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1. Introduction

Traditionally, experimental phasing of macromolecular struc-

tures involves heavy-atom soaks and the collection of two or

more data sets: the diffraction intensities of the native crystal

and those of the derivative(s). This is often referred to as

single or multiple isomorphous replacement (SIR, MIR). In

recent years, it has become very popular to use crystals

containing anomalous scatterers, most notably by seleno-

methionine substitution. These experiments are known as

single or multiple anomalous diffraction experiments (SAD,

MAD) or alternatively single anomalous scattering experi-

ments (SAS).

Experimental phasing can be viewed as a divide-and-

conquer technique in which the larger problem of determining

the complete structure is divided into two steps.

(i) Given the experimental diffraction data, approximate

substructure structure factors are computed, e.g. difference

structure factors. The substructure is solved using methods

developed for the solution of small molecules.

(ii) Using the substructure, algebraic or probabilistic

methods are used to extrapolate phases for the full structure.

The structure-solution process continues with density modi®-

cation, model building and re®nement. In this paper, we focus

on the ®rst step above, the determination of the substructure.

2. Estimation of substructure structure factors

2.1. Isomorphous differences

Since the number of atoms in a native macromolecular

structure is usually much larger than the number of additional

heavy atoms in a derivative, it is a valid approximation to

assume FH << FPH, where FH are the structure-factor ampli-

tudes corresponding to the substructure only and FPH the

structure-factor amplitudes of the derivative. This approx-

imation leads to (Blundell & Johnson, 1976a)

FH << FPH ) FPH ÿ FP � FH cos�'PH ÿ 'H�: �1�

The cosine term takes on values betweenÿ1 and 1. Therefore,

the isomorphous differences FPH ÿ FP are lower estimates of



the substructure structure factor FH: the FH can be larger but

they cannot be smaller than the observed isomorphous

differences.

2.2. Anomalous differences

Similar considerations lead to the following equation for

anomalous differences F�PH ÿ FÿPH (Blundell & Johnson,

1976b),

F 00H << F 0PH0 ) F�PH ÿ FÿPH � 2F 00H sin�'PH ÿ 'H�: �2�
Here, F 00H are the imaginary contributions to the structure

factors of the anomalous scatterers and F 0PH is the sum of the

structure factors of the macromolecular structure and the real

contributions of the anomalous scatterers. The sine term also

takes on values between ÿ1 and 1. Therefore, the anomalous

differences are lower estimates of the imaginary contributions

of the anomalous scatterers.

2.3. FA structure factors

In the case of multiple anomalous diffraction (MAD)

experiments, it is possible to compute better estimates of the

substructure factors. These estimates are commonly referred

to as FA structure factors. Various algorithms for the compu-

tations of FA structures are available: MADSYS

(Hendrickson, 1991), CCP4 REVISE (Fan et al., 1993),

SOLVE (Terwilliger, 1994) and XPREP (Bruker AXS,

Madison, USA). For good MAD data, FA structure factors

usually lead to signi®cantly more ef®cient determination of

the substructure. However, if the MAD data are affected by

systematic errors such as intensity changes arising from

radiation damage, it is possible that the corresponding FA

structure factors are not suitable for substructure determina-

tion. In this case, it is adventageous to attempt substructure

determination with the data set collected ®rst (ideally at the

peak of the anomalous signal).

3. The phase problem

In the second and third decades of the 20th century, early

X-ray crystallographers worked out that the observed

diffraction intensities are directly related to the Fourier

transformation of the electron density of the crystal structure

(not taking Lorentz factors, polarization factors and other

experiment-speci®c corrections into account),

I1=2 � jFj / FT���: �3�
Here, I represents the observed intensities, |F | the structure-

factor amplitudes, � the electron density and FT a Fourier

transformation. The same relation more speci®cally:

Fh � jFhj exp�i'h� �
V

N

P
x

��x� exp�2�ihx�: �4�

Here, h is a Miller index, x the coordinate of a grid point in

real space, N the total number of grid points and V the volume

of the unit cell. The complex structure factor F is also shown in

the alternative representation as a pair of amplitude |F | and

phase (').

Obviously, it is straightforward to compute the structure-

factor amplitudes from the electron density. Given complex

structure factors, it is equally straightforward to compute the

electron density via a Fourier transformation,

� / FTÿ1�F�: �5�

FTÿ1 represents the inverse Fourier transformation. Unfor-

tunately, with current technology it is almost always

impractical to directly measure both intensities and phases.

