet all these

requirements are suitable as low-level building blocks for larger

systems. Ultimately, the use of reusable software components leads to

software systems that, even though complex in design, can still evolve

over time and remain maintainable. If the components are well

documented, they also lead to systems that can be simultaneously

developed by a diverse group of developers.

Our second goal is to permit a tight integration between reusable

software components, written in a compiled language, and a ¯exible

scripting language. Our experience with the Crystallography and

NMR System (CNS; Brunger et al., 1998) has shown that this

promotes highly ef®cient software development. High-level algo-

rithms such as complex re®nement protocols or phasing procedures

can be developed most rapidly in a scripting language. By contrast,

numerically intensive low-level algorithms, such as the computation

of structure factors or discrete Fourier transforms, must be imple-

mented in a compiled language for performance reasons.

2.2. Available technology

This section is a discussion of the abstract concepts of software

design in the context of programming languages that are familiar to

crystallographers. However, it should be kept in mind that the merits

of a particular syntax are secondary to the fundamental concepts.

Computer programming languages have evolved from machine

code to be increasingly high-level and abstract. For a relevant subset

of programming languages, Fig. 1 illustrates the qualitative correla-

tion between programmer ef®ciency and run-time performance,

which are two essential considerations in the development of any

program. As they have developed, these languages have provided

increased support for rational program organization in order to

improve code maintainability and programmer ef®ciency. In the

following section, we discuss the implications of this by focusing on

four major programming languages, three compiled and one inter-

preted: Fortran, C, C++ and Python. The considerations in this

section are the basis for the design decisions that have led to the

current implementation of the Computational Crystallography

Toolbox.

2.2.1. The first compiled language: Fortran. Fig. 1 illustrates that

machine code is very ef®cient at run-time, but requires a long

development time. Fortran (The IBM Mathematical FORmula

TRANslating System; Backus, 1954) was the ®rst high-level

programming language created to reduce this development time and

was speci®cally designed for mathematicians and scientists. Inter-

estingly, a crystallographer (D. Sayre) was a member of the early

Fortran development team at IBM (Lohr, 2001). It is perhaps

therefore no coincidence that Fortran has built-in support for two

high-level data types that are useful in crystallography: complex

numbers and multi-dimensional arrays. To this day the vast majority

of crystallographic software packages are written in Fortran 77, and

new Fortran 77 programs are still being developed. Therefore, we

have carefully considered whether this existing collection of source

code can be readily integrated into a comprehensive structure

determination system, and have arrived at the conclusion that these

programs and low-level libraries written in Fortran cannot be easily

used for this purpose.

The main problem is that Fortran 77 offers only very weak support

for writing software components that are reusable in the sense

outlined in x2.1. A major limitation is that Fortran 77 provides no

portable solution for dynamic memory management. Equally

problematic is that Fortran 77 does not support user-de®ned data

types (a simple example for a user-de®ned type is a type for Miller

indices; an example for a more complex user-de®ned type is a type for

the handling of space-group symmetry). However, dynamic memory

management and user-de®ned data types are technical prerequisites

for the implementation of software components that support multiple

independent simultaneously active instances. Consequently, most

existing Fortran programs support only a limited hard-coded number

of active instances of a given data type, such as a list of Miller indices,

symmetry operations, or atomic coordinates (see also Appendix A1).

In addition, the only built-in (as opposed to hand-crafted) mechanism

that Fortran 77 offers for the handling of run-time errors is the STOP

statement. There is no formal way for high-level software compo-

nents to handle such conditions. The lack of user-de®ned data types

and other mechanisms for structuring a large system leads to

implementations that are very hard to maintain as they grow. An

anecdotal piece of evidence is that a signi®cant number of the existing

software packages in crystallography are written and maintained by

single individuals.

Fortran programs are notoriously in¯exible in accommodating

evolving requirements. The most frequently encountered example is

a hard-coded limit on the maximum number of atoms or re¯ections a

program can handle. This is a direct result of the lack of portable

dynamic memory management. A more complex and serious in¯ex-

ibility arises from the lack of user-de®ned types: associated data

elements (for example the three elements of a Miller index or the six

components of an anisotropic temperature factor) must be passed

individually in subroutine calls. In large systems this leads to very

long parameter lists. Adding or extending data items therefore

involves changing large portions of a program system, since often

many subroutines are affected. These changes are both time-

consuming and error-prone. In practice, problems like this often

make the exploration of new ideas very dif®cult. Even systems that

have been well designed within the constraints of the programming

language become dif®cult to maintain as they evolve. For example, as

a result of the advances in experimental technologies, high-resolution

macromolecular data sets are more common and thus anisotropic

atomic temperature factor re®nement is a required tool for structure

re®nement. Unfortunately, adding this feature to the CNS program

(Brunger et al., 1998), which currently implements only isotropic

atomic temperature factor re®nement, would require changes to a

very large number of subroutine calls throughout the source code.

The amount of work involved makes such a change unlikely and

illustrates the dif®culties that are encountered with any Fortran-

based system as algorithmic requirements change over time.

J. Appl. Cryst. (2002). 35, 126±136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox 127

computer programs

Figure 1
Correlation (qualitatively) between programmer ef®ciency and run-time perfor-
mance for a selection of programming languages.

electronic reprint

computer programs

128 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

2.2.2. Dynamic memory management and user-defined data

types: C. The C programming language supports dynamic memory

allocation and user-de®ned data types. However, there is no formal

way of grouping data and algorithms such that the source code clearly

re¯ects the underlying concepts. Memory management in C is

notoriously dif®cult because the programmer can only rely on low-

level allocation and deallocation calls. The language has no

mechanism that could signi®cantly ease the burden that dynamic

memory management puts on the programmer. This is compounded

by the lack of a formal mechanism for the handling of errors.

Consequently, C code tends to be cluttered with if statements for the

handling of errors [see e.g. SgInfo (Grosse-Kunstleve, 1995)] and

special code for handling dynamic memory management under error

conditions. In addition, the lack of a formal mechanism for the

handling of errors often leaves the programmer resorting to the use

of global variables for reporting error conditions [e.g. SgInfo (Grosse-

Kunstleve, 1995); even the standard C library relies on this approach

(errno.h)]. Software components that use global variables are not

suitable for inclusion into modern multi-threaded applications, such

as database servers or graphical user interfaces.

2.2.3. Object orientation and exception handling: C++. C++

extends the support for user-de®ned types beyond the mere grouping

of data (see Appendix A1). The grouping can also include the asso-

ciated algorithms. Using this language feature naturally leads the

programmer to a source code organization that re¯ects the under-

lying concepts. In recent years, `exception handling' has been

included in the language to provide comprehensive support for the

handling of errors or other unforeseen conditions (see Appendix A2).

