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Decoherence, the measurement problem, and interpretations of quantum

mechanics

Maximilian Schlosshauer
∗

Department of Physics, University of Washington, Seattle, Washington 98195, USA

Environment-induced decoherence and superselection have been a subject of intensive research over
the past two decades, yet their implications for the foundational problems of quantum mechanics,
most notably the quantum measurement problem, have remained a matter of great controversy.
This paper is intended to clarify key features of the decoherence program, including its more
recent results, and to investigate their application and consequences in the context of the main
interpretive approaches of quantum mechanics.
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I. INTRODUCTION

The implications of the decoherence program for the
foundations of quantum mechanics have been the subject
of an ongoing debate since the first precise formulation of
the program in the early 1980s. The key idea promoted
by decoherence is the insight that realistic quantum sys-
tems are never isolated, but are immersed in the sur-
rounding environment and interact continuously with it.
The decoherence program then studies, entirely within
the standard quantum formalism (i.e., without adding
any new elements in the mathematical theory or its in-
terpretation), the resulting formation of quantum corre-
lations between the states of the system and its envi-
ronment and the often surprising effects of these system-
environment interactions. In short, decoherence brings
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about a local suppression of interference between pre-
ferred states selected by the interaction with the envi-
ronment.

Bub (1997) termed decoherence part of the “new or-
thodoxy” of understanding quantum mechanics—as the
working physicist’s way of motivating the postulates of
quantum mechanics from physical principles. Proponents
of decoherence called it an “historical accident” (Joos,
2000, p. 13) that the implications for quantum mechan-
ics and for the associated foundational problems were
overlooked for so long. Zurek (2003b, p. 717) suggests

The idea that the “openness” of quantum sys-

tems might have anything to do with the transi-

tion from quantum to classical was ignored for

a very long time, probably because in classi-

cal physics problems of fundamental importance

were always settled in isolated systems.

When the concept of decoherence was first introduced
to the broader scientific community by Zurek’s (1991)
article in Physics Today, it elicited a series of contentious
comments from the readership (see the April 1993 issue of
Physics Today). In response to his critics, Zurek (2003b,
p. 718) states

In a field where controversy has reigned for so

long this resistance to a new paradigm [namely,

to decoherence] is no surprise.

Omnès (2002, p. 2) had this assessment:

The discovery of decoherence has already much

improved our understanding of quantum mechan-

ics. (. . . ) [B]ut its foundation, the range of its

validity and its full meaning are still rather ob-

scure. This is due most probably to the fact that

it deals with deep aspects of physics, not yet fully

investigated.

In particular, the question whether decoherence provides,
or at least suggests, a solution to the measurement prob-
lem of quantum mechanics has been discussed for several
years. For example, Anderson (2001, p. 492) writes in an
essay review

The last chapter (. . . ) deals with the quantum

measurement problem (. . . ). My main test, al-

lowing me to bypass the extensive discussion, was

a quick, unsuccessful search in the index for the

word “decoherence” which describes the process

that used to be called “collapse of the wave func-

tion.”

Zurek speaks in various places of the “apparent” or “ef-
fective” collapse of the wave function induced by the in-
teraction with environment (when embedded into a min-
imal additional interpretive framework) and concludes
(Zurek, 1998, p. 1793)

A “collapse” in the traditional sense is no longer

necessary. (. . . ) [The] emergence of “objective

existence” [from decoherence] (. . . ) significantly

reduces and perhaps even eliminates the role of

the “collapse” of the state vector.

D’Espagnat, who considers the explanation of our ex-
periences (i.e., of “appearances”) as the only “sure” re-
quirement of a physical theory, states (d’Espagnat, 2000,
p. 136)

For macroscopic systems, the appearances are

those of a classical world (no interferences etc.),

even in circumstances, such as those occurring in

quantum measurements, where quantum effects

take place and quantum probabilities intervene

(. . . ). Decoherence explains the just mentioned

appearances and this is a most important result.

(. . . ) As long as we remain within the realm of

mere predictions concerning what we shall ob-

serve (i.e., what will appear to us)—and refrain

from stating anything concerning “things as they

must be before we observe them”—no break in

the linearity of quantum dynamics is necessary.

In his monumental book on the foundations of quantum
mechanics (QM), Auletta (2000, p. 791) concludes that

the Measurement theory could be part of the in-

terpretation of QM only to the extent that it

would still be an open problem, and we think

that this is largely no longer the case.

This is mainly so because, according to Auletta (2000,
p. 289),

decoherence is able to solve practically all the

problems of Measurement which have been dis-

cussed in the previous chapters.

On the other hand, even leading adherents of decoherence
have expressed caution or even doubt that decoherence
has solved the measurement problem. Joos (2000, p. 14)
writes

Does decoherence solve the measurement prob-

lem? Clearly not. What decoherence tells us, is

that certain objects appear classical when they

are observed. But what is an observation? At

some stage, we still have to apply the usual prob-

ability rules of quantum theory.

Along these lines, Kiefer and Joos (1999, p. 5) warn that

One often finds explicit or implicit statements to

the effect that the above processes are equivalent

to the collapse of the wave function (or even solve

the measurement problem). Such statements are

certainly unfounded.

In a response to Anderson’s (2001, p. 492) comment,
Adler (2003, p. 136) states

I do not believe that either detailed theoretical

calculations or recent experimental results show

that decoherence has resolved the difficulties as-

sociated with quantum measurement theory.
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Similarly, Bacciagaluppi (2003b, p. 3) writes

Claims that simultaneously the measurement

problem is real [and] decoherence solves it are

confused at best.

Zeh asserts (Joos et al., 2003, Ch. 2)

Decoherence by itself does not yet solve the

measurement problem (. . . ). This argument is

nonetheless found wide-spread in the literature.

(. . . ) It does seem that the measurement problem

can only be resolved if the Schrödinger dynamics

(. . . ) is supplemented by a nonunitary collapse

(. . . ).

The key achievements of the decoherence program, apart
from their implications for conceptual problems, do not
seem to be universally understood either. Zurek (1998,
p. 1800) remarks

[The] eventual diagonality of the density matrix

(. . . ) is a byproduct (. . . ) but not the essence

of decoherence. I emphasize this because diago-

nality of [the density matrix] in some basis has

been occasionally (mis-)interpreted as a key ac-

complishment of decoherence. This is mislead-

ing. Any density matrix is diagonal in some ba-

sis. This has little bearing on the interpretation.

These remarks show that a balanced discussion of the
key features of decoherence and their implications for the
foundations of quantum mechanics is overdue. The deco-
herence program has made great progress over the past
decade, and it would be inappropriate to ignore its rel-
evance in tackling conceptual problems. However, it is
equally important to realize the limitations of decoher-
ence in providing consistent and noncircular answers to
foundational questions.