Conventional diffraction experiments only produce

intensities; the phases are not available. This is colloquially

known as the `phase problem' of crystallography.

4. Techniques for solving the phase problem

4.1. Patterson methods

The Patterson function is de®ned as the Fourier transfor-

mation of the observed intensities,

Patterson / FTÿ1�I�: �6�
This is a straightforward calculation requiring only the

experimental observations as the input. Patterson (1935)

showed that the peaks in this Fourier synthesis correspond to

vectors between atoms in the crystal structure. Alternatively,

the Patterson function can be viewed as a convolution as

follows.

(i) Note that the real intensity I is the product of the

complex structure factor F and its complex conjugate.

Therefore,

Patterson / FTÿ1�I� � FTÿ1�F � F��: �7�

(ii) The next elementary observation is

F� � FT��inverse�: �8�
This follows immediately from the de®nition of the discrete

Fourier transformation (4).

(iii) Now we consider a central theorem of Fourier methods,

the convolution theorem (e.g. Giacovazzo, 1992),

FT�g� � FT�h� � FT�Convolution�g; h��: �9�

(iv) By substituting � and �inverse, we arrive at

F � F� � FT��� � FT��inverse� � FT�Convolution��; �inverse��:
�10�

(v) Comparison with (7) leads to the conclusion (Rama-

chandran & Srinivasan, 1970)

Patterson � Convolution��; �inverse�: �11�
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4.2. Patterson interpretation in direct space and in reciprocal
space

In the classic textbook Vector Space, Buerger (1959)

demonstrates that under idealized conditions image-seeking

procedures are capable of recovering the image of the electron

density from the Patterson function. `Idealized conditions'

essentially means fully resolved peaks in the Patterson func-

tion. In practice this condition is only ful®lled for very small

structures, but it still is possible to extract useful information

from real Patterson maps. The basic idea is as follows.

(i) Postulate a hypothesis, for example a putative

substructure con®guration.

(ii) Test the hypothesis against the Patterson map.

The test involves the computation of vectors between the

atoms of the putative substructure and the determination of

the values in the Patterson map at the location of these

vectors. This involves interpolation between grid points of the

map. The interpolated peak heights are usually the input for

the computation of a Patterson score. Theoretically, the

minimum of all the peak heights found is the most powerful

measure, but sum or product functions have also been used

(Buerger, 1959). Nordman (1966) suggests using the mean of a

certain percentage of the lowest values.

It is also possible to work with the observed intensities in

reciprocal space, without transforming them according to (6).

Conceptually, the procedure is even simpler.

(i) Postulate a hypothesis, for example a putative

substructure con®guration.

(ii) Test the hypothesis against the observed intensities.

In this case, the test involves the calculation of intensities for

the putative structure and the evaluation of a function

comparing these with the observed intensities; for example,

the standard linear correlation coef®cient (e.g. Press et al.,

1986). An advantage of this method is that it does not involve

interpolations and should therefore be intrinsically more

accurate. However, the calculations are much slower than the

computation of Patterson scores in direct space if performed

in the straightforward fashion suggested here. The key to

making the reciprocal-space approach feasible is the fast

translation function devised by Navaza & Vernoslova (1995).

We were able to show that the fast translation function is

typically 200±500 times faster than the conventional transla-

tion function. The fast translation function was originally

designed for solving molecular-replacement problems, but we

have also used it successfully for the determination of

substructures (Grosse-Kunstleve & Brunger, 1999).

4.3. Difference Fourier methods

The popular SOLVE program (Terwilliger & Berendzen,

1999) tightly integrates Patterson methods, difference Fourier

analysis and phasing. One or two initial substructure sites are

determined with Patterson superposition functions. The

remaining sites are found by repeated analysis of isomorphous

or anomalous difference Fourier maps. These fundamental

building blocks are integrated into a high-level procedure that

automates decision making using a sophisticated scoring

system. SOLVE includes all steps including the re®nement of

experimental phases. A full account of the procedure is

beyond the scope of this paper and the reader is referred to

the original publication.