Another important feature of ISO C++ (International Standardiza-

tion Organization et al., 1998) that has been added to the language in

recent years is the support for the parameterization of types: C++

templates.

The use of templates alleviates some of the dif®culties that are

associated with statically typed compiled languages such as C and

Fortran. For example, many Fortran and C libraries [such as BLAS

(http://www.netlib.org/blas/) or LAPACK (http://www.netlib.org/

lapack/)] explicitly implement the entire set of library functions for

two or more different ¯oating-point precisions (e.g. real, double

precision, real*16). This large degree of redundancy hampers further

development. Other systems use compile-time de®nes [e.g. FFTW

(http://www.fftw.org/)] or require the use of non-portable compiler

options to select between different ¯oating-point precisions [e.g.

FFTPACK (http://www.netlib.org/fftpack/)]. In this case it is impos-

sible to use the library with more than one ¯oating-point precision in

the same program. In C++, the ¯oating-point type can be para-

meterized, and the compiler automatically generates the required

type-speci®c code as needed. There is no need to hand-craft function

names to re¯ect the various ¯oating-point precisions and multiple

type-speci®c versions of the code can be used simultaneously without

a run-time penalty. The parameterization of types in combination

with exception handling also opens an avenue for high-level dynamic

memory management that is completely different from the scheme

familiar to C programmers. If the C++ features are used to the full

extent, dynamic memory management is typically entirely automatic

for the vast majority of software components in a system.

An important difference between a modern compiled language

such as C++ and older languages is its broad ¯exibility in terms of

run-time performance and programmer ef®ciency (see Fig. 1). The

programmer is permitted to decide how much effort is devoted to

optimizing algorithms and data structures for run-time performance,

or how the high-level features of C++ are used to reduce the time

required for code development. When necessary, C++ allows a more

labor-intensive programming style to be used that leads to machine

code that runs as fast as a program written in Fortran (Veldhuizen &

Gannon, 1998). It is a signi®cant practical bene®t that this type of

low-level programming and relatively high-level programming is

possible within the framework of one language.

It should be noted that Fortran 95 removes many shortcomings of

the language (Redwine, 1995). For example, Fortran 95 adds support

for dynamic memory management, user-de®ned types and limited

support for object-oriented design. However, support for exception

handling and the parameterization of types is missing. In addition,

Fortran 90 and Fortran 95 have not gained wide acceptance in

computational crystallography.

2.2.4. An advanced scripting language: Python. C++ meets all the

requirements for writing reusable software components that we

presented in the previous section. The main disadvantage of C++ is a

syntax that requires a signi®cant time investment to learn. As with

any compiled language it is also time-consuming to develop platform-

speci®c procedures for building executable components from the

source code. There are situations where the performance bene®ts of a

compiled language are not important, for example for very high-level

applications such as a complex structure solution and re®nement

procedure that communicates over a network connection with a

graphical user interface. In such cases a scripting language is the most

appropriate computational framework. The example of CNS, and

many systems outside of crystallography, shows that the ¯exibility of a

platform-independent dynamically typed interpreted scripting

language signi®cantly accelerates the development of very high-level

applications.

We have carefully evaluated a variety of scripting languages that

could be used in combination with C++. We found Python (http://

www.python.org/) to be outstanding because it is a mature language

with an object model that is similar to that of C++ and also supports

exception handling. Python is interpreted, dynamically typed and

generally regarded as a tool for the rapid development of maintain-

able applications. This is facilitated by a clear syntax that is easy to

learn and support for both object-oriented design and modular

program architecture. In addition, the Boost.Python Library (http://

www.boost.org/) is available for conveniently integrating C++ and

Python. It is used to connect C++ classes and functions directly to

Python without obscuring the C++ interface.

Boost.Python signi®cantly reduces the effort required to convert

from a Python to a C++ implementation. This situation arises

frequently in the development of scienti®c algorithms where a

scripting language such as Python is the most ef®cient tool for rapidly

exploring a new idea. When the script-based algorithm is mature,

performance considerations often make the move to a compiled

language necessary. Since both Python and C++ are object-oriented,

in most cases a computationally ef®cient C++ implementation can be

quickly derived from an existing Python implementation, and

Boost.Python is available to re-establish easily an identical Python

interface. In this way the time spent prototyping a software compo-

nent is not lost, and the advantages of object-oriented design are used

throughout, in the Python layer and the compiled layer, at all stages

of development.

2.2.5. Software development infrastructure. A modern software

development infrastructure goes far beyond the traditional compiler

and the operating system. For example, the master copy of the cctbx

source code is hosted at SourceForge (http://sourceforge.net) and is

accessible via the Internet. SourceForge is a free service to Open

Source (http://www.opensource.org/) developers. The concept behind

Open Source is very simple. When programmers on the Internet can

read, redistribute and modify the source for a piece of software, it

electronic reprint

evolves. Developers improve the code, adapt it to new areas and

correct errors. This can happen at a speed that, compared with the

typical pace of conventional software development, seems aston-

ishing.

SourceForge offers easy access to a rich set of tools that foster

collaborative software development, including a Concurrent Versions

System (CVS). This enables a group of developers to work on the

same code base simultaneously without requiring extensive effort to

merge the updated code. The CVS setup also facilitates multi-plat-

form development because it is very easy to install a local copy of the

master CVS repository on a variety of platforms. This environment

where a group of collaborators develop a system simultaneously on a

variety of platforms naturally leads to source code that is both

reusable and platform independent.

The use of a system for automated documentation generation

further enhances the reusability of the cctbx. The bulk of the docu-

mentation is directly embedded as comments in the source code. This

ensures that updating the documentation is a natural part of changing

the source code. The embedded comments are structured by using a

non-intrusive mark-up syntax that has similarities with the HTML

syntax (http://www.w3.org/). The free Doxygen (http://www.stack.nl/

~dimitri/doxygen/) program is used to extract these structured

comments and to convert them into various formats that are easy to

navigate. Supplementary documentation, such as an introductory

section or a tutorial section, is automatically linked to the reference

documentation. A number of examples are also included; these are

discussed in the following section.

Another important part of the cctbx is the automatic multi-plat-

form build system (which is based on Python and the traditional make

facility). This system serves two main purposes: ease of installation

and expediting the development. On the supported platforms, the

entire cctbx package can be installed with a single command once the

distribution ®les are unpacked, or the local CVS copies are complete.

Depending on the platform, the installation takes between approxi-

mately 10 min and 30 min. Clearly it is impractical to recompile all

source code ®les each time a change is made during development;

therefore the build system keeps track of the compilation depen-

dencies and only rebuilds the components that are affected by a

change. Typically, the time required for rebuilding the cctbx after a

change is only a fraction of the time required for a new installation.