An excellent review of the decoherence program has
recently been given by Zurek (2003b). It deals pri-
marily with the technicalities of decoherence, although
it contains some discussion on how decoherence can be
employed in the context of a relative-state interpreta-
tion to motivate basic postulates of quantum mechanics.
A helpful first orientation and overview, the entry by
Bacciagaluppi (2003a) in the Stanford Encyclopedia of

Philosophy features a relatively short (in comparison to
the present paper) introduction to the role of decoher-
ence in the foundations of quantum mechanics, including
comments on the relationship between decoherence and
several popular interpretations of quantum theory. In
spite of these valuable recent contributions to the litera-
ture, a detailed and self-contained discussion of the role
of decoherence in the foundations of quantum mechanics
seems still to be lacking. This review article is intended
to fill the gap.

To set the stage, we shall first, in Sec. II, review the
measurement problem, which illustrates the key difficul-
ties that are associated with describing quantum mea-
surement within the quantum formalism and that are all

in some form addressed by the decoherence program. In
Sec. III, we then introduce and discuss the main features
of the theory of decoherence, with a particular emphasis
on their foundational implications. Finally, in Sec. IV,
we investigate the role of decoherence in various inter-
pretive approaches of quantum mechanics, in particular
with respect to the ability to motivate and support (or
disprove) possible solutions to the measurement problem.

II. THE MEASUREMENT PROBLEM

One of the most revolutionary elements introduced into
physical theory by quantum mechanics is the superposi-
tion principle, mathematically founded in the linearity of
the Hilbert state space. If |1〉 and |2〉 are two states, then
quantum mechanics tells us that any linear combination
α|1〉+β|2〉 also corresponds to a possible state. Whereas
such superpositions of states have been experimentally
extensively verified for microscopic systems (for instance,
through the observation of interference effects), the appli-
cation of the formalism to macroscopic systems appears
to lead immediately to severe clashes with our experience
of the everyday world. A book has never been ever ob-
served to be in a state of being both “here” and “there”
(i.e., to be in a superposition of macroscopically distin-
guishable positions), nor does a Schrödinger cat that is
a superposition of being alive and dead bear much re-
semblence to reality as we perceive it. The problem is,
then, how to reconcile the vastness of the Hilbert space of
possible states with the observation of a comparatively
few “classical” macrosopic states, defined by having a
small number of determinate and robust properties such
as position and momentum. Why does the world appear
classical to us, in spite of its supposed underlying quan-
tum nature, which would, in principle, allow for arbitrary
superpositions?

A. Quantum measurement scheme

This question is usually illustrated in the context
of quantum measurement where microscopic superposi-
tions are, via quantum entanglement, amplified into the
macroscopic realm and thus lead to very “nonclassical”
states that do not seem to correspond to what is actually
perceived at the end of the measurement. In the ideal
measurement scheme devised by von Neumann (1932),
a (typically microscopic) system S, represented by ba-
sis vectors {|sn〉} in a Hilbert space HS , interacts with
a measurement apparatus A, described by basis vectors
{|an〉} spanning a Hilbert space HA, where the |an〉 are
assumed to correspond to macroscopically distinguish-
able “pointer” positions that correspond to the outcome
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of a measurement if S is in the state |sn〉.1
Now, if S is in a (microscopically “unproblematic”)

superposition
∑

n cn|sn〉, and A is in the initial “ready”
state |ar〉, the linearity of the Schrödinger equation en-
tails that the total system SA, assumed to be represented
by the Hilbert product space HS⊗HA, evolves according
to

( ∑

n

cn|sn〉
)
|ar〉 t−→

∑

n

cn|sn〉|an〉. (2.1)

This dynamical evolution is often referred to as a pre-

measurement in order to emphasize that the process de-
scribed by Eq. (2.1) does not suffice to directly conclude
that a measurement has actually been completed. This is
so for two reasons. First, the right-hand side is a super-

position of system-apparatus states. Thus, without sup-
plying an additional physical process (say, some collapse
mechanism) or giving a suitable interpretation of such a
superposition, it is not clear how to account, given the fi-
nal composite state, for the definite pointer positions that
are perceived as the result of an actual measurement—
i.e., why do we seem to perceive the pointer to be in
one position |an〉 but not in a superposition of posi-
tions? This is the problem of definite outcomes. Sec-
ond, the expansion of the final composite state is in gen-
eral not unique, and therefore the measured observable
is not uniquely defined either. This is the problem of

the preferred basis. In the literature, the first difficulty
is typically referred to as the measurement problem, but
the preferred-basis problem is at least equally important,
since it does not make sense even to inquire about specific
outcomes if the set of possible outcomes is not clearly de-
fined. We shall therefore regard the measurement prob-
lem as composed of both the problem of definite outcomes
and the problem of the preferred basis, and discuss these
components in more detail in the following.

B. The problem of definite outcomes

1. Superpositions and ensembles

The right-hand side of Eq. (2.1) implies that after the
premeasurement the combined system SA is left in a pure
state that represents a linear superposition of system-
pointer states. It is a well-known and important prop-
erty of quantum mechanics that a superposition of states
is fundamentally different from a classical ensemble of
states, where the system actually is in only one of the
states but we simply do not know in which (this is often

1 Note that von Neumann’s scheme is in sharp contrast to the
Copenhagen interpretation, where measurement is not treated as
a system-apparatus interaction described by the usual quantum-
mechanical formalism, but instead as an independent component
of the theory, to be represented entirely in fundamentally classi-
cal terms.

referred to as an “ignorance-interpretable,” or “proper”
ensemble).

This can be shown explicitely, especially on micro-
scopic scales, by performing experiments that lead to the
direct observation of interference patterns instead of the
realization of one of the terms in the superposed pure
state, for example, in a setup where electrons pass in-
dividually (one at a time) through a double slit. As is
well known, this experiment clearly shows that, within
the standard quantum-mechanical formalism, the elec-
tron must not be described by either one of the wave
functions describing the passage through a particular slit
(ψ1 or ψ2), but only by the superposition of these wave
functions (ψ1+ψ2), since the correct density distribution
̺ of the pattern on the screen is not given by the sum of
the squared wave functions describing the addition of in-
dividual passages through a single slit (̺ = |ψ1|2+ |ψ2|2),
but only by the square of the sum of the individual wave
functions (̺ = |ψ1 + ψ2|2).