4.4. Direct methods

Direct methods were originally developed for the direct

determination of phases without direct use of stereochemical

knowledge. The fundamental approach is to start with a very

small set of starting phases and to construct a more complete

phase set by applying phase probability relationships. The

expanded phase set in combination with the observed struc-

ture factors is used to compute an electron-density map that is

hopefully interpretable when stereochemical knowledge is

taken into account.

The phase probability relations governing the phase-

extension procedure are usually based on the well known

tangent formula (Karle & Hauptman, 1956). This formula is

typically introduced as

tan�'h� �
P

k

EkEhÿk

�� �� cos�'k � 'hÿk�P
k

EkEhÿk

�� �� sin�'k � 'hÿk�
: �12�

To avoid distraction, for the moment we will assume that the E

values in this formula are analogous the structure factors F

introduced above. The derivation of the tangent formula

employs the assumptions that the electron density is positive

everywhere in the unit cell (positivity) and that all atoms are

resolved (atomicity). To understand this, it is useful to rewrite

the tangent formula as a simpler but mathematically equiva-

lent expression,

Eh /
P

k

EkEhÿk: �13�

Comparison with the de®nition of the convolution (e.g.

Giacovazzo, 1992) leads us to recognize thatP
k

EkEhÿk � Convolution�E;E�: �14�

Application of the convolution theorem (9) leads toP
k

EkEhÿk � FT�FTÿ1�E� � FTÿ1�E��: �15�

Application of (5) leads to

FTÿ1�E� � FTÿ1�E� � �2: �16�
Thus, we arrive at

Eh /
P

k

EkEhÿk � FT�FTÿ1�E�2� � FT��2�: �17�

This equation shows that the tangent formula uses positivity

and atomicity to introduce a self-consistency argument. Fig. 1

illustrates the essence of direct methods.

(i) Consider a crystal structure of positive point atoms of

equal weight (electron density �).

(ii) From (4) we know that the Fourier transformation

yields complex structure factors E.



(iii) Now consider the square of the crystal structure of

point atoms (�2).

(iv) The tangent formula postulates that the Fourier trans-

form of �2 yields structure factors that are directly propor-

tional to the structure factors obtained by transforming �. The

amplitudes may differ by a constant factor depending on the

weight chosen for the point atoms, but the phases are identical.

This argument is essentially the same as that used in the

derivation of the Sayre equation (Sayre, 1952; note that the

title of this paper begins with `The Squaring Method'). Sayre's

equation is slightly more complex than the tangent formula

because it is formulated for atoms with Gaussian shapes rather

than point atoms. This describes real crystal structures more

closely, but in practice it is often more advantageous to

eliminate the shape term and to work with normalized struc-

ture factors corresponding to point atoms. Recognizing that

the Fourier transformation of an isolated point atom is a

constant, it is only a small step to realise that the expected

average diffraction intensities of a point-atom structure are

independent of the diffraction angle (cf. neutron diffraction

experiments). Therefore, normalized structure factors can be

estimated from observed intensities by enforcing the expected

average in resolution shells,

E2
h �

F2
h

hF2
h="hi

: �18�

To be precise, this equation yields estimates of the quasi-

normalized structure factors. The term " takes the multiplicity

of the re¯ections into account and can be directly computed

from the space-group symmetry (simply by counting how

often a given Miller index h is mapped onto itself by

symmetry; " must be used instead of the more familiar

multiplicity because the latter conventionally takes Friedel

symmetry into account).

4.5. Convolutions revisited

We have shown that both the Patterson function and the

tangent formula underlying direct methods can be interpreted

as convolutions. To summarize,

Patterson � Convolution��; �inverse�:

The Patterson function is a convolution in direct space that

leads to squaring in reciprocal space: the intensities are

proportional to the square of the structure factors (3).

Conventionally, the Patterson function is analyzed in direct

space using image-seeking procedures,

Eh /
P

k

EkEhÿk � Convolution�E;E� � FT��2�:

The tangent formula is a convolution in reciprocal space that

leads to squaring in direct space. Employing positivity and

atomicity, the tangent formula leads to a self-consistency

argument and in practice some form of recycling (see Fig. 1).

