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The computation of reduced unit cells is an important building block for a

number of crystallographic applications, but unfortunately it is very easy to

demonstrate that the conventional implementation of cell reduction algorithms

is not numerically stable. A numerically stable implementation of the Niggli-

reduction algorithm of KrÏivyÂ & Gruber [Acta Cryst. (1976), A32, 297±298] is

presented. The stability is achieved by consistently using a tolerance in all

¯oating-point comparisons. The tolerance must be greater than the accumulated

rounding errors. A second stable algorithm is also presented, the minimum

reduction, that does not require using a tolerance. It produces a cell with

minimum lengths and all angles acute or obtuse. The algorithm is a simpli®ed

and modi®ed version of the Buerger-reduction algorithm of Gruber [Acta Cryst.

(1973), A29, 433±440]. Both algorithms have been enhanced to generate a

change-of-basis matrix along with the parameters of the reduced cell.

1. Introduction

A given three-dimensional periodic lattice may be described

by an in®nite number of certain combinations of non-collinear

basis vectors. The ambiguities in the choice of basis vectors

have implications for a number of applications, such as auto-

indexing of diffraction images or the comparison of crystal

structures in a database. Niggli (1928), based on the work of

Eisenstein (1851), de®nes a set of algebraic conditions that

lead to a unique choice of basis vectors for a given lattice.

These conditions are adopted in International Tables for

Crystallography, Volume A (Hahn, 1983).

Buerger (1957) introduced an iterative numerical procedure

for the computation of reduced cells. Buerger's algorithm does

not necessarily result in the unique Niggli-reduced cell and the

term Buerger-reduced cell is therefore found in the literature

with reference to the conditions encoded in Buerger's proce-

dure. Gruber (1973) gives an alternative algorithm for the

computation of Buerger-reduced cells, combined with a

thorough mathematical analysis of the system of all Buerger-

reduced cells in relation to the 28 unique types of Niggli-

reduced cells. KrÏivyÂ & Gruber (1976) present a modi®ed

algorithm that leads directly to the unique Niggli-reduced cell.

Zuo et al. (1995) give a similar algorithm that aims to minimize

the number of iterations.

The de®nition of Niggli-reduced cells is based on exact

algebraic expressions. However, to the best of our

knowledge, all existing cell-reduction algorithms are, in

practice, implemented using ®nite-precision ¯oating-point

algebra. It is immediately clear that this presents a con¯ict

because it may not even be possible to faithfully represent

the original unit-cell parameters if they are the result of

expressions involving irrational numbers (such as 21=2) as

they arise in common change-of-basis transformations. This

invalidates using exact conditions from the outset. It is

also very easy to demonstrate that conventional imple-

mentations are unstable. Practical application of the

algorithms of Gruber (1973), KrÏivyÂ & Gruber (1976) and

Zuo et al. (1995) reveals that rounding errors owing to

¯oating-point arithmetic can lead to in®nite loops given

typical experimentally observed cell parameters. To the best of

our knowledge, a proper treatment of rounding errors in this

situation is not covered in the literature. However, such a

treatment is essential in the context of highly automated

crystallographic procedures seeking to minimize the need for

human intervention. It is also essential that the basis trans-

formation leading to a particular reduced cell is available for

subsequent use, for example to transform atomic coordinates,

symmetry operations or orientation matrices. The algorithms

that we describe below are based on the work of Gruber

(1973) and KrÏivyÂ & Gruber (1976) and address both

requirements.

To avoid misunderstandings, we wish to emphasize the

distinction between rounding errors and experimental uncer-

tainties, particularly the treatment of experimental uncer-

tainties in the determination of the Bravais type. The

treatment of the experimental uncertainties is not covered

here. Papers on this subject have been published by Clegg

(1981), Le Page (1982), Zimmermann & Burzlaff (1985) and

Andrews & Bernstein (1988).
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2. Prerequisites

2.1. Gruber notation

Gruber (1973) and KrÏivyÂ & Gruber (1976) use the following

notation in the description of the reduction algorithms:

A � a � a � a2

B � b � b � b2

C � c � c � c2

� � 2b � c � 2bc cos���
� � 2a � c � 2ac cos���
� � 2a � b � 2ab cos�
�:

�1�

a, b, c are the basis vectors of the unit cell, a, b, c, �, �, 
 are

the usual unit-cell parameters. The parameters A, B, C, �, �, �
are closely related to the metrical matrix (also known as the

metric tensor) G:

G �
A �=2 �=2

�=2 B �=2

�=2 �=2 C

0@ 1A: �2�

Including the factors of 2 in the de®nition of �, �, � simpli®es

the expressions in the reduction algorithm.