Put differently, if an ensemble interpretation could be
attached to a superposition, the latter would simply rep-
resent an ensemble of more fundamentally determined
states, and based on the additional knowledge brought
about by the results of measurements, we could simply
choose a subensemble consisting of the definite pointer
state obtained in the measurement. But then, since the
time evolution has been strictly deterministic according
to the Schrödinger equation, we could backtrack this
subensemble in time and thus also specify the initial
state more completely (“postselection”), and therefore
this state necessarily could not be physically identical
to the initially prepared state on the left-hand side of
Eq. (2.1).

2. Superpositions and outcome attribution

In the standard (“orthodox”) interpretation of quan-
tum mechanics, an observable corresponding to a phys-
ical quantity has a definite value if and only if the sys-
tem is in an eigenstate of the observable; if the system
is, however, in a superposition of such eigenstates, as in
Eq. (2.1), it is, according to the orthodox interpretation,
meaningless to speak of the state of the system as having
any definite value of the observable at all. (This is fre-
quently referred to as the so-called eigenvalue-eigenstate
link, or “e-e link” for short.) The e-e link, however, is
by no means forced upon us by the structure of quan-
tum mechanics or by empirical constraints (Bub, 1997).
The concept of (classical) “values” that can be ascribed
through the e-e link based on observables and the exis-
tence of exact eigenstates of these observables has there-
fore frequently been either weakened or altogether aban-
donded. For instance, outcomes of measurements are
typically registered in position space (pointer positions,
etc.), but there exist no exact eigenstates of the position
operator, and the pointer states are never exactly mutu-
ally orthogonal. One might then (explicitely or implic-
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itly) promote a “fuzzy” e-e link, or give up the concept of
observables and values entirely and directly interpret the
time-evolved wave functions (working in the Schrödinger
picture) and the corresponding density matrices. Also,
if it is regarded as sufficient to explain our perceptions
rather than describe the “absolute” state of the entire
universe (see the argument below), one might only re-
quire that the (exact or fuzzy) e-e link hold in a “rela-
tive” sense, i.e., for the state of the rest of the universe
relative to the state of the observer.

Then, to solve the problem of definite outcomes, some
interpretations (for example, modal interpretations and
relative-state interpretations) interpret the final-state su-
perposition in such a way as to explain the existence, or
at least the subjective perception, of “outcomes” even
if the final composite state has the form of a super-
position. Other interpretations attempt to solve the
measurement problem by modifying the strictly unitary
Schrödinger dynamics. Most prominently, the ortho-
dox interpretation postulates a collapse mechanism that
transforms a pure-state density matrix into an ignorance-
interpretable ensemble of individual states (a “proper
mixture”). Wave-function collapse theories add stochas-
tic terms to the Schrödinger equation that induce an ef-
fective (albeit only approximate) collapse for states of
macroscopic systems (Ghirardi et al., 1986; Gisin, 1984;
Pearle, 1979, 1999), while other authors suggested that
collapse occurs at the level of the mind of a conscious ob-
server (Stapp, 1993; Wigner, 1963). Bohmian mechanics,
on the other hand, upholds a unitary time evolution of
the wavefunction, but introduces an additional dynam-
ical law that explicitely governs the always-determinate
positions of all particles in the system.

3. Objective vs. subjective definiteness

In general, (macroscopic) definiteness—and thus a so-
lution to the problem of outcomes in the theory of quan-
tum measurement—can be achieved either on an onto-

logical (objective) or an observational (subjective) level.
Objective definiteness aims at ensuring “actual” definite-
ness in the macroscopic realm, whereas subjective defi-
niteness only attempts to explain why the macroscopic
world appears to be definite—and thus does not make
any claims about definiteness of the underlying physi-
cal reality (whatever this reality might be). This raises
the question of the significance of this distinction with
respect to the formation of a satisfactory theory of the
physical world. It might appear that a solution to the
measurement problem based on ensuring subjective, but
not objective, definiteness is merely good “for all prac-
tical purposes”—abbreviated, rather disparagingly, as
“FAPP” by Bell (1990)—and thus not capable of solv-
ing the “fundamental” problem that would seem relevant
to the construction of the “precise theory” that Bell de-
manded so vehemently.

It seems to the author, however, that this critism is

not justified, and that subjective definiteness should be
viewed on a par with objective definitess with respect
to a satisfactory solution to the measurement problem.
We demand objective definiteness because we experience
definiteness on the subjective level of observation, and
it should not be viewed as an a priori requirement for
a physical theory. If we knew independently of our ex-
perience that definiteness existed in nature, subjective
definiteness would presumably follow as soon as we had
employed a simple model that connected the “external”
physical phenomena with our “internal” perceptual and
cognitive apparatus, where the expected simplicity of
such a model can be justified by referring to the pre-
sumed identity of the physical laws governing external
and internal processes. But since knowledge is based on
experience, that is, on observation, the existence of ob-
jective definiteness could only be derived from the obser-
vation of definiteness. And, moreover, observation tells
us that definiteness is in fact not a universal property
of nature, but rather a property of macroscopic objects,
where the borderline to the macroscopic realm is diffi-
cult to draw precisely; mesoscopic interference experi-
ments have demonstrated clearly the blurriness of the
boundary. Given the lack of a precise definition of the
boundary, any demand for fundamental definiteness on
the objective level should be based on a much deeper and
more general commitment to a definiteness that applies
to every physical entity (or system) across the board, re-
gardless of spatial size, physical property, and the like.

Therefore, if we realize that the often deeply felt com-
mitment to a general objective definiteness is only based
on our experience of macroscopic systems, and that this
definiteness in fact fails in an observable manner for mi-
croscopic and even certain mesoscopic systems, the au-
thor sees no compelling grounds on which objective def-
initeness must be demanded as part of a satisfactory
physical theory, provided that the theory can account for
subjective, observational definiteness in agreement with
our experience. Thus the author suggests that the same
legitimacy be attributed to proposals for a solution of
the measurement problem that achieve “only” subjective
but not objective definiteness—after all, the measure-
ment problem arises solely from a clash of our experi-
ence with certain implications of the quantum formalism.
D’Espagnat (2000, pp. 134–135) has advocated a similar
viewpoint:

The fact that we perceive such “things” as macro-

scopic objects lying at distinct places is due,

partly at least, to the structure of our sensory and

intellectual equipment. We should not, there-

fore, take it as being part of the body of sure

knowledge that we have to take into account for

defining a quantum state. (. . . ) In fact, scien-

tists most righly claim that the purpose of science

is to describe human experience, not to describe

“what really is”; and as long as we only want to

describe human experience, that is, as long as we

are content with being able to predict what will
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be observed in all possible circumstances (. . . )

we need not postulate the existence—in some

absolute sense—of unobserved (i.e., not yet ob-

served) objects lying at definite places in ordinary

3-dimensional space.