4.6. Dual-space structure-solution methods

The tangent formula alone often does not work ef®ciently

for solving structures with many atoms (see Woolfson, 1961,

for some very interesting remarks). The most popular `direct-

methods' programs used in macromolecular crystallography

today are the result of an evolution that transformed the pure

phase-extension idea into complex multi-trial search proce-

dures. MULTAN (Germain et al., 1970) pioneered the multi-

trial approach but is still motivated by the phase-extension

idea. RANTAN (Yao, 1981) and early versions of SHELX

(Sheldrick, 1985) mark the transition to random-seeded multi-

trial approaches that use the tangent formula in a recycling

procedure to enforce self-consistency (Fig. 1). Shake-and-

Bake (Miller et al., 1994) and more recent versions of SHELX

(Sheldrick & Gould, 1995) introduced the concept of dual-

space recycling (Sheldrick et al., 2001). Reciprocal-space phase

manipulation based on the tangent formula, or the minimal

function in the case of Shake-and-Bake, is alternated with

direct-space interpretation of Fourier maps. Shake-and-Bake

picks peaks from the Fourier maps, taking a given minimum

distance into account. The peaks are used in a structure-factor

calculation to obtain new phases that are entered into the next

cycle of phase manipulation. SHELXD (Schneider & Shel-

drick, 2002) follows a similar approach but typically picks

more peaks than are expected (e.g. 1.3 times the expected

number of sites) and randomly selects the expected number

for recycling. This is known as the random omit procedure.

4.7. Direct-methods recycling with Patterson seeding

Conventional direct-methods programs initialize the re-

cycling procedure with random phases or random coordinates.

In contrast, SHELXD (Schneider & Sheldrick, 2002) uses

Patterson seeding to obtain better than random starting

phases for the recycling procedure. The fundamental steps in

the procedure are the following.

(i) Generation of two-atom fragments. A given number of

peaks are picked from a sharpened Patterson map (special

positions are omitted). These are considered to be possible

vectors between two atoms of the substructure. However, at
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Figure 1
The essence of direct methods. Normalized structure factors correspond
to point atoms at rest. Squaring in direct space followed by a Fourier
transformation leads to structure factors that are proportional to the
original structure factors. The phases are identical.
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this stage only the relative orientation of the two atoms is

known, not their absolute position in the unit cell. The

Nordman (1966) function is used to obtain scores for a

number of random translations of the two-atom fragments.

(ii) Extrapolation to the full substructure. Conceptually, a

third probe atom is systematically placed on the points of a

uniform grid over the asymmetric unit while keeping a trial

two-atom fragment ®xed at a position that led to a high score.

For each grid point, the resulting interatomic vectors are

computed, followed by the determination of the corre-

sponding Nordman score. Points with the highest scores are

added to the original two-atom fragment to generate the

expected number of atoms.

(iii) Correction of defects. Typically, the structures obtained

in the previous step contain a considerable number of

misplaced atoms. Even the best solutions often have less than

half of the atoms correctly placed. These defects are ef®ciently

corrected using dual-space recycling (tangent-formula

expansions and random omission of peaks). The standard

linear correlation coef®cient (e.g. Press et al., 1986) between

calculated and observed intensities is a very reliable score for

ranking the ®nal results of the dual-space recycling procedure.

5. Rapid prototyping of a hybrid substructure search

We have implemented a prototype for a new hybrid

substructure search procedure (HySS) based on Patterson

methods and direct methods as described above, similar to

those developed in programs such as Shake-and-Bake and

SHELXD. We used the algorithms already implemented

in the Computational Crystallography Toolbox (Grosse-

Kunstleve et al., 2002; Grosse-Kunstleve & Adams, 2003a) as

fundamental building blocks. This included a limited-memory

(Langs, 2002) fast translation function (Navaza & Vernoslova,

1995) that we had already implemented for the solution of

molecular-replacement problems (Adams et al., 2002). Ef®-

cient algorithms for the handling of symmetry, fast Fourier

transformations and structure-factor calculations were also

readily available. Our main goals were the following.

(i) To test the usefulness of the theoretically more accurate

fast translation function for Patterson seeding.

(ii) To replace the random search for two-atom fragment

positions with a systematic search.

(iii) To ®nd reliable methods for automatically terminating

the search procedure when it is clear that the substructure is

solved.

(iv) To minimize the amount of newly written compiled

code (C++) to reduce the development time (Grosse-

Kunstleve & Adams, 2003a).

The following is the core procedure as implemented at the

moment, entirely in a high-level interpreted language

(Python).