3. Results

3.1. cctbx overview

This section is an overview of the features of the cctbx. Examples

illustrate the intended use of selected algorithms. A summary of the

cctbx features is given in Appendix A3. Detailed documentation for

all cctbx features is available online (http://cctbx.sourceforge.net/).

At the time of writing, the cctbx provides three main modules. The

eltbx (element toolbox) is a collection of tables of various X-ray and

neutron scattering factors, element names, atomic numbers, atomic

weights, ionic radii, and characteristic X-ray wavelengths. Associated

with each table are procedures for accessing the tabulated data, e.g.

by using interpolation.

The uctbx (unit-cell toolbox) provides tools for the description and

manipulation of unit cells, and is organized around the UnitCell

class. An instance of this class is initialized with the six unit-cell

parameters or a metrical matrix (Boisen & Gibbs, 1990) (also known

as metric tensor). The metrical matrix, orthogonalization matrix,

fractionalization matrix and the unit-cell parameters of the reciprocal

cell are pre-computed when the UnitCell class is used to construct

an object (see Appendix A1). Repetitive computations involving the

UnitCell instances, e.g. the computation of d-spacings for a list of

Miller indices, are therefore highly ef®cient. (Where possible, the

C++ inline keyword is used to achieve maximum performance.)

The sgtbx (space-group toolbox) is the most comprehensive

module of the cctbx. A large variety of space-group symbols can be

used to derive the corresponding symmetry operations. The reverse

process is also supported: given a group of symmetry operations, the

sgtbx can be used to compute a space-group symbol. This is facilitated

by an algorithm for the determination of the space-group type (see

xA3.3.2). Other algorithms include the characterization of symmetry

matrices (xA3.3.4), the handling of basis transformations, the

manipulation of Miller indices including the handling of systematic

absences and phase restrictions, the manipulation of fractional

coordinates including the assignment of Wyckoff positions, the

handling of Euclidean and af®ne normalizers [also known as

`Cheshire groups' (Hirshfeld, 1968); see appendix sections xxA3.3.2

and A3.3.3), and the handling of asymmetric units, both in direct

space and in reciprocal space.

The sgtbx algorithms are almost entirely general. A technical

restriction is that the symmetry operations and transformation

matrices are internally represented as integer matrices and base

factors. For example, the default base factor used for the translation

part of a symmetry operation is 12, and a translation part (x, y, z) is

internally represented as three integer numbers (12x, 12y, 12z). The

use of integer matrices greatly simpli®es the implementation of the

sgtbx algorithms. In addition, integer-based algorithms are typically

signi®cantly faster than ¯oating-point-based algorithms. The restric-

tion to certain fractions is not normally a signi®cant limitation and the

advantages clearly outweigh the disadvantages.

3.2. Discussion of examples

The examples discussed here can be viewed and executed through

a Web browser by visiting http://cci.lbl.gov/cctbx/, or by installing the

®les on a local Web server. Each example consists of two ®les: an

HTML ®le with the user interface and a Python script that is executed

by a Web server. The source code is available in the `examples'

directory of the cctbx. The source code shown in the following ®gures

is derived from the online examples and has been partially rear-

ranged for the purposes of presentation. The source code fragments

are also useful as examples for C++ developers. With a few minor

modi®cations (e.g. addition of variable declarations, semicolons and

curly braces) the source code fragments can easily be converted into

the corresponding C++ code.

3.2.1. Browse alternative space-group settings. The browse_-

settings example uses an internal table, with 530 space-group

settings, based on Table 4.3.1 in the International Tables for Crys-

tallography, Vol. A (1983). Via the Web interface, the user speci®es a

space-group symbol. The Python script determines the space-group

number corresponding to the given symbol and then lists all tabulated

settings for that space-group number. Recognized symbols include

space-group numbers, Hermann±Mauguin symbols and Schoen¯ies

symbols. For space groups that are tabulated with two origin choices

in the International Tables for Crystallography, these symbols can be

followed by a colon and the character `1' or `2', indicating origin

choice 1 or origin choice 2, respectively. For rhombohedral space

groups, the symbols can be followed by a colon and the character `H'

or `R', indicating hexagonal axes or rhombohedral axes, respectively.

For the monoclinic space groups, both the short (e.g. P2) and the long

(e.g. P121) Hermann±Mauguin symbols can be used. For higher

symmetry space groups, only the short Hermann±Mauguin symbol is

J. Appl. Cryst. (2002). 35, 126±136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox 129

computer programs

electronic reprint

computer programs

130 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

recognized (the long symbols are inconvenient and not commonly

used).

The processing of Hermann±Mauguin symbols is exclusively based

on table lookup. No attempt is made to derive symmetry operations

from the Hermann±Mauguin symbols directly. While it is natural to

derive a Hermann±Mauguin symbol for a given list of symmetry

operations, it is problematic to derive the symmetry operations from

a Hermann±Mauguin symbol. In particular, there are no established

rules for the selection of the location of the origin with respect to the

symmetry elements, or the selection of alternative origins. Uncon-

ventional Hermann±Mauguin symbols are therefore both dif®cult to

handle algorithmically and prone to misunderstanding. For a more in-

depth discussion of this topic see Grosse-Kunstleve (1999). Uncon-

ventional space-group settings are best encoded as Hall symbols

(Hall & Grosse-Kunstleve, 2001), which are also supported by the

Web interface. Unlike Hermann±Mauguin symbols, Hall symbols can

be used to represent any arbitrary space-group setting unambigu-

ously.

Using the cctbx, processing the input space-group symbol to obtain

symmetry operations involves only two Python statements (or alter-

natively similar C++ statements), which are shown in Fig. 2(a). The

next step in the example script is to determine the space-group type

from the group of symmetry operations. The corresponding state-

ments are shown in Fig. 2(b). This step is required for the general case

where a Hall symbol is given as the input and the space-group

number is therefore not known from a table lookup. The determi-

nation of the space-group type typically only takes a small fraction of

a second. Therefore, it is not a problem to use the algorithm even if

the space-group number is available by different means. The

advantage is that the script is both general and simple.

The structure of the Python loop for generating the list of alter-

native settings is shown in Fig. 2(c). The six source code lines shown

in Fig. 2 form the functional core of the example script. The entire

script is 83 lines long. The 77 lines that are not shown are for

processing the input from the Web browser, formatting the HTML

output, and the handling of errors.