C. The preferred-basis problem

The second difficulty associated with quantum mea-
surement is known as the preferred-basis problem, which
demonstrates that the measured observable is in general
not uniquely defined by Eq. (2.1). For any choice of sys-
tem states {|sn〉}, we can find corresponding apparatus
states {|an〉}, and vice versa, to equivalently rewrite the
final state emerging from the premeasurement interac-
tion, i.e., the right-hand side of Eq. (2.1). In general,
however, for some choice of apparatus states the corre-
sponding new system states will not be mutually orthog-
onal, so that the observable associated with these states
will not be Hermitian, which is usually not desired (how-
ever, not forbidden—see the discussion by Zurek, 2003b).
Conversely, to ensure distinguishable outcomes, we must,
in general, require the (at least approximate) orthogonal-
ity of the apparatus (pointer) states, and it then follows
from the biorthogonal decomposition theorem that the
expansion of the final premeasurement system-apparatus
state of Eq. (2.1),

|ψ〉 =
∑

n

cn|sn〉|an〉, (2.2)

is unique, but only if all coefficients cn are distinct. Oth-
erwise, we can in general rewrite the state in terms of
different state vectors,

|ψ〉 =
∑

n

c′n|s′n〉|a′n〉, (2.3)

such that the same postmeasurement state seems to cor-
respond to two different measurements, that is, of the

observables Â =
∑

n λn|sn〉〈sn| and B̂ =
∑

n λ
′
n|s′n〉〈s′n|

of the system, respectively, although in general Â and B̂
do not commute.

As an example, consider a Hilbert space H = H1 ⊗H2

where H1 and H2 are two-dimensional spin spaces with
states corresponding to spin up or spin down along a
given axis. Suppose we are given an entangled spin state
of the Einstein-Podolsky-Rosen form (Einstein et al.,
1935)

|ψ〉 =
1√
2
(|z+〉1|z−〉2 − |z−〉1|z+〉2), (2.4)

where |z±〉1,2 represents the eigenstates of the observable
σz corresponding to spin up or spin down along the z axis
of the two systems 1 and 2. The state |ψ〉 can however
equivalently be expressed in the spin basis corresponding
to any other orientation in space. For example, when

using the eigenstates |x±〉1,2 of the observable σx (which
represents a measurement of the spin orientation along
the x axis) as basis vectors, we get

|ψ〉 =
1√
2
(|x+〉1|x−〉2 − |x−〉1|x+〉2). (2.5)

Now suppose that system 2 acts as a measuring device for
the spin of system 1. Then Eqs. (2.4) and (2.5) imply that
the measuring device has established a correlation with
both the z and the x spin of system 1. This means that, if
we interpret the formation of such a correlation as a mea-
surement in the spirit of the von Neumann scheme (with-
out assuming a collapse), our apparatus (system 2) could
be considered as having measured also the x spin once it
has measured the z spin, and vice versa—in spite of the
noncommutativity of the corresponding spin observables
σz and σx. Moreover, since we can rewrite Eq. (2.4) in
infinitely many ways, it appears that once the apparatus
has measured the spin of system 1 along one direction, it
can also be regarded as having measured the spin along
any other direction, again in apparent contradiction with
quantum mechanics due to the noncommutativity of the
spin observables corresponding to different spatial orien-
tations.

It thus seems that quantum mechanics has nothing to
say about which observable(s) of the system is (are) being
recorded, via the formation of quantum correlations, by
the apparatus. This can be stated in a general theorem
(Auletta, 2000; Zurek, 1981): When quantum mechanics
is applied to an isolated composite object consisting of a
system S and an apparatus A, it cannot determine which
observable of the system has been measured—in obvious
contrast to our experience of the workings of measuring
devices that seem to be “designed” to measure certain
quantities.

D. The quantum-to-classical transition and decoherence

In essence, as we have seen above, the measurement
problem deals with the transition from a quantum world,
described by essentially arbitrary linear superpositions of
state vectors, to our perception of “classical” states in the
macroscopic world, that is, a comparatively small subset
of the states allowed by the quantum-mechanical super-
position principle, having only a few, but determinate
and robust, properties, such as position, momentum, etc.
The question of why and how our experience of a “clas-
sical” world emerges from quantum mechanics thus lies
at the heart of the foundational problems of quantum
theory.

Decoherence has been claimed to provide an explana-
tion for this quantum-to-classical transition by appeal-
ing to the ubiquitous immersion of virtually all physical
systems in their environment (“environmental monitor-
ing”). This trend can also be read off nicely from the
titles of some papers and books on decoherence, for ex-
ample, “The emergence of classical properties through
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interaction with the environment” (Joos and Zeh, 1985),
“Decoherence and the transition from quantum to clas-
sical” (Zurek, 1991), and “Decoherence and the appear-
ance of a classical world in quantum theory” (Joos et al.,
2003). We shall critically investigate in this paper to
what extent the appeal to decoherence for an explana-
tion of the quantum-to-classical transition is justified.

III. THE DECOHERENCE PROGRAM

As remarked earlier, the theory of decoherence is based
on a study of the effects brought about by the inter-
action of physical systems with their environment. In
classical physics, the environment is usually viewed as
a kind of disturbance, or noise, that perturbs the sys-
tem under consideration in such a way as to negatively
influence the study of its “objective” properties. There-
fore science has established the idealization of isolated
systems, with experimental physics aiming at eliminat-
ing any outer sources of disturbance as much as possible
in order to discover the “true” underlying nature of the
system under study.

The distinctly nonclassical phenomenon of quantum
entanglement, however, has demonstrated that the cor-
relations between two systems can be of fundamental im-
portance and can lead to properties that are not present
in the individual systems.2 The earlier view of phenom-
ena arising from quantum entanglement as “paradoxa”
has generally been replaced by the recognition of entan-
glement as a fundamental property of nature.

The decoherence program3 is based on the idea that
such quantum correlations are ubiquitous; that nearly
every physical system must interact in some way with
its environment (for example, with the surrounding pho-
tons that then create the visual experience within the
observer), which typically consists of a large number
of degrees of freedom that are hardly ever fully con-
trolled. Only in very special cases of typically micro-
scopic (atomic) phenomena, so goes the claim of the de-
coherence program, is the idealization of isolated systems
applicable so that the predictions of linear quantum me-
chanics (i.e., a large class of superpositions of states)
can actually be observationally confirmed. In the ma-
jority of the cases accessible to our experience, however,
interaction with the environment is so dominant as to
preclude the observation of the “pure” quantum world,
imposing effective superselection rules (Cisnerosy et al.,
1998; Galindo et al., 1962; Giulini, 2000; Wick et al.,
1952, 1970; Wightman, 1995) onto the space of observ-
able states that lead to states corresponding to the “clas-

2 Broadly speaking, this means that the (quantum-mechanical)
whole is different from the sum of its parts.

3 For key ideas and concepts, see Joos and Zeh (1985); Joos et al.

(2003); Kübler and Zeh (1973); Zeh (1970, 1973, 1995, 1997,
2000); Zurek (1981, 1982, 1991, 1993, 2003b).

sical” properties of our experience. Interference between
such states gets locally suppressed and is thus claimed to
become inaccessible to the observer.