We will refer to the individual steps of the Gruber (1973)

algorithm by the labels used in the original paper as steps N1

through N3 and B1 through B5. Similarly, we will refer to the

individual steps of the KrÏivyÂ±Gruber (1976) algorithm by the

labels used in the original paper as steps A1 through A8.

2.2. Definition of `reasonable' and `degenerate' unit-cell
parameters

We have to consider that all reduction algorithms involve

additions of real-valued parameters. Therefore, the use of

¯oating-point arithmetic dictates that these parameters must

be within a certain dynamic range. For example, if the double-

precision (64-bit) values 1.0 and 10ÿ20 are added, the result is

1.0 exactly. To avoid this type of problem, we de®ne a set of

unit-cell parameters as degenerate if:

(i) The minimum of the cell lengths divided by the

maximum of the cell lengths is smaller than a certain factor

"lengths.

(ii) The unit-cell volume divided by the minimum of the cell

lengths is smaller than a certain factor "volume.

A set of unit-cell parameters is reasonable if it is not

degenerate. Based on numerical tests, we use "lengths = 10ÿ10

and "volume = 10ÿ5.

2.3. Source-code availability

The source code required for reproducing all results

reported below is available as open source under a license that

grants permission to copy, use or modify the code for any

purpose. The code is integrated into the Computational

Crystallography Toolbox (Grosse-Kunstleve et al., 2002). In

the following, we include pointers to the relevant ®les in the

Computational Crystallography Toolbox. The ®les may be

obtained at http://cctbx.sourceforge.net/ or as complete self-

contained bundles at http://cci.lbl.gov/cctbx_build/.

3. Treatment of rounding errors in the KrÏivyÂ±Gruber
algorithm

It is important to note that we have two goals:

Goal 1: The KrÏivyÂ±Gruber reduction procedure must be

numerically stable given reasonable unit-cell parameters.

Goal 2: It must be possible to test numerically that the result

of the reduction procedure meets the conditions for Niggli-

reduced cells according to the de®nition of Gruber (1973), or

according to the alternative but equivalent de®nition in

International Tables for Crystallography, Volume A (Hahn,

1983).

The KrÏivyÂ±Gruber algorithm relies on the outcome of

comparisons of algebraic expressions of the real-valued

parameters A, B, C, �, �, �. To make the iterative reduction

algorithm numerically stable, we use a tolerance " in all

comparisons. This tolerance accounts for the uncertainties

implicitly introduced by the use of ®nite-precision algebra.

Our experience (see below) shows that it is essential that the

tolerance is larger than the accumulated rounding errors and

that the same tolerance be used for a complete pass through

the reduction procedure. To achieve goal 2, the same tolerance

must be used in the evaluation of the Niggli conditions.

Finding the optimal (smallest) value for the tolerance is

very dif®cult to achieve in a portable way. Fortunately, for all

practical purposes the optimal value is not required. Our

approach is to compute " as

" � "relativeV1=3; �3�
where V is the volume of the unit cell. The term V1=3 is an

approximation to the lengths of the basis vectors (it is exact

for cubic unit cells). "relative is an upper estimate of the accu-

mulated rounding errors. As we show below, a practical value

is "relative = 10ÿ5.

To achieve the highest degree of consistency for all ¯oating-

point comparisons, we have replaced the exact comparisons in

the KrÏivyÂ±Gruber algorithm with the following:

exact

x < y

x > y

x � y

x � y

x � y

implementation

x < yÿ "
y < xÿ "
not y < xÿ "
not x < yÿ "
not �x < yÿ " or y < xÿ "�:

Note that our implementation reduces to the conventional

implementation if " = 0.

In the following, all comparisons are understood to be using

the tolerance ", except for the comparison used to evaluate the

sign function in steps A5, A6 and A7 of the KrÏivyÂ±Gruber

algorithm. Using the exact less-than comparison is the correct

approach at this point because the values involved are ®rst

compared (using the tolerance) with the parameters A or B,



which must be strictly greater than zero because the unit cell is

degenerate otherwise.

To further maximize the numerical stability of our imple-

mentation, we treat the expression ��� > 0 in step A3 of the

KrÏivyÂ±Gruber algorithm in a special way. Each parameter is

tested individually, e.g. we test � < 0, 0 < �, counting the

number of positive and negative values. These integer counts

are then used to decide if ��� > 0. We also completely avoid

¯oating-point multiplications. That is, all evaluations in the

reduction procedure are implemented using only additions

and subtractions.