3.2.2. Explore symmetry. The explore_symmetry example

reports a number of space-group properties given a space-group

symbol or symmetry matrices, or a combination of the two. In addi-

tion to the input ®eld for a space-group symbol, there is an input ®eld

for symmetry operations in Jones±Faithful notation (e.g. ÿz + 1/2,

ÿx, y + 1/2). The example script processes the input space-group

symbol in the same way as shown in Fig. 2 (if no symbol is given `P1' is

implicitly substituted). An example result of a symbol lookup is

shown in Fig. 3(a).

The functional core of the loop for processing the additional

symmetry operations is shown in Fig. 4. While the additional

symmetry operations are processed, a table like the one shown in Fig.

3(b) is generated. After all symmetry matrices are added, the

resulting space group is characterized as shown in Fig. 3(c), and the

space-group type is determined in the same way as shown previously

in Fig. 2(b). Also shown is a parallelepiped containing an asymmetric

unit in direct space (Fig. 3d; see also xA3.3.7), a table with all

symmetry operations of the space group similar to the table shown in

Fig. 3(a), a table of Wyckoff positions (Fig. 3e; see also xA3.3.6), and

the additional generators of the Euclidean normalizer (Fig. 3f ; see

also xA3.3.3).

Figure 3
Partial output of the explore_symmetry example. (a) Result of the symbol lookup
(see x3.2.1). (b) Table of additional symmetry operations with characterization of
the rotation and translation parts (see xA3.3.4). (c) Characterization of a space
group (see xxA3.3.1 and A3.3.2). (d) Parallelepiped containing an asymmetric unit
(see xA3.3.7). (e) Table of Wyckoff positions (see xA3.3.6). (f) Additional
generators of the Euclidean normalizer of space group I41 (see xA3.3.3).

Figure 2
Functional core of the browse_settings example Python script. (a)
inp.sgsymbol and inp.convention are two strings as speci®ed by the user in
the input form. Symbols_Inp is the result of the table lookup and contains
references to the tabulated Hermann±Mauguin symbol, Schoen¯ies symbol, space-
group number and Hall symbol. The latter is interpreted by the second statement to
obtain a group of symmetry operations. (b) Determination of the space-group
number from the group of symmetry operations. (c) Structure of the Python loop
for generating the list of alternative settings.

Figure 4
Functional core of the loop for processing the additional symmetry operations in
the explore_symmetry example Python script.

electronic reprint

3.2.3. Change space-group setting. It is common that a certain

crystal structure is published in the literature in two or more different

settings of the same space group. A typical example is that of a

rhombohedral space group (e.g. R3) where either a hexagonal basis

system or a rhombohedral basis system is used. Other examples are

space groups with two origin choices (e.g. Pnnn), or orthorhombic

space groups where the basis vectors are permuted (e.g. P2221, P2212,

P2122). Unusual settings can also arise from group±subgroup rela-

tions (e.g. the monoclinic subgroup of space group P312 which is

generated by the twofold axis parallel to [�110]). The change_set-

ting example of the cctbx can be used to determine the change-of-

basis matrix between two settings of the same space group. Option-

ally, this change-of-basis matrix is used to transform unit-cell para-

meters and atomic coordinates.

The main inputs to the example are two space-group symbols that

correspond to alternative settings of the same space-group type. In

the ®rst step, the symmetry operations for the two input settings are

generated, and the space-group type along with a change-of-basis

matrix to the reference setting is determined for each (the source

code is equivalent to that in Fig. 2). Let Cold be the change-of-basis

matrix that transforms atomic coordinates in the ®rst input setting to

coordinates in the reference setting, and Cnew the matrix that trans-

forms coordinates in the second input setting to coordinates in the

reference setting. The change-of-basis matrix Coldÿnew that trans-

forms coordinates in the ®rst setting to coordinates in the second

settings is then obtained as the product:

Coldÿnew � Cÿ1
newCold:

The Python source code for computing Coldÿnew and reporting the

result is shown in Fig. 5(a). The unit-cell parameters are transformed

using the ChangeBasis method of the UnitCell class. The source

code for transforming atomic coordinates is shown in Fig. 5(b). An

example output is shown in Fig. 6.

3.2.4. Assign Wyckoff positions. When studying a crystal structure

it can be helpful to know the Wyckoff positions of the atoms in the

structure. Wyckoff letters can be assigned with the wyckoff example

script of the cctbx. The input form contains ®elds for the unit-cell

parameters, a space-group symbol, atomic coordinates and a

minimum distance. Atomic sites that have symmetrically equivalent

points within the given minimum distance are moved to the exact

location of the nearest special position before the Wyckoff letter is

assigned. The source code for this step is shown in Fig. 7(a). Fig. 7(b)

shows the source code for the actual assignment of the Wyckoff letter.

The details of the algorithms are published elsewhere (Grosse-

Kunstleve & Adams, 2002).

3.2.5. Structure-factor calculation. The cctbx contains the entire

infrastructure needed for ef®ciently carrying out a direct-summation

structure-factor calculation. This is demonstrated by the web_hklf

example. The online input form contains ®elds for entering unit-cell

parameters, a space-group symbol, a minimum d-spacing up to which

structure factors are computed, a minimum distance between

symmetrically equivalent atomic sites, and for entering atomic coor-

dinates.

An initial step is the assignment of Wyckoff positions to the input

coordinates. This step is equivalent to the previous example. That is,

atoms are moved the exact location of the nearest special position

before the structure-factor calculation is carried out. This provides

the user with information about the input coordinates, and robustly

circumvents the problems caused by limited input precision (e.g. 0.33

instead of 1/3).

The standard features of Python are used to process the list of

atomic sites. The information that is stored for each site is shown in

Fig. 8(a). Fig. 8(b) shows how the list of Miller indices is generated.

Fig. 8(c) shows the actual structure-factor calculation

4. Conclusions

The cctbx is a toolbox of fundamental algorithms for computational

crystallography that are designed for integration into highly auto-

mated software systems, but are also suitable for smaller systems,

including educational software. The choice of modern programming

languages that support a modular system design through object-

orientation and exception handling ensures ease of use and a high

degree of ¯exibility.

J. Appl. Cryst. (2002). 35, 126±136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox 131

computer programs

Figure 6
Partial example output of the change_setting Python script.

Figure 7
Functional core of the wyckoff example Python script. (a) Determination of the
site-symmetry group. Atomic sites that have symmetrically equivalent points within
the given minimum distance (MinMateDistance) are moved to the exact location
of the nearest special position (SS.SnapPosition()). The point-group type of the
site-symmetry group is also reported. (b) Assignment of the Wyckoff letter. This
involves the determination of a Wyckoff mapping. The mapping consists of an
index into a Wyckoff table (which corresponds directly to a Wyckoff letter) and a
symmetry operation. The symmetry operation is applied to the input coordinates to
obtain coordinates that are compatible with the particular tabulated special
position operator. This is explained in more detail by Grosse-Kunstleve & Adams
(2002). See also xA3.3.6.