Probably the most surprising aspect of decoherence
is the effectiveness of the system-environment interac-
tions. Decoherence typically takes place on extremely
short time scales and requires the presence of only a
minimal environment (Joos and Zeh, 1985). Due to
the large number of degrees of freedom of the envi-
ronment, it is usually very difficult to undo system-
environment entanglement, which has been claimed as a
source of our impression of irreversibility in nature (see,
for example, Kiefer and Joos, 1999; Zeh, 2001; Zurek,
1982, 2003b; Zurek and Paz, 1994). In general, the ef-
fect of decoherence increases with the size of the sys-
tem (from microscopic to macroscopic scales), but it is
important to note that there exist, admittedly some-
what exotic, examples for which the decohering influ-
ence of the environment can be sufficiently shielded to
lead to mesoscopic and even macroscopic superpositions.
One such example would be the case of superconduct-
ing quantum interference devices (SQUIDs), in which su-
perpositions of macroscopic currents become observable
(Friedman et al., 2000; van der Wal et al., 2000). Con-
versely, some microscopic systems (for instance, certain
chiral molecules that exist in different distinct spatial
configurations) can be subject to remarkably strong de-
coherence.

The decoherence program has dealt with the following
two main consequences of environmental interaction:

(1) Environment-induced decoherence. The fast local
suppression of interference between different states
of the system. However, since only unitary time
evolution is employed, global phase coherence is
not actually destroyed—it becomes absent from
the local density matrix that describes the sys-
tem alone, but remains fully present in the to-
tal system-environment composition.4 We shall
discuss environment-induced local decoherence in
more detail in Sec. III.D.

(2) Environment-induced superselection. The selection
of preferred sets of states, often referred to as
“pointer states,” that are robust (in the sense of
retaining correlations over time) in spite of their
immersion in the environment. These states are
determined by the form of the interaction between
the system and its environment and are suggested
to correspond to the “classical” states of our ex-
perience. We shall consider this mechanism in
Sec. III.E.

4 Note that the persistence of coherence in the total state is impor-
tant to ensure the possibility of describing special cases in which
mesoscopic or macrosopic superpositions have been experimen-
tally realized.
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Another, more recent aspect of the decoherence program,
termed enviroment-assisted invariance or “envariance,”
was introduced by Zurek (2003b,c, 2004b) and further
developed in Zurek (2004a). In particular, Zurek used
envariance to explain the emergence of probabilities in
quantum mechanics and to derive Born’s rule based on
certain assumptions. We shall review envariance and
Zurek’s derivation of the Born rule in Sec. III.F.

Finally, let us emphasize that decoherence arises from a
direct application of the quantum mechanical formalism
to a description of the interaction of a physical system
with its environment. By itself, decoherence is therefore
neither an interpretation nor a modification of quantum
mechanics. Yet the implications of decoherence need to
be interpreted in the context of the different interpre-
tations of quantum mechanics. Also, since decoherence
effects have been studied extensively in both theoretical
models and experiments (for a survey, see, for example,
Joos et al., 2003; Zurek, 2003b), their existence can be
taken as a well-confirmed fact.

A. Resolution into subsystems

Note that decoherence derives from the presupposition
of the existence and the possibility of a division of the
world into “system(s)” and “environment.” In the deco-
herence program, the term “environment” is usually un-
derstood as the “remainder” of the system, in the sense
that its degrees of freedom are typically not (cannot be,
do not need to be) controlled and are not directly rele-
vant to the observation under consideration (for example,
the many microsopic degrees of freedom of the system),
but that nonetheless the environment includes “all those
degrees of freedom which contribute significantly to the
evolution of the state of the apparatus” (Zurek, 1981,
p. 1520).

This system–environment dualism is generally associ-
ated with quantum entanglement, which always describes
a correlation between parts of the universe. As long as
the universe is not resolved into individual subsystems,
there is no measurement problem: the state vector |Ψ〉
of the entire universe5 evolves deterministically accord-

ing to the Schrödinger equation i~ ∂
∂t |Ψ〉 = Ĥ |Ψ〉, which

poses no interpretive difficulty. Only when we decom-
pose the total Hilbert-state space H of the universe into
a product of two spaces H1 ⊗H2, and accordingly form
the joint-state vector |Ψ〉 = |Ψ1〉|Ψ2〉, and want to ascribe
an individual state (besides the joint state that describes
a correlation) to one of the two systems (say, the appara-
tus), does the measurement problem arise. Zurek (2003b,
p. 718) puts it like this:

5 If we dare to postulate this total state—see counterarguments by
Auletta (2000).

In the absence of systems, the problem of inter-

pretation seems to disappear. There is simply

no need for “collapse” in a universe with no sys-

tems. Our experience of the classical reality does

not apply to the universe as a whole, seen from

the outside, but to the systems within it.

Moreover, terms like “observation,” “correlation,” and
“interaction” will naturally make little sense without a
division into systems. Zeh has suggested that the locality
of the observer defines an observation in the sense that
any observation arises from the ignorance of a part of the
universe; and that this also defines the “facts” that can
occur in a quantum system. Landsman (1995, pp. 45–46)
argues similarly:

The essence of a “measurement,” “fact” or

“event” in quantum mechanics lies in the non-

observation, or irrelevance, of a certain part of

the system in question. (. . . ) A world without

parts declared or forced to be irrelevant is a world

without facts.

However, the assumption of a decomposition of the uni-
verse into subsystems—as necessary as it appears to be
for the emergence of the measurement problem and for
the definition of the decoherence program—is definitely
nontrivial. By definition, the universe as a whole is a
closed system, and therefore there are no “unobserved
degrees of freedom” of an external environment which
would allow for the application of the theory of decoher-
ence to determine the space of quasiclassical observables
of the universe in its entirety. Also, there exists no gen-
eral criterion for how the total Hilbert space is to be
divided into subsystems, while at the same time much
of what is called a property of the system will depend
on its correlation with other systems. This problem be-
comes particularly acute if one would like decoherence
not only to motivate explanations for the subjective per-
ception of classicality (as in Zurek’s “existential inter-
pretation,” see Zurek, 1993, 1998, 2003b, and Sec. IV.C
below), but moreover to allow for the definition of quasi-
classical “macrofacts.” Zurek (1998, p. 1820) admits this
severe conceptual difficulty:

In particular, one issue which has been often

taken for granted is looming big, as a founda-

tion of the whole decoherence program. It is the

question of what are the “systems” which play

such a crucial role in all the discussions of the

emergent classicality. (. . . ) [A] compelling ex-

planation of what are the systems—how to define

them given, say, the overall Hamiltonian in some

suitably large Hilbert space—would be undoubt-

edly most useful.