Our implementation of the KrÏivyÂ±Gruber algorithm can be

found in the directory cctbx/cctbx/uctbx (see x2.3). The

average time for one full pass through the reduction algorithm

is about 2.6 ms on a 2.8 GHz Intel Linux computer.

4. Construction of change-of-basis matrices

Each of the eight steps in the KrÏivyÂ±Gruber algorithm consists

of testing for a condition, followed by an action. The actions

are given by KrÏivyÂ & Gruber as reassignments of the param-

eters A, B, C, �, �, �. A mathematically equivalent de®nition is

given by the tensor transformation

G0 � CTGC �4�
with a 3 � 3 transformation matrix C acting on the metrical

matrix G. CT is the transpose of C. There is an obvious one-to-

one correspondence between the actions of the Gruber (1973)

algorithm and the actions of the KrÏivyÂ±Gruber algorithm. The

following transformation matrices are labeled according to the

actions de®ned in the original papers:

N1;A1 : C �
0 ÿ1 0

ÿ1 0 0

0 0 ÿ1

0B@
1CA �5�

N2;A2 : C �
ÿ1 0 0

0 0 ÿ1

0 ÿ1 0

0B@
1CA �6�

N3 true branch;A3 : C �
i 0 0

0 j 0

0 0 k

0B@
1CA; �7�

i = ÿ1 if � < 0 and 1 otherwise. j and k are evaluated in the

same way using � and �, respectively.

N3 false branch;A4 : C �
i 0 0

0 j 0

0 0 k

0@ 1A; �8�

i, j, k are integer variables initialized with the values 1.

Let p be a reference that is initially unde®ned.

If � > 0, i = ÿ1 else if not � < 0, p is rede®ned as a reference

to i.

If � > 0, j = ÿ1 else if not � < 0, p is rede®ned as a reference

to j.

If � > 0, k =ÿ1 else if not � < 0, p is rede®ned as a reference

to k.

If ijk < 0, the variable referred to by p is set to ÿ1.

(In the context of the KrÏivyÂ±Gruber algorithm, p is always

de®ned if ijk < 0.)

A5 : C �
1 0 0

0 1 ÿsign���
0 0 1

0B@
1CA; B2 : C �

1 0 0

0 1 ÿentire��� � B�=2B�
0 0 1

0B@
1CA
�9�

A6 : C �
1 0 ÿsign���
0 1 0

0 0 1

0B@
1CA; B3 : C �

1 0 ÿentire���� A�=2A�
0 1 0

0 0 1

0B@
1CA
�10�

A7 : C �
1 ÿsign��� 0

0 1 0

0 0 1

0B@
1CA; B4 : C �

1 ÿentire��� � A�=2A� 0

0 1 0

0 0 1

0B@
1CA:
�11�

Following the de®nition of Gruber (1973) and KrÏivyÂ &

Gruber, sign(x) is �1 if x > 0, ÿ1 if x < 0. entire(x) is the

greatest integer that is not greater than x.

A8 : C �
1 0 1

0 1 1

0 0 1

0B@
1CA;

B5 : C �
1 0 ÿentire��� � �� � � A� B�=2�� � A� B��
0 1 ÿentire��� � �� � � A� B�=2�� � A� B��
0 0 1

0B@
1CA:
�12�

The individual change-of-basis matrices for each action taken

are multiplied to yield the ®nal change-of-basis matrix that

transforms the original unit-cell parameters to the parameters

of the Niggli-reduced cell. The multiplication order is such

that the matrix for the ®rst action taken is the left-most matrix,

the matrix for the last action taken is the right-most matrix.

All matrices C shown above have determinant 1. Each matrix

could also be replaced by the matrix product

C

ÿ1 0 0

0 ÿ1 0

0 0 ÿ1

0@ 1A �13�

since any lattice exhibits a center of inversion at the origin.

However, the choices above ensure that the ®nal matrix has

determinant 1. This is a very useful property because other-

wise a determinant ofÿ1 would result in the transformation of

a right-handed system into a left-handed system (and vice

versa). With the de®nitions above, the ®nal change-of-basis

matrix is directly suitable for transforming symmetry opera-

tions, atomic coordinates, orientation matrices or other crys-

tallographic parameters.