Figure 5
Functional core of the change_setting example Python script. (a) Computation
of Coldÿnew = CBOp. (b) Application of the change-of-basis operator to fractional or
Cartesian coordinates.

electronic reprint

computer programs

132 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

Some of the basic functionality of the cctbx is also present in pre-

existing programs. However, these implementations are not reusable

in the sense outlined in x2.1. As a result, many basic algorithms are

often re-written many times over, usually in an ad hoc fashion and

with severe limitations. For example, many programs use a static table

of symmetry operations. This makes it dif®cult to work with other

settings, such as primitive settings of centered space groups that are

the most suitable for certain calculations. The cctbx offers a much

more dynamic and ¯exible approach. Object-oriented design and the

use of exception handling lead to uniform and reusable imple-

mentations of the basic software components that can be easily

integrated into larger systems.

The combination of Python and C++ gives access to both the

¯exibility of a dynamically typed, interpreted language and the

performance bene®ts of a statically typed, compiled language. The

Boost.Python library is used to implement concise bindings between

Python and C++. Unlike other systems with a comparable function-

ality, Boost.Python is implemented in pure C++ and therefore does

not introduce the overhead of a third syntax.

The cctbx has all the important features that are typically asso-

ciated with the term `reusable software', including unrestricted

availability. The cctbx source code is freely available under an Open

Source license for both non-pro®t and commercial use at http://

cctbx.sourceforge.net/. We are convinced that this is the most

appropriate license type for a scienti®c software library. This allows

all the developers in the extended crystallographic community to

integrate the cctbx into other systems. Since the cctbx is hosted by an

independent organization that promotes concurrent development

(SourceForge), it is also easy for developers to make contributions to

the cctbx for the bene®t of the community. Instead of repeatedly

reinventing the wheel, developers can reuse the modular, extensively

tested and mature cctbx components and thus focus their efforts on

the development of high-level algorithms. We hope that the cctbx is

the ®rst major step towards building a reference library for crystal-

lographic computations which will eventually become a computa-

tional equivalent of the International Tables for Crystallography.

APPENDIX A
A1. The concept of classes and objects

In the terminology of object-oriented programming, a class is to an

object what a blueprint is to a building. A building is constructed

based on the blueprint. Similarly, an object is constructed based on

the class (see Figs. 9a and 9b). To facilitate this, each class contains

de®nitions of data items and associated algorithms: `methods' in

Python terminology, `member functions' in C++ terminology.

The closest Fortran 77 comes to the concept of a class is a common

block. However, a common block only contains data. Associated

functions and procedures are connected to each other only in a very

loose and unobvious way: by using the same common block. Another

fundamental difference is that a common block is static. That is, only

one copy of the data in the common block can exist in the same

program. In contrast, objects are constructed dynamically and there

can be arbitrarily many objects based on the same class (limited only

by the amount of memory available at run time). This allows for high-

level expressions like the one shown in Fig. 9(c). Note that there is

almost no technical or notational overhead in the expression (apart

from the dot and the parentheses). This level of abstraction would be

impossible to achieve with lower-level programming languages such

as C and Fortran 77.

Figure 9
Example (using Python syntax) for expressions in an object-oriented programming
language. (a) The Symmetry object is an `instance' of a class for the handling of
space-group symmetry (Spacegroup). (b) ChangeOfBasisOperator is another
object that is an instance of a class for the handling of change-of-basis matrices
(ChOfBasisOp). (c) ChangeBasis is a method of the space-group class that applies
the given change-of-basis matrix to transform the symmetry operations stored in
the Symmetry object. The result is returned as a new, dynamically allocated
instance of the space-group class: the object TransformedSymmetry. Both
Symmetry and TransformedSymmetry exist simultaneously after the expression
is evaluated and can be independently manipulated.

Figure 8
Functional core of the web_hklf example Python script. (a) Information that is
stored for each atomic site. The standard features of Python are used to process the
list of atomic sites entered in the input form. (b) Generation of Miller indices given
unit-cell parameters, a group of symmetry operations, and a high-resolution limit.
(c) Direct-summation structure-factor calculation given a list of sites containing
information as shown in (a), and a set of Miller indices as generated in (b).

electronic reprint

A2. Exception handling

Another principle concept of modern programming languages is

that of exception handling. Both Python and C++ support exception

handling, and the cctbx uses this for handling and reporting errors.

With exception handling, the handling of errors is cleanly sepa-

rated from the actual algorithms. Consider a simple expression like b

= a.inverse() * x to compute the inverse of a matrix a and

multiply the result with a vector x. If the matrix a is not invertible, an

exception is raised by the matrix-inversion algorithm. This exception,

and hence the error, can be detected and processed anywhere in the

program. Without exception handling, the expression would have to

be broken up into a sequence of atomic operations and if statements

to test for errors. Potentially, the error status has to be propagated

through a multi-level hierarchy of function calls. The resulting code is

heavily cluttered with if statements [see e.g. SgInfo (Grosse-Kuns-

tleve, 1995)].

Many Fortran programs use an approach that avoids elaborate

error testing: a STOP statement is used to report an error condition

and terminate the program. This makes it very dif®cult to integrate

such programs into larger systems that typically require run-time

status to be carefully tracked. Exception handling can be viewed as a

generalization of the STOP statement that is compatible with modular

programming. If an exception is raised but not caught, the result is

identical to using a Fortran STOP. However, high-level components of

a larger system have the full ability to catch and analyze the excep-

tions and continue in an orderly manner.

A3. Summary of important cctbx features

A3.1. Element toolbox: eltbx

The element toolbox provides the following.

(i) Nine-term coef®cients for the analytical approximation to the

scattering factor for all elements and selected ions (International

Tables for Crystallography, 1992, Vol. C, pp. 500±502).

(ii) Eleven-term coef®cients for the analytical approximation to

the scattering factor for all elements and selected ions (Waasmaier &

Kirfel, 1995).

(iii) Henke tables (Henke et al., 1993) for elements with Z = 1±92.

Each table contains about 500 points on a uniform logarithmic mesh

from 10 to 30000 eV with points added 0.1 eV above and below

absorption edges. The atomic scattering factors are based upon

experimental measurements of the atomic photoabsorption cross

section. The absorption measurements provide values for the

imaginary part of the atomic scattering factor. The real part is

calculated from the absorption measurements using the Kramers±

Kronig integral relations.

(iv) Sasaki tables (Sasaki, 1989) for elements with Z = 4±83 and Z =

92. These tables are valid in the energy range 4±124 keV. They have a

®ne step size close to the absorption edges (K, L1, L2, L3). The tables

are therefore suitable for use in connection with anomalous diffrac-

tion experiments.