A frequently proposed idea is to abandon the notion of an
“absolute” resolution and instead postulate the intrinsic
relativity of the distinct state spaces and properties that
emerge through the correlation between these relatively
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defined spaces (see, for example, the proposals, unrelated
to decoherence, of Everett, 1957; Mermin, 1998a,b; and
Rovelli, 1996). This relative view of systems and corre-
lations has counterintuitive, in the sense of nonclassical,
implications. However, as in the case of quantum entan-
glement, these implications need not be taken as para-
doxa that demand further resolution. Accepting some
properties of nature as counterintuitive is indeed a satis-
factory path to take in order to arrive at a description of
nature that is as complete and objective as is allowed by
the range of our experience (which is based on inherently
local observations).

B. The concept of reduced density matrices

Since reduced density matrices are a key tool of deco-
herence, it will be worthwile to briefly review their ba-
sic properties and interpretation in the following. The
concept of reduced density matrices emerged in the ear-
liest days of quantum mechanics (Furry, 1936; Landau,
1927; von Neumann, 1932; for some historical remarks,
see Pessoa, 1998). In the context of a system of two en-
tangled systems in a pure state of the Einstein-Podolsky-
Rosen-type,

|ψ〉 =
1√
2
(|+〉1|−〉2 − |−〉1|+〉2), (3.1)

it had been realized early that for an observable Ô that

pertains only to system 1, Ô = Ô1 ⊗ Î2, the pure-state
density matrix ρ = |ψ〉〈ψ| yields, according to the trace

rule 〈Ô〉 = Tr(ρÔ) and given the usual Born rule for
calculating probabilities, exactly the same statistics as
the reduced density matrix ρ1 obtained by tracing over
the degrees of freedom of system 2 (i.e., the states |+〉2
and |−〉2),

ρ1 = Tr2|ψ〉〈ψ| = 2〈+|ψ〉〈ψ|+〉2 + 2〈−|ψ〉〈ψ|−〉2, (3.2)

since it is easy to show that, for this observable Ô,

〈Ô〉ψ = Tr(ρÔ) = Tr1(ρ1Ô1). (3.3)

This result holds in general for any pure state |ψ〉 =∑
i αi|φi〉1|φi〉2 · · · |φi〉N of a resolution of a system into

N subsystems, where the {|φi〉j} are assumed to form
orthonormal basis sets in their respective Hilbert spaces

Hj , j = 1 · · ·N . For any observable Ô that pertains only

to system j, Ô = Î1⊗ Î2⊗· · ·⊗ Îj−1⊗Ôj⊗ Îj+1⊗· · ·⊗ ÎN ,

the statistics of Ô generated by applying the trace rule
will be identical regardless of whether we use the pure-
state density matrix ρ = |ψ〉〈ψ| or the reduced density

matrix ρj = Tr1,...,j−1,j+1,...,N |ψ〉〈ψ|, since again 〈Ô〉 =

Tr(ρÔ) = Trj(ρjÔj).
The typical situation in which the reduced density ma-

trix arises is this: Before a premeasurement-type inter-
action, the observer knows that each individual system is

in some (unknown) pure state. After the interaction, i.e.,
after the correlation between the systems is established,
the observer has access to only one of the systems, say,
system 1; everything that can be known about the state
of the composite system must therefore be derived from
measurements on system 1, which will yield the possible
outcomes of system 1 and their probability distribution.
All information that can be extracted by the observer
is then, exhaustively and correctly, contained in the re-
duced density matrix of system 1, assuming that the Born
rule for quantum probabilities holds.

Let us return to the Einstein-Podolsky-Rosen-type ex-
ample, Eqs. (3.1) and (3.2). If we assume that the states
of system 2 are orthogonal, 2〈+|−〉2 = 0, ρ1 becomes
diagonal,

ρ1 = Tr2|ψ〉〈ψ| =
1

2
(|+〉〈+|)1 +

1

2
(|−〉〈−|)1. (3.4)

But this density matrix is formally identical to the den-
sity matrix that would be obtained if system 1 were in a
mixed state, i.e., in either one of the two states |+〉1 and
|−〉1 with equal probabilties—as opposed to the super-
position |ψ〉, in which both terms are considered present,
which could in principle be confirmed by suitable inter-
ference experiments. This implies that a measurement
of an observable that only pertains to system 1 cannot
discriminate between the two cases, pure vs mixed state.6

However, note that the formal identification of the re-
duced density matrix with a mixed-state density matrix
is easily misinterpreted as implying that the state of the
system can be viewed as mixed too (see also the discus-
sion by d’Espagnat, 1988). Density matrices are only a
calculational tool for computing the probability distri-
bution of a set of possible outcomes of measurements;
they do not specify the state of the system.7 Since the
two systems are entangled and the total composite sys-
tem is still described by a superposition, it follows from
the standard rules of quantum mechanics that no indi-
vidual definite state can be attributed to one of the sys-
tems. The reduced density matrix looks like a mixed-
state density matrix because, if one actually measured
an observable of the system, one would expect to get a
definite outcome with a certain probability; in terms of
measurement statistics, this is equivalent to the situation
in which the system is in one of the states from the set of
possible outcomes from the beginning, that is, before the
measurement. As Pessoa (1998, p. 432) puts it, “taking
a partial trace amounts to the statistical version of the
projection postulate.”

6 As discussed by Bub (1997, pp. 208–210), this result also holds
for any observable of the composite system that factorizes into
the form Ô = Ô1 ⊗ Ô2, where Ô1 and Ô2 do not commute with
the projection operators (|±〉〈±|)1 and (|±〉〈±|)2, respectively.