5. Analysis of the numerical behavior of the KrÏivyÂ±
Gruber algorithm

To ensure that our implementation of the KrÏivyÂ±Gruber

algorithm meets both goals stated in x3, we have written a

comprehensive set of tests that systematically exercises the

reduction algorithm with all possible types of unit cells. The

three major tests are:
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Test 1: A two-deep loop over seven point groups (one for

each crystal system) and the conventional lattice centering

types P, A, B, C, I, R, F. An arbitrary unit cell compatible with

the point-group symmetry is transformed from the centered

setting to a primitive setting and then passed to the reduction

algorithm. Using the conditions de®ned in x9.3.2 of Interna-

tional Tables for Crystallography, Volume A (Hahn, 1983), it is

asserted that the result passes a numerical evaluation of the

Niggli conditions.

Test 2: A six-deep loop over selected values for the unit-cell

parameters: a, b, c = {10, 20, 30}, �, �, 
 = {10, 30, 45, 60, 90, 120,

150, 170�}. Only 3456 of the 13824 combinations yield a

metrical matrix with a strictly positive determinant (corre-

sponding to the square of the unit-cell volume). For each of

these 3456 valid parameter combinations, it is asserted that the

result of the reduction algorithm passes a numerical evalua-

tion of the Niggli conditions.

Test 3: Based on Table 1 of Gruber (1973), we construct a

given number (typically 100) of random Niggli-reduced cells

for each of the 28 unique Niggli types. Each Niggli-reduced

cell is transformed using a random integer matrix with

determinant 1 (any 3 � 3 integer matrix with determinant 1 or

ÿ1 is a valid basis transformation). It is asserted that the

reduction algorithm recovers the original Niggli-reduced cell.

Running these tests on a variety of hardware architectures

(see http://cci.lbl.gov/cctbx_build/) con®rms that our imple-

mentation of the KrÏivyÂ±Gruber algorithm is numerically

stable if the value 10ÿ5 is used for the tolerance "relative. That is,

the algorithm does not enter in®nite loops (goal 1 in x3) and

the results consistently pass a numerical evaluation of the

Niggli conditions (goal 2). This proves that our implementa-

tion is free of errors and fully consistent with Table 1 of

Gruber (1973). This result can be reproduced by running the

cctbx/cctbx/regression/tst_krivy_gruber.py script

(see x2.3).

Prompted by a referee skeptical about our use of the

tolerance ", we have carefully analyzed the numerical beha-

vior of the KrÏivyÂ±Gruber algorithm if we set " = 0, corre-

sponding to the conventional implementation. The exact

behavior is of course highly platform speci®c, depending not

only on the ¯oating-point hardware but also on the compiler

and optimization settings. Therefore, we present our results as

observations based on a large number of random trials

executed with double-precision (64-bit) ¯oating-point arith-

metic on a Pentium IV processor. In approximately 14000

trials with reasonable unit-cell parameters, as outlined above,

the algorithm enters in®nite loops approximately 100 times

(i.e. the failure rate is 0.7%). This result can be reproduced

by running the tst_krivy_gruber.py script with the

--track_infinite option. This script prints a trace of the

actions executed during the KrÏivyÂ -Gruber algorithm. In the

output, we found evidence of cyclic behavior with period

lengths of two, four and six, for example the in®nitely repeated

cycle of actions with the KrÏivyÂ±Gruber labels A4, A6, A3, A5,

A4, A8 (see x2.1). When we analyzed the cycles, we found in

all cases that the set of parameters generated after any of the

actions in the cycle does not pass a numerical evaluation of the

Niggli conditions if " = 0. Many sets of parameters do not even

pass a numerical evaluation of the main conditions according

to x9.3.2 in International Tables for Crystallography, Volume

A (Hahn, 1983) and many cells have mixed acute and obtuse

angles, which presents an obvious violation of the Niggli

conditions. Even one such failure is suf®cient to prove that the

conventional implementation of the KrÏivyÂ±Gruber algorithm

is not stable on current computing hardware architectures. We

expect that this is the case for any implementation based on

®nite-precision algebra.

We determined the best choice for "relative by executing tests

1±3 as outlined above with different values. If we set "relative =

10ÿ10, some tests involving Niggli-reduced cells transformed

with unimodular matrices (test 3) that contain large elements

(e.g. 50) fail because the result of the iterative reduction

procedure does not match the original Niggli-reduced cell.

This means that the accumulated rounding errors due to

repeated additions and subtractions lead to a different Niggli

cell considering the small "relative. This is a violation of our

goal 2 stated in x3. All tests pass only after increasing "relative

to 10ÿ6. To be certain, we use "relative = 10ÿ5.