(v) Neutron bound scattering lengths and cross sections (Neutron

News, 1992, Vol. 3, No. 3, pp. 29±37).

(vi) Characteristic wavelengths of commonly used X-ray tube

target materials: Cr, Fe, Cu, Mo, Ag.

(vii) Ionic radii [ICSD User's Manual (Inorganic Crystal Structure

Database, 1986)].

(viii) Atomic weights (CRC Handbook of Chemistry and Physics,

1989±1990, 70th edition, ISBN 0-8493-0470-9).

J. Appl. Cryst. (2002). 35, 126±136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox 133

computer programs

A3.2. Unit-cell toolbox: uctbx

The unit-cell toolbox provides the following.

(i) Computation of the metrical matrix (Boisen & Gibbs, 1990).

(ii) Computation of the unit-cell volume (see e.g. Giacovazzo,

1992).

(iii) Orthogonalization and fractionalization of coordinates using

the Protein Data Bank (PDB) convention. Let F = {a,b,c} be the

fractional basis, and C = {i,j,k} be the Cartesian (orthogonal) basis. C

is de®ned in terms of F by the following relations: i||a; j is in the (a,b)

plane; k = i � j. The lengths of all vectors i, j, k are 1.

(iv) Transformation (change of basis) of unit-cell parameters. Let

Gold be the metrical matrix of the old basis system, and R the rotation

part of a transformation matrix that transforms the coordinates in the

old basis system to coordinates in the new basis system. The metrical

matrix for the transformed unit cell is Gnew = RÿtGoldR
ÿ1, where Rÿ1

is the inverse of R, and Rÿt is the transposed inverse of R.

(v) Computation of various d-spacing measures given a Miller

index (see e.g. Giacovazzo, 1992).

(vi) Computation of the maximum Miller indices for a given

minimum d-spacing. This computation is based on evaluating the

lengths of the unit vectors in reciprocal space and involves the

metrical matrix G* of the reciprocal unit cell. The maximum Miller

indices Hmax are determined as:

Hmax �
f ��0; 1; 0�; �0; 0; 1��
f ��0; 0; 1�; �1; 0; 0��
f ��1; 0; 0�; �0; 1; 0��

8<
:

9=
;:

The function f is de®ned as:

f �u; v� � int
G�u �G�v

��G�u �G�v�G��G�u �G�v��1=2

� �
:

The function int(x) converts a decimal number x into the next smaller

integer number.

A3.3. Space-group toolbox: sgtbx

A3.3.1. SpaceGroupSpaceGroup

The SpaceGroup class is the central class of the sgtbx. Objects of this

class are typically initialized with a Hall symbol (Hall & Grosse-

Kunstleve, 2001). The symbol is parsed to obtain symmetry opera-

tions (represented as matrices) which are then added to the

SpaceGroup object. It is also possible to add symmetry matrices

directly. A Hall symbol does not need to be supplied if only matrices

are known.

The internal structure of a SpaceGroup object and the optimized

algorithm for carrying out the group multiplication are described in

detail by Grosse-Kunstleve (1999). The SpaceGroup class supports

about 50 methods. The principle methods include the following.

(i) Input of symmetry operations and group multiplication.

(ii) Test for chirality. A space group is chiral if all its symmetry

operations have a positive rotation-part type (1, 2, 3, 4, 6). If there are

symmetry operations with negative rotation-part types (ÿ1, ÿ2 = m,

ÿ3, ÿ4, ÿ6) the space group is not chiral. There are exactly 65 chiral

space groups.

(iii) Determination of a change-of-basis matrix that transforms the

given setting to a primitive setting. For the conventional centring

types (P, A, B, C, I, R, H, F), tabulated matrices are used for

convenience. For the general case, the matrix is determined with the

algorithm of Grosse-Kunstleve (1999).

(iv) Application of a change-of-basis matrix to the symmetry

operations.

electronic reprint

computer programs

134 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

(v) Test if given unit-cell parameters are compatible with the

symmetry operations. A given unit cell is compatible with a given

space-group representation if the following relation holds for all

rotation matrices R of the space group: RtGR = G, where G is the

metrical matrix for the unit cell. This formula tests if the unit cell

(represented by G) is invariant under the basis transformations

corresponding to the symmetry operations.

(vi) Test if a given Miller index ful®lls the conditions for a

systematically absent re¯ection.

(vii) Determination of symmetrically equivalent Miller indices and

related properties (see xA3.3.5).

(viii) Determination of the point-group type and the Laue-group

type.

(ix) Construction of derived groups (Patterson space group, point

group, Laue group).

A3.3.2. SpaceGroupInfoSpaceGroupInfo

The SpaceGroupInfo class includes an implementation of the

algorithm for the determination of the space-group type (Grosse-

Kunstleve, 1999). The input to the algorithm is a group of symmetry

operations (given as a SpaceGroup object). The result consists of a

space-group number corresponding to the International Tables for

Crystallography (Hahn, 1983) and a change-of-basis matrix that

transforms the given symmetry operations to a reference setting. This

change-of-basis matrix can be used to transform certain space-group

properties that are easy to tabulate, but dif®cult to generate ab initio,

to the given space-group representation. This technique is in principle

similar to computing a normal form of a matrix. The normal form is

advantageous because certain properties of the matrix can be easily

derived from it. Permutation matrices are used to relate these

properties back to the original matrix. In the space-group-type

algorithm, the reference setting corresponds to the normal form, and

the change-of-basis matrix and its inverse correspond to the permu-

tation matrices.

The principle methods of the SpaceGroupInfo class are listed

below. The class is also used in the determination of Wyckoff letters

(xA3.3.6) and for the handling of contiguous reciprocal-space asym-

metric units (xA3.3.7).

(i) Building of space-group symbols given only symmetry matrices

as the input. For conventional space-group representations,

Hermann±Mauguin symbols and Schoen¯ies symbols are obtained

via table lookup. For the general case, the tabulated Hall symbol for

the reference setting of the given space-group type is combined with a

change-of-basis matrix that is obtained with the algorithm for the

determination of the space-group type. To ensure a reproducible Hall

symbol for any given space-group representation, the given change-

of-basis matrix is combined with the operations of the af®ne

normalizer in order to select a `canonical' change-of-basis matrix.

Each product of the given change-of-basis matrix and an operation of

the af®ne normalizer is an alternative change-of-basis matrix. The

selection of the canonical change-of-basis matrix is based on a set of

rules which ensure that the selected matrix is independent of the

order in which the alternative matrices are generated.