(i) Generation of two-atom fragments. A given number of

peaks are picked from the Patterson map computed with

quasi-normalized intensities as coef®cients (peaks on Harker

sections are omitted). For each Patterson vector a two-atom

fragment is constructed with the atoms at the endpoints. The

limited-memory fast translation function is used to system-

atically sample the entire asymmetric unit for the best posi-

tions.

(ii) Extrapolation to the full substructure. For a given

number of peaks in the two-atom translation function, the

positioned two-atom fragment is kept ®xed in the computation

of another fast translation function with a third atom as the

probe. The peaks in this function are added to the two-atom

fragment to obtain the expected number of substructure sites.

(iii) Correction of defects. Defects in the extrapolated

structures are corrected using a direct-space recycling proce-

dure. Because it was faster to implement in our framework,

the tangent-formula expansions are performed in direct space

simply by squaring, exactly as shown in Fig. 1. This is alter-

nated with application of the random omit procedure. We

search for 0.9 times the number of expected sites and

randomly select 2/3 for the next recycling step.

HySS introduces the following new experimental features.

(i) Initial recycling in P1 symmetry. A somewhat counter-

intuitive but consistent observation is that the recycling

procedure is often far more ef®cient if carried out in P1

symmetry (Sheldrick & Gould, 1995). Therefore, we expand

the extrapolated structures obtained via the fast translation

function with the third site to P1 symmetry. After a given

number of recycling cycles (default 10), the fast translation

function is used a third time with the entire P1 structure as the

probe in order to relocate the solution in the original

symmetry. At the correct positions with respect to the

symmetry elements the P1 structure is mapped onto itself,

resulting in high correlations. At other positions the atoms are

mapped essentially onto random positions for which one can

expect low correlations. Therefore, the peaks in the translation

function indicate the correct origin of the P1 structure with

respect to the symmetry elements of the actual space group.

(ii) Recycling only for extrapolated structures with high

correlation coef®cients. For the most frequently found

macromolecular space groups, the recycling procedure for the

correction of defects is the most time-consuming step. To save

time, we monitor the correlation coef®cients of the extra-

polated structures and start the recycling procedure only if the

correlation coef®cient is among the ten highest encountered

so far.

(iii) Automatic termination. Conventionally, search proce-

dures are run for a preset number of trials or until they are

terminated manually. The correlation coef®cients are usually

the guide for decision-making. However, using the correlation

coef®cients alone is sometimes dif®cult. The absolute values

are not necessarily conclusive, especially if the correct solution

has a low correlation. Some searches yield tri-modal distri-

butions, so that simply looking for outstanding correlation

coef®cients can also be misleading. Therefore, the Shake-and-

Bake suite (Smith, 2002) and recently the SHELX suite

(Dall'Antonia et al., 2003) include programs for comparing

substructures that automatically take allowed origin shifts and

change-of-hand operators into account. We have developed a

similar procedure as part of the Computational Crystallo-



graphy Toolbox (for some comments regarding this procedure,

see Grosse-Kunstleve & Adams, 2003a; details will be

published elsewhere; the source code has been fully available

for some time, including a web interface at http://cci.lbl.gov/

cctbx/). We have embedded this procedure into the substruc-

ture search and use it in combination with the correlation

coef®cients to automatically terminate a search under certain

conditions. Our current rule set is as follows.

1. All search results with correlations below 0.1 are

discarded.

2. The difference between the top two correlations must be

less than 0.05.

3. The lesser of the top two correlations must be at least 2.0

times the smallest correlation encountered or greater than a

sliding threshold starting with 0.2.

4. If all the previous conditions are ful®lled, the substruc-

tures with the top two correlation coef®cients are compared.

The search is terminated if more than 2/3 of the number of

expected sites match. Otherwise, the sliding threshold is

increased by 0.05 up to a limit of 0.3.

(iv) Minimalistic command-line interface. The current

implementation of our search procedure works directly with

some common re¯ection ®le formats [e.g. merged SCALE-

PACK (Otwinowski & Minor, 1997) ®les]. The procedure is

started with one command, with the ®le name for the re¯ec-

tion ®le, the expected number of sites and a label for the

scattering type (e.g. phenix.hyss w3.sca 8 Se) as argu-

ments. Apart from the re¯ection ®le, no other input is

required.