6. The minimum reduction algorithm

The problems reported in the previous section prompted us to

consider the motivation behind the KrÏivyÂ±Gruber algorithm.

Why is it useful to compute the Niggli-reduced cell? In the

literature, the Niggli reduction consistently appears in the

context of determining the Bravais type, for example by

lookup in Table 9.3.1 of International Tables for Crystal-

lography, Volume A (Hahn, 1983). However, as Le Page

(1982) and Andrews & Bernstein (1988) point out, this

approach is bound to fail because of experimental uncertain-

ties. We fully agree with this view and add that our results in

the previous section show how rounding errors alone can

invalidate the approach of determining the Bravais type after

determining the Niggli-reduced cell.

Le Page (1982) suggests an alternative, elegant and robust

algorithm for the determination of the lattice symmetry, which

takes into account experimental uncertainties. The funda-

mental idea is to exhaustively search for twofold axes by

testing all possible integral lattice vectors with elements up to

absolute value two. The combination of twofold axes is a

unique and unambiguous indication of the Bravais type. Le

Page shows that restricting the search to vectors with elements

up to absolute value two is suf®cient if the basis vectors of the

input unit cell correspond to the shortest vectors of the lattice.

This is the only requirement. Le Page's procedure is insensi-

tive to the choice of the angular unit-cell parameters. In view

of this, it is surprising that Le Page employs a Buerger

reduction equivalent to that of Gruber (1973) which is also

concerned with the choice of the angular parameters. We have

determined empirically that the Buerger reduction according

to Gruber exhibits the same numerical problems as the

KrÏivyÂ & Gruber reduction (this test is included in the

tst_krivy_gruber.py script).



Our ®rst attempt at devising a numerically stable cell-

reduction procedure that does not require the use of a toler-

ance was to remove the conditions that most obviously con¯ict

with the use of ®nite-precision algebra: the tests for exact

equality. The ®rst interesting observation is that the end result

of simplifying the Gruber algorithm in this way is almost

identical to the similar simpli®cation of the KrÏivyÂ±Gruber

algorithm. The only difference is the use of the entire function

in the Gruber algorithm compared to the sign function in the

KrÏivyÂ -Gruber algorithm. We prefer the entire function

because the algorithm converges faster (Gruber, 1973). The

second important observation is that the simpli®ed algorithm

still converges to a unit cell with basis vectors of minimum

length. The resulting unit cell is therefore suitable as an input

to Le Page's robust search for the lattice symmetry.

Unfortunately, the simpli®ed Gruber algorithm can still be

unstable, even given reasonable unit-cell parameters. Detailed

analysis of the cyclic behavior based on a large number of

random trials revealed that there are at least two types of

cycles with period length two and four, respectively. In each

case, the algorithm alternates between the action in the N3

false branch and one or two other actions (B3 and/or B5). In

all steps of a cycle, the unit-cell lengths are identical within a

very small tolerance after each of the actions involved. To test

for this condition, we evaluate the expression

�x�multiplier � �xÿ y�� ÿ �x�multiplier� �14�
numerically for each Gruber parameter A, B, C, where x is the

most current parameter after executing the action in the N3

false branch, and y is the corresponding parameter after the

previous execution of the same action. multiplier is a small

factor. Based on a large number of tests, we work with

multiplier = 10. For example, with this choice, using 64-bit

¯oating-point arithmetic, the evaluation of (14) yields exactly

0 if x = 1 and y = 1 + 0.1111 � 10ÿ15. The reduction algorithm

is terminated if the numerical evaluation of (14) yields 0 for all

Gruber parameters A, B, C after two subsequent passes

through the action in the N3 false branch. Terminating at this

point ensures that all cell angles are obtuse. This is an arbitrary

choice that does not affect the suitability of the end result as

input to Le Page's algorithm for the determination of the

lattice symmetry. We refer to the simpli®ed and modi®ed

Gruber algorithm as the minimum reduction because it

produces a unit cell with basis vectors of minimum length.

By repeatedly running a large number of random trials

(tests 1±3 outlined in x5) on a variety of platforms, we have

established that the minimum reduction is stable given

reasonable unit-cell parameters. This result can be reproduced

by running the tst_krivy_gruber.py script mentioned

before with the --Forever option. This script also tests that

the difference between the unit-cell lengths produced by our

implementation of the KrÏivyÂ±Gruber algorithm with "relative =

10ÿ5 and the parameters produced by the minimum reduction

is smaller than 10ÿ6 in absolute units, validating both algor-

ithms.