(ii) Access to generators of the Euclidean normalizer (Fischer &

Koch, 1983; Hirshfeld, 1968). The combined use of this method and

the StructureSeminvariant class (xA3.3.3) gives a complete

description of Euclidean normalizers.

(iii) Test for the 22 (11 pairs) enantiomorphic space groups. A

space group G is enantiomorphic if G and ÿIG(ÿI) have two

different space-group types. I is the unit matrix.

(iv) Determination of a change-of-hand matrix. This matrix can be

used to transform the given symmetry operations to obtain the

enantiomorph symmetry operations, and to transform fractional

coordinates to the enantiomorph space group.

A3.3.3. StructureSeminvariantStructureSeminvariant

Structure-seminvariant vectors and moduli are a description of

`permissible' or `allowed' origin shifts. These are important in crystal

structure determination methods (e.g. direct methods) or for

comparing crystal structures. An introduction to structure-semi-

nvariant vectors and moduli is given in ch. 2.2.3 of the International

Tables for Crystallography, Vol. B (Shmueli, 2001). The Struc-

tureSeminvariant class of the sgtbx is an implementation of the

algorithms in section 6 of Grosse-Kunstleve (1999). These algorithms

are executed when the class is instantiated. The vectors and moduli

are accessed through member functions of the class.

Allowed origin shifts are also a part of the Euclidean normalizer

symmetry and listed in the International Tables for Crystallography,

Vol. A (Hahn, 1983), Table 15.3.2, column `Translations'. The other

generators listed in the `Additional generators' column of the same

table are accessible through the SpaceGroupInfo class (see xA3.3.2).

A3.3.4. RotMxInfoRotMxInfo and TranslationComponentsTranslationComponents

The algorithms described by Grosse-Kunstleve (1999) are use to

determine the following properties of symmetry operations.

(i) The rotation-part type (1, 2, 3, 4, 6, ÿ1, ÿ2 = m, ÿ3, ÿ4, ÿ6).

(ii) Axis direction (eigenvector) of the proper rotation matrix

corresponding to the rotation matrix of the symmetry operation.

(Improper rotation matrices have a determinant of ÿ1. The proper

rotation matrix with determinant 1 is obtained by multiplying all

elements of the matrix with ÿ1.)

(iii) Sense of rotation (clockwise or counter-clockwise) with

respect to the axis direction. (The sense of rotation is only de®ned for

rotation part types 3, 4, 6, ÿ3, ÿ4, ÿ6.)

(iv) Determination of the intrinsic (screw or glide) part of the

translation part.

(v) Determination of the location part of the translation part.

(vi) Determination of a ®xed point (origin shift) of the eigenvector

of the proper rotation matrix corresponding to the rotation matrix of

the symmetry operation.

For example, if applied to the symmetry operation ÿy, z + 1/2, ÿx

+ 1/2, the algorithms produce the following results.

(i) Rotation part: 3.

(ii) Axis direction: [ÿ1, 1, 1].

(iii) Sense of rotation: positive (counter-clockwise).

(iv) Intrinsic part: (ÿ1/3, 1/3, 1/3) (this is 1/3 [ÿ1, 1, 1], the axis

direction; i.e., the symmetry operation is a 31axis).

(v) Location part: (ÿ1/3, ÿ1/6, ÿ1/6).

(vi) Fixed point: (1/6, 1/6, 0).

A3.3.5. SymEquivMillerIndicesSymEquivMillerIndices and PhaseRestrictionPhaseRestriction

Objects of the class SymEquivMillerIndices are initialized with

an input Miller index that is passed to a method of a SpaceGroup

object. A list of symmetrically equivalent Miller indices is computed

and stored inside the object. The methods provided by the class

SymEquivMillerIndices include the following.

(i) Test if the re¯ection with the input Miller index is centric. A

re¯ection with the Miller index H is centric if there is a symmetry

operation with rotation part R such that HR = ÿH.

(ii) Multiplicity of the input Miller index. For acentric re¯ections

and in the presence of Friedel symmetry (no anomalous signal), the

multiplicity is twice the number of symmetrically equivalent Miller

indices. For centric re¯ections or in the absence of Friedel symmetry

electronic reprint

(i.e. in the presence of an anomalous signal), the multiplicity is equal

to the number of symmetrically equivalent Miller indices.

(iii) Determination of the factor " for the input Miller index. The

factor " counts the number of times a Miller index H is mapped onto

itself by symmetry. This factor is used for statistical averaging (Read,

1986) and in direct methods formulae (Stewart & Karle, 1976).

(iv) Determination of a representative symmetry-unique (`asym-

metric') Miller index. The selection of the symmetry-unique index is

based on 12 contiguous reciprocal-space asymmetric units that cover

the 230 reference settings. The algorithm for the determination of the

space-group type is used to derive a change-of-basis matrix for the

transformation of the tabulated asymmetric units. In this way a

contiguous asymmetric unit is available for any arbitrary setting.

(v) Determination of the phase restrictions for the input Miller

index. The result is a new object of the class PhaseRestriction.

Objects of this class provide methods for reporting the pair of

restricted phases, and methods for testing if a given phase is

compatible with the restrictions.

A3.3.6. SymEquivCoordinatesSymEquivCoordinates

Objects of the class SymEquivCoordinates are containers for lists

of symmetrically equivalent sites in fractional space, for example sites

occupied by atoms. For maximum ¯exibility, the class supports a

variety of algorithms, as follow.

(i) A trivial algorithm (no treatment of special positions). The

symmetrically equivalent sites are obtained as the product of all

symmetry operations with the fractional coordinates of the input site

X. The number of symmetrically equivalent sites in the resulting list is

always equal to the order of the space group. Special positions are not

treated in a special way.

(ii) A simplistic algorithm (with treatment of special positions).

The symmetry operations are applied to the fractional coordinates X.

The unit-cell parameters are used to compute the distances between

the symmetrically equivalent sites. If the distance between symme-

trically equivalent sites is shorter than a given small tolerance, X is on

a special position and duplicates are removed from the list. As

explained in detail by Grosse-Kunstleve & Adams (2002), due to

rounding errors that are inevitably associated with ¯oating-point

arithmetic, this simple algorithm is not numerically stable. As a

safeguard it is asserted that the number of symmetrically equivalent

points in the list is a factor of the space-group multiplicity. To ensure

numerical stability, it is also possible to de®ne an exclusion radius. An

exception is raised if a symmetrically equivalent point is within this

radius around the original site, but not within the given tolerance.

This approach does not silently lead to incorrect results, but manual

intervention is required if a problem is detected.