7 In this context we note that any nonpure density matrix can be
written in many different ways, demonstrating that any partition
in a particular ensemble of quantum states is arbitrary.
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C. A modified von Neumann measurement scheme

Let us now reconsider the von Neumann model for
ideal quantum-mechanical measurement, Eq. (3.5), but
now with the environment included. We shall denote the
environment by E and represent its state before the mea-
surement interaction by the initial state vector |e0〉 in
a Hilbert space HE . As usual, let us assume that the
state space of the composite object system-apparatus-
environment is given by the tensor product of the indi-
vidual Hilbert spaces, HS ⊗ HA ⊗ HE . The linearity of
the Schrödinger equation then yields the following time
evolution of the entire system SAE ,

( ∑

n

cn|sn〉
)
|ar〉|e0〉

(1)−→
( ∑

n

cn|sn〉|an〉
)
|e0〉

(2)−→
∑

n

cn|sn〉|an〉|en〉, (3.5)

where the |en〉 are the states of the environment associ-
ated with the different pointer states |an〉 of the measur-
ing apparatus. Note that while for two subsystems, say,
S and A, there always exists a diagonal (“Schmidt”) de-
composition of the final state of the form

∑
n cn|sn〉|an〉,

for three subsystems (for example, S, A, and E), a de-
composition of the form

∑
n cn|sn〉|an〉|en〉 is not always

possible. This implies that the total Hamiltonian that
induces a time evolution of the above kind, Eq. (3.5),
must be of a special form.8

Typically, the |en〉 will be product states of many mi-
crosopic subsystem states |εn〉i corresponding to the in-
dividual parts that form the environment, i.e., |en〉 =
|εn〉1|εn〉2|εn〉3 · · · . We see that a nonseparable and in
most cases, for all practical purposes, irreversible (due to
the enormous number of degrees of freedom of the en-
vironment) correlation has been established between the
states of the system–apparatus combination SA and the
different states of the environment E . Note that Eq. (3.5)
also implies that the environment has recorded the state
of the system—and, equivalently, the state of the system-
apparatus composition. The environment, composed of
many subsystems, thus acts as an amplifying, higher-
order measuring device.

D. Decoherence and local suppression of interference

Interaction with the environment typically leads to a
rapid vanishing of the diagonal terms in the local density
matrix describing the probability distribution for the out-
comes of measurements on the system. This effect has

8 For an example of such a Hamiltonian, see the model of Zurek
(1981, 1982) and its outline in Sec. III.D.2 below. For a criti-
cal comment regarding limitations on the form of the evolution
operator and the possibility of a resulting disagreement with ex-
perimental evidence, see Pessoa (1998).

become known as environment-induced decoherence, and
it has also frequently been claimed to imply at least a
partial solution to the measurement problem.

1. General formalism

In Sec. III.B, we have already introduced the concept
of local (or reduced) density matrices and pointed out
some caveats on their interpretation. In the context of
the decoherence program, reduced density matrices arise
as follows. Any observation will typically be restricted to
the system-apparatus component, SA, while the many
degrees of freedom of the environment E remain unob-
served. Of course, typically some degrees of freedom of
the environment will always be included in our obser-
vation (e.g., some of the photons scattered off the ap-
paratus) and we shall accordingly include them in the
“observed part SA of the universe.” The crucial point
is that there still remains a comparatively large number
of environmental degrees of freedom that will not be ob-
served directly.

Suppose then that the operator ÔSA represents an ob-

servable of SA only. Its expectation value 〈ÔSA〉 is given
by

〈ÔSA〉 = Tr(ρ̂SAE [ÔSA ⊗ ÎE ]) = TrSA(ρ̂SAÔSA), (3.6)

where the density matrix ρ̂SAE of the total SAE combi-
nation,

ρ̂SAE =
∑

mn

cmc
∗
n|sm〉|am〉|em〉〈sn|〈an|〈en|, (3.7)

has, for all practical purposes of statistical prediction,
been replaced by the local (or reduced) density matrix
ρ̂SA, obtained by “tracing out the unobserved degrees of
the environment,” that is,

ρ̂SA = TrE(ρ̂SAE) =
∑

mn

cmc
∗
n|sm〉|am〉〈sn|〈an|〈en|em〉.

(3.8)
So far, ρ̂SA contains characteristic interference terms
|sm〉|am〉〈sn|〈an|, m 6= n, since we cannot assume from
the outset that the basis vectors |em〉 of the environment
are necessarily mutually orthogonal, i.e., that 〈en|em〉 =
0 if m 6= n. Many explicit physical models for the inter-
action of a system with the environment (see Sec. III.D.2
below for a simple example), however, have shown that
due to the large number of subsystems that compose the
environment, the pointer states |en〉 of the environment
rapidly approach orthogonality, 〈en|em〉(t) → δn,m, such
that the reduced density matrix ρ̂SA becomes approxi-
mately orthogonal in the “pointer basis” {|an〉}; that is,

ρ̂SA
t−→ ρ̂ dSA ≈

∑

n

|cn|2|sn〉|an〉〈sn|〈an|

=
∑

n

|cn|2P̂ (S)
n ⊗ P̂ (A)

n . (3.9)
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Here, P̂
(S)
n and P̂

(A)
n are the projection operators onto

the eigenstates of S and A, respectively. Therefore the
interference terms have vanished in this local represen-
tation, i.e., phase coherence has been locally lost. This
is precisely the effect referred to as environment-induced
decoherence. The decohered local density matrices de-
scribing the probability distribution of the outcomes of
a measurement on the system-apparatus combination is
formally (approximately) identical to the corresponding
mixed-state density matrix. But as we pointed out in
Sec. III.B, we must be careful in interpreting this state
of affairs, since full coherence is retained in the total den-
sity matrix ρSAE .

2. An exactly solvable two-state model for decoherence

To see how the approximate mutual orthogonality of
the environmental state vectors arises, let us discuss a
simple model first introduced by Zurek (1982). Consider
a system S with two spin states {|⇑〉, |⇓〉} that inter-
acts with an environment E described by a collection
of N other two-state spins represented by {|↑k〉, |↓k〉},
k = 1 · · ·N . The self-Hamiltonians ĤS and ĤE and the
self-interaction Hamiltonian ĤEE of the environment are
taken to be equal to zero. Only the interaction Hamilto-

nian ĤSE that describes the coupling of the spin of the
system to the spins of the environment is assumed to be
nonzero and of the form

ĤSE = (|⇑〉〈⇑|−|⇓〉〈⇓|)⊗
∑

k

gk(|↑k〉〈↑k|−|↓k〉〈↓k|)
⊗

k′ 6=k

Îk′ ,

(3.10)

where the gk are coupling constants and Îk = (|↑k〉〈↑k|+
|↓k〉〈↓k|) is the identity operator for the kth environmen-
tal spin. Applied to the initial state before the interaction
is turned on,

|ψ(0)〉 = (a|⇑〉 + b|⇓〉)
N⊗

k=1

(αk|↑k〉 + βk|↓k〉), (3.11)

this Hamiltonian yields a time evolution of the state given
by

|ψ(t)〉 = a|⇑〉|E⇑(t)〉 + b|⇓〉|E⇓(t)〉, (3.12)

where the two environmental states |E⇑(t)〉 and |E⇓(t)〉
are

|E⇑(t)〉 = |E⇓(−t)〉 =

N⊗

k=1

(αke
igkt|↑k〉+βke−igkt|↓k〉).