6. Results

Table 1 shows our results with the HySS prototype and a

comparison with results obtained with SHELXD on exactly

the same difference data (computed as part of our procedure).

Since SHELXD does not have a mechanism for automatic

termination, we set the number of trials to 100 in most cases, a

value that is probably a typical choice in practice. However,

with the MP883 data SHELXD did not ®nd a solution in the

®rst 100 trials. A solution appeared only when we restarted the

search for another 100 trials. The KPHMT entry is a special

case that is discussed below.

As expected, the raw runtime per trial of our implementa-

tion is longer than that of SHELXD. This is mainly because of

two reasons. Firstly, to minimize development time our

prototype is written entirely in an interpreted language

(Python). The worst-case expected performance penalty is

about a factor of 100. However, the core components (such as

the fast Fourier transformations) of the Computational Crys-

tallography Toolbox are written in a compiled language.

Therefore, the actual overall performance penalty is usually at

most a factor of 2 or 3. Secondly, the two-atom fast translation

searches are exhaustive searches compared with the random

sampling performed by SHELXD.

Table 1 shows that the complete absence of application-

speci®c low-level optimizations is in many cases offset by the

high-level decision to automatically terminate the search. This

is not always the case, but even in the worst case the perfor-

mance penalty is less than a factor of 2, except for P54 (factor

of 3) which is a special case and is discussed below. In general,

searches terminate quickly; in one case (NSF-D2) the search is

completed more than 14 times faster than SHELXD, although

at the expense of one incorrect site.

We observe that for three structures (MP883, NSF-N,

SEC17) the solutions produced by our procedure may not

contain enough correct sites for successful phasing. We have

correlated these failures with the presence of high thermal

displacement factors. SHELXD accounts for this condition

through variable occupancy factors. Currently, we are only

Acta Cryst. (2003). D59, 1966±1973 Grosse-Kunstleve et al. � Substructure search procedure 1971

CCP4 study weekend

Table 1
Results obtained with HySS and SHELXD.

Times are in CPU s (Intel Xeon, 2.7 GHz).

HYSS SHELXD

Structure Asked Got Correct Time Asked Got Correct Trials Time � correct � time Speed-up

1167B 8 7 7 14 8 8 8 100 89 1 75 6.5
AA041 3 3 2 15 3 3 2 100 107 0 93 7.4
AEP-transaminase 66 66 64 1541 66 66 66 100 1037 2 ÿ504 0.7
CP-synthase 16 15 14 52 16 16 16 100 332 2 281 6.4
Gpatase 22 19 17 218 22 22 20 100 881 3 663 4.0
KPHMT 160 138 133 8496 160 160 152 500 13007 19 4511 1.5
MEV-kinase 6 6 4 15 6 6 6 100 83 2 68 5.5
MP217 16 14 11 68 16 16 15 100 208 4 140 3.0
MP883 50 42 21 1494 50 50 37 200 1128 16 ÿ366 0.8
NSF-D2 9 8 7 44 9 8 8 100 632 1 588 14.3
NSF-N 6 4 1 76 6 3 3 100 183 2 108 2.4
P32 9 9 9 29 9 9 9 100 118 0 90 4.1
P54 6 5 5 3005 6 6 6 100 1002 1 ÿ2003 0.3
SEC17 3 1 0 219 3 3 2 100 204 2 ÿ15 0.9
TM142 18 16 14 409 18 18 17 100 390 3 ÿ19 1.0
TM384 4 3 2 76 4 4 2 100 327 0 251 4.3
UT-synthase 24 24 21 397 24 24 22 100 689 1 291 1.7
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using ®xed occupancies in the recycling procedure, but we are

planning to implement optimization of occupancy factors or

thermal displacement factors to model the substructure more

accurately.

For KPHMT (160 expected sites) we used data that were

merged with the CCP4 programs SCALA and TRUNCATE

(von Delft, private communication). With these data

SHELXD did not produce a correct solution after 100 trials.

Repeating the search with 500 trials one (and only one)

correct solution appeared after 343 trials (9317 s). However,

HySS reproducibly found two solutions with 138 matching

sites (133 correct) in 8496 s. We attribute this to the systematic

sampling made possible by the fast translation function. It

should be noted, however, that SHELXD produces one

correct solution every �20 min on average with a differently

merged data set (using XPREP) after careful manual selection

of the resolution limit (von Delft, private communication). We

have not yet analyzed these data.