(iii) An algorithm based on the site-symmetry group. The site-

symmetry group is determined with the numerically robust

algorithm of Grosse-Kunstleve & Adams (2002). If the input site

is close to a special position, it is moved to the exact location of

the nearest special position by applying a special position

operator that is de®ned as the average of the symmetry opera-

tions of the site-symmetry group. A list of unique operations is

obtained as the non-redundant list of products of the symmetry

operations of the space group and the special position operator.

The list of symmetrically equivalent sites is then obtained by

multiplying the coordinates of the exact location of the nearest

special position with the unique operations. This algorithm is

slower than the simplistic algorithm outlined above, but not

susceptible to rounding errors and therefore ideal for highly

automated applications where the need for human intervention is

prohibitive.

(iv) An algorithm based on a table of Wyckoff positions. This

algorithm is an alternative to the algorithm that is based on the site-

symmetry group. Conceptually the algorithms are similar. However, if

the Wyckoff letter is known in advance, it can be used to obtain the

special position operator from a table of representative special

position operators (Grosse-Kunstleve & Adams, 2002). This proce-

dure is both robust and fast.

A3.3.7. Brick

A `brick' in the cctbx is a parallelepiped chosen to minimize the

memory that has to be allocated for storing part of a map (e.g. an

electron density map) covering an asymmetric unit. Asymmetric units

of high-symmetry space groups are complicated shapes, not paralle-

lepipeds. Therefore, a brick will in general contain more than exactly

one asymmetric unit. However, we are free to choose an asymmetric

unit (which is not necessarily contiguous), and ®nd the smallest

convenient parallelepiped that will contain this volume.

Bricks for 530 conventional settings and an additional 223 primi-

tive settings of centred space groups were computed with sginfo2

(unpublished work). Currently, the algorithm for computing the

bricks is not available in the cctbx, and the bricks are therefore

tabulated. However, given the large number of tabulated bricks this

should hardly ever be noticeable.

For some applications it is necessary to map out exactly one

asymmetric unit. A method for re®ning a brick is to allocate a map

that contains ¯ags indicating whether or not a certain point inside the

brick is in the asymmetric unit or is redundant. It is straightforward to

generate such a map of ¯ags by looping over the symmetry operations

for each grid point. One point is marked as being in the asymmetric

unit, and all symmetrically equivalent points are marked as being

outside.

We would like to thank Y. LePage and E. Kroumova for providing

electronic copies of the Wyckoff tables as published in the Interna-

tional Tables for Crystallography, Vol. A. K. Cowtan contributed an

initial version of the algorithms for the handling of contiguous reci-

procal-space asymmetric units. Vincent Favre-Nicolin contributed

initial versions of the Henke tables, the Sasaki tables, and the table of

neutron bound scattering lengths and cross sections of the element

toolbox. Our work was funded in part by the US Department of

Energy under Contract No. DE-AC03-76SF00098 and by NIH/

NIGMS under grant number 1P50GM62412.

References

Backus, J. W. (1954). Preliminary Report, Speci®cations for the IBM
Mathematical FORmula TRANslating System, FORTRAN. IBM, New
York, USA.

Boisen, M. B. Jr & Gibbs, G. V. (1990). Mathematical Crystallography, Reviews
in Mineralogy, Vol. 15 (revised edition). Washington, DC: Mineralogical
Society of America.

Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-
Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read,
R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54,
905±921.

CRC Handbook of Chemistry and Physics (1989±1990). 70th edition. Boca
Raton, FL: CRC Press.

Fischer, W. & Koch, E. (1983). International Tables for Crystallography, Vol.
A, ch. 15. Dordrecht: Kluwer.

Giacovazzo C. (1992). Editor. Fundamentals of Crystallography, IUCr Texts on
Crystallography 2. Oxford Science.

Grosse-Kunstleve, R. W. (1995). SgInfo ± A Comprehensive Collection of
ANSI C Routines for the Handling of Space Group Symmetry. http://
www.Krist.ethz.ch/LFK/software/sginfo/.

Grosse-Kunstleve, R. W. (1999). Acta Cryst. A55, 383±395.
Grosse-Kunstleve, R. W. & Adams, P. D. (2002). Acta Cryst. A58, 60±65.

J. Appl. Cryst. (2002). 35, 126±136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox 135

computer programs

electronic reprint

computer programs

136 Ralf W. Grosse-Kunstleve et al. � Computational Crystallography Toolbox J. Appl. Cryst. (2002). 35, 126±136

Hahn, T. (1983). Editor. International Tables for Crystallography, Vol. A.
Dordrecht: Kluwer.

Hall, S. R. & Grosse-Kunstleve, R. W. (2001). International Tables for
Crystallography, Vol. B, ch. A1.4.2., pp. 107, 112±119. Dordrecht: Kluwer.

Henke, B. L., Gullikson, E. M. & Davis, J. C. (1993). Atomic Data and Nuclear
Data Tables, Vol. 54, No. 2. New York: Academic Press.

Hirshfeld, F. L. (1968). Acta Cryst. A24, 301±311.
Inorganic Crystal Structure Database (1986). ICSD User's Manual. Inorganic

Crystal Structure Database, Bonn, Germany.
International Standardization Organization (ISO), International Electrotech-

nical Commission (IEC), American National Standards Institute (ANSI),
and Information Technology Industry Council (ITI) (1998). International
Standard ISO/IEC 14882, 1st ed., Information Technology Industry Council,
1250 Eye Street NW, Washington, DC 20005, USA (also available at http://
webstore.ansi.org/).

Lohr, S. (2001). The New York Times, Wednesday, June 13, 2001.

Read, R. J. (1986). Acta Cryst. A42, 140±149.
Redwine, C. (1995). Upgrading to Fortran 90. Berlin: Springer Verlag.
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors

Calculated by the Cromer and Liberman Method, KEK Report 88-14, 1-136.
Service, R. F. (2000). Science, 289, 2254±2255.
Sheldrick, G. M. & Gould, R. O. (1995). Acta Cryst. B51, 423±431.
Shmueli, U. (2001). International Tables for Crystallography, Vol. B.

Dordrecht: Kluwer.
Stewart, J. M. & Karle, J. (1976). Acta Cryst. A32, 1005±1007.
Suh, I.-H., Kim, K.-J., Choo, G.-H., Lee, J.-H., Choh, S.-H. & Kim, M.-J. (1993).

Acta Cryst. A49, 369±371.
Veldhuizen, T. L. & Gannon, D. (1998). Proceedings of the SIAM Workshop

on Object Oriented Methods for Inter-operable Scienti®c and Engineering
Computing, October 21±23, 1998. Philadelphia: SIAM Press.

Waasmaier, D. & Kirfel, A. (1995), Acta Cryst. A51, 416±431.
Weeks, C. M. & Miller, R. (1999). J. Appl. Cryst. 32, 120±124.

electronic reprint