(3.13)
The reduced density matrix ρS(t) = TrE(|ψ(t)〉〈ψ(t)|) is
then

ρS(t) = |a|2|⇑〉〈⇑| + |b|2|⇓〉〈⇓|
+z(t)ab∗|⇑〉〈⇓| + z∗(t)a∗b|⇓〉〈⇑|, (3.14)

where the interference coefficient z(t) which determines
the weight of the off-diagonal elements in the reduced
density matrix is given by

z(t) = 〈E⇑(t)|E⇓(t)〉 =

N∏

k=1

(|αk|2eigkt + |βk|2e−igkt),

(3.15)
and thus

|z(t)|2 =

N∏

k=1

{1+ [(|αk|2 −|βk|2)2−1] sin2 2gkt}. (3.16)

At t = 0, z(t) = 1, i.e., the interference terms are fully
present, as expected. If |αk|2 = 0 or 1 for each k, i.e.,
if the environment is in an eigenstate of the interaction

Hamiltonian ĤSE of the type |↑1〉|↑2〉|↓3〉 · · · |↑N〉, and/or
if 2gkt = mπ (m = 0, 1, . . .), then z(t)2 ≡ 1 so coherence
is retained over time. However, under realistic circum-
stances, we can typically assume a random distribution
of the initial states of the environment (i.e., of coefficients
αk, βk) and of the coupling coefficients gk. Then, in the
long-time average,

〈|z(t)|2〉t→∞ ≃ 2−N
N∏

k=1

[1 + (|αk|2 − |βk|2)2] N→∞−→ 0,

(3.17)
so the off-diagonal terms in the reduced density matrix
become strongly damped for large N .

It can also be shown directly that, given very general
assumptions about the distribution of the couplings gk
(namely, requiring their initial distribution to have finite
variance), z(t) exhibits a Gaussian time dependence of

the form z(t) ∝ eiAte−B
2t2/2, where A and B are real

constants (Zurek et al., 2003). For the special case in
which αk = α and gk = g for all k, this behavior of z(t)
can be immediately seen by first rewriting z(t) as the
binomial expansion

z(t) = (|α|2eigt + |β|2e−igt)N

=

N∑

l=0

(
N

l

)
|α|2l|β|2(N−l)eig(2l−N)t. (3.18)

For large N , the binomial distribution can then be ap-
proximated by a Gaussian,

(
N

l

)
|α|2l|β|2(N−l) ≈ e−(l−N |α|2)2/(2N |α|2|β|2)

√
2πN |α|2|β|2

, (3.19)

in which case z(t) becomes

z(t) =

N∑

l=0

e−(l−N |α|2)2/(2N |α|2|β|2)

√
2πN |α|2|β|2

eig(2l−N)t, (3.20)

that is, z(t) is the Fourier transform of an (approxi-
mately) Gaussian distribution and is therefore itself (ap-
proximately) Gaussian.
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Detailed model calculations, in which the environ-
ment is typically represented by a more sophisticated
model consisting of a collection of harmonic oscillators
(Caldeira and Leggett, 1983; Hu et al., 1992; Joos et al.,
2003; Unruh and Zurek, 1989; Zurek, 2003b; Zurek et al.,
1993), have shown that the damping occurs on extremely
short decoherence time scales τD, which are typically
many orders of magnitude shorter than the thermal relax-
ation. Even microscopic systems such as large molecules
are rapidly decohered by the interaction with thermal
radiation on a time scale that is much shorter than any
practical observation could resolve; for mesoscopic sys-
tems such as dust particles, the 3K cosmic microwave
background radiation is sufficient to yield strong and im-
mediate decoherence (Joos and Zeh, 1985; Zurek, 1991).

Within τD, |z(t)| approaches zero and remains close to
zero, fluctuating with an average standard deviation of
the random-walk type σ ∼

√
N (Zurek, 1982). However,

the multiple periodicity of z(t) implies that coherence,
and thus the purity of the reduced density matrix, will
reappear after a certain time τr, which can be shown to
be very long and of the Poincaré type with τr ∼ N !. For
macroscopic environments of realistic but finite sizes, τr
can exceed the lifetime of the universe (Zurek, 1982), but
nevertheless always remains finite.

From a conceptual point of view, recurrence of coher-
ence is of little relevance. The recurrence time could
only be infinitely long in the hypothetical case of an in-
finitely large environment. In this situation, off-diagonal
terms in the reduced density matrix would be irreversibly
damped and lost in the limit t → ∞, which has some-
times been regarded as describing a physical collapse of
the state vector (Hepp, 1972). But the assumption of
infinite sizes and times is never realized in nature (Bell,
1975), nor can information ever be truly lost (as achieved
by a “true” state vector collapse) through unitary time
evolution—full coherence is always retained at all times
in the total density matrix ρSAE(t) = |ψ(t)〉〈ψ(t)|.

We can therefore state the general conclusion that,
except for exceptionally well-isolated and carefully pre-
pared microsopic and mesoscopic systems, the interac-
tion of the system with the environment causes the off-
diagonal terms of the local density matrix, expressed in
the pointer basis and describing the probability distribu-
tion of the possible outcomes of a measurement on the
system, to become extremely small in a very short pe-
riod of time, and that this process is irreversible for all
practical purposes.

E. Environment-induced superselection

Let us now turn to the second main consequence
of the interaction with the environment, namely, the
environment-induced selection of stable preferred-basis
states. We discussed in Sec. II.C the fact that
the quantum-mechanical measurement scheme as repre-
sented by Eq. (2.1) does not uniquely define the expan-

sion of the postmeasurement state and thereby leaves
open the question of which observable can be considered
as having been measured by the apparatus. This situa-
tion is changed by the inclusion of the environment states
in Eq. (3.5), for the following two reasons:

(1) Environment-induced superselection of a preferred

basis. The interaction between the apparatus and
the environment singles out a set of mutually com-
muting observables.

(2) The existence of a tridecompositional uniqueness

theorem (Bub, 1997; Clifton, 1994; Elby and Bub,
1994). If a state |ψ〉 in a Hilbert space H1⊗H2⊗H3

can be decomposed into the diagonal (“Schmidt”)
form |ψ〉 =

∑
i αi|φi〉1|φi〉2|φi〉3, the expansion is

unique provided that the {|φi〉1} and {|φi〉2} are
sets of linearly independent, normalized vectors in
H1 and H2, respectively, and that {|φi〉3} is a set
of mutually noncollinear normalized vectors in H3.
This can be generalized to an N -decompositional
uniqueness theorem, in which N ≥ 3. Note that
it is not always possible to decompose an arbitrary
pure state of more than two systems (N ≥