We deliberately include a structure with a rare cubic

symmetry in Table 1 (P54) to highlight the least desirable

property of the fast translation function: the runtime scales

with the fourth power of the number of symmetry operations

(Navaza & Vernoslova, 1995). P54 crystallizes in a space group

with 24 symmetry operations (P4132; No. 213). In this case,

87% of the total runtime is consumed by the three applications

of the fast translation function embedded in the search

procedure. This is the worst case possible for macromolecular

structures, since non-primitive settings (e.g. F432) can easily

be transformed to non-standard primitive settings for the

purpose of the search procedure.

7. Conclusions

The most important result of our experiments is that reliable

automatic termination of the substructure search is possible.

We followed this route because it is a very easy one to take in

our ¯exible object-oriented framework. Fully embedding the

independently developed substructure comparison into the

search procedure only required the addition and modi®cation

of a few lines in the scripted source code. Of course, it is also

possible to include automatic termination in other programs

such as Shake-and-Bake or SHELXD and this would result in

procedures that are in general faster than ours. However,

because of the very limited abstraction facilities of the

implementation language (Fortran) used by the other

programs this would probably require signi®cantly more

development time.

In order to minimize development time, we have imple-

mented our phase-manipulation procedure as a combination

of Fourier transformations and squaring in real space (Fig. 1).

This approach is relatively slow compared with the alternative

reciprocal-space implementation (using the well known

triplets usually associated with direct methods) because only

the largest normalized structure factors are actually used;

typically, most of the structure factors in reciprocal space are

assumed to be zero. In addition, we are restricted in our

choices of phase-manipulation protocols. Sophisticated

protocols, such as those used in SHELXD, are prohibitively

slow if implemented in real space. However, to address this

issue we have already implemented a fast triplet generator

(Grosse-Kunstleve & Adams, 2003b) suitable for integration

into HySS.

We will continue the development of our procedure by

re®ning the recycling algorithm to take variable occupancies

or thermal displacement factors into account. Another focus

will be parallelization of the systematic search afforded by the

fast translation function. This is mostly trivial, but some

minimal inter-process communication (e.g. through a shared

®le) is required for the automatic termination. We also plan to

address the disproportionate share of the total runtime

consumed by the fast translation functions in very high

symmetries (P54 in Table 1). A relatively simple but very

ef®cient measure would be to follow the example of SHELXD

and to implement the extrapolation scan (currently accounting

for 43% of the total runtime) by an application of the

Nordman function. We believe that this would not signi®cantly

affect the behavior of the search procedure because the fast

translation function would still be used to exhaustively sample

the two-atom translations (currently accounting for 13% of

the runtime). In such high-symmetry cases, initial recycling in

P1 may not be warranted given the runtime penalty for

recovering the origin with respect to the original symmetry

(31% of the runtime for P54). We have not yet investigated

under which speci®c conditions it is more bene®cial to use P1

recycling. We will also continue to enhance our minimalistic

command-line user interface to work directly with all common

re¯ection ®le formats. This should make it possible to solve

most substructures without the need to prepare any other

input ®les or the need to run external programs. Within the

Phenix package (Adams et al., 2002) the graphical interface

provides a convenient mechanism to adjust parameters for

dif®cult searches.

So far we have not paid any attention to low-level optimi-

zation of the HySS-speci®c algorithms. Our prototype imple-

mentation relies on high-level code reuse in an object-oriented

framework. It is unclear how much development time should

be devoted to low-level optimizations. Even for the largest

substructure in Table 1 the total runtime is measured in hours

using a single CPU (approximately 2 h 20 min). Many

synchrotron beamlines are equipped with multi-CPU clusters.

Automatic searches run in parallel will often ®nish without

human intervention after only a few minutes on such clusters.

Therefore, it is unlikely that HySS will be a rate-limiting step

in the overall procedure leading from the diffraction data to

the re®ned structure, even without low-level optimizations.

8. Source code availability

HySS is implemented as part of the PHENIX package

and will be made available for download at http://

www.phenix-online.org/. All source code will be available free

of charge for non-pro®t use. The core components (forming

the bulk of the source code) are available as unrestricted open

source at http://cctbx.sourceforge.net/.
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