Of course, given degenerate unit-cell parameters, it is still

possible that the minimum reduction enters an in®nite loop or

that the Gruber parameters A, B, C become zero or negative

in the course of the algorithm. To prove that this occurs only

for degenerate parameters, we have set up an additional test

with both reasonable and degenerate parameters. Any set of

random parameters that leads to a unit-cell volume greater

than zero is processed by the minimum reduction algorithm. If

the algorithm exceeds 100 iterations or if any of the param-

eters A, B, C becomes zero or negative, it is asserted that the

parameters are degenerate according to our de®nition in x2.2.

By executing the minimum reduction one million times with

random parameters, we have veri®ed that this test is invoked

in about 1.9% of the trials and succeeds reliably. This result

can be reproduced by running the cctbx/uctbx/boost_

python/tst_uctbx.py script with the --hardest option.

A reference implementation of the minimum reduction

is in the ®le cctbx/cctbx/uctbx/gruber_1973.py, class

fast_minimum_reduction. Owing to the clear and concise

syntax of the Python language, this code will be most useful to

study the complete algorithm. A C++ implementation of the

exact same algorithm is in the ®le cctbx/include/cctbx/

uctbx/fast_minimum_reduction.h. This code executes

about 50 times faster than the Python implementation but is

longer. The average time for one full pass through the C++

implementation of the minimum-reduction algorithm is about

43 ms on a 2.8 GHz Intel Linux computer.

7. Summary

We have shown that the KrÏivyÂ±Gruber (1976) algorithm, given

reasonable unit-cell parameters, is numerically stable if a

certain tolerance is considered in the evaluation of the

conditions embedded in the algorithm. Using the same toler-

ance, it is also possible to verify that the result passes a

numerical evaluation of the Niggli conditions. We obtained

analogous results with the Buerger reduction algorithm of

Gruber (1973).

We have also provided a proof that the same implementa-

tion is not stable on current computing hardware architectures

if the tolerance is set to zero, emulating the conventional

implementation. We have no reason to believe that this could

be different as long as ®nite-precision algebra is used. On the

contrary, we are quite surprised that the obvious con¯ict

between the exact tests for equality included in the Niggli

conditions and ®nite-precision algebra has not been addressed

in the literature for almost ®ve decades since Buerger (1957)

introduced the ®rst numerical reduction procedure. A possible

explanation is that the failure rate is only on the order of 1%.

If a human is involved, an algorithm that enters an in®nite

loop can be terminated manually and the input modi®ed

slightly until the algorithm succeeds.

For a highly automated process, a failure rate of 1% is not

acceptable. For example, auto-indexing programs might have

to process hundreds of cell reductions per diffraction image.

The need for human intervention is clearly prohibitive and

ignoring reasonable cell parameters only because the reduc-

tion algorithm is not stable might lead to misindexed images.

This, combined with the insight that the Niggli reduction is
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performing more work than is actually required to solve the

problem of determining the Bravais type, has prompted us to

devise the minimum reduction algorithm which is numerically

stable because exact tests for equality are omitted and because

it is possible to reliably terminate the algorithm based on

equation (14).

We believe that the algorithm with the highest practical

value is the minimum reduction. We use this algorithm in a

novel auto-indexing procedure (unpublished results). The

Computational Crystallography Toolbox includes a web

interface (http://cci.lbl.gov/cctbx/lattice_symmetry.html) to the

part of the procedure that determines the lattice symmetry

based on the work of Le Page (1982) and Grosse-Kunstleve

(1999). The KrÏivyÂ±Gruber algorithm, using 64-bit ¯oating-

point algebra and the tolerance "relative = 10ÿ5, has the

advantage of producing results that are identical on different

platforms (otherwise test 3 outlined in x5 would fail). There-

fore, we use the KrÏivyÂ±Gruber algorithm to transform atomic

coordinates and re¯ection data to a primitive setting in order

to speed up certain computations, in particular the computa-

tion of the fast translation function (Navaza & Vernoslova,

1995; Grosse-Kunstleve & Adams, 2003). If the transforma-

tions to the primitive setting are identical on different plat-

forms, results of subsequent computations can be compared

more easily.

All results reported here are based on the cctbx source code

bundle with the version tag 2003_09_25_1908. It is our

intention to provide this bundle (and all bundles that worked

on all platforms) inde®nitely at http://cci.lbl.gov/cctbx_build/.

Our work was funded in part by the US Department of
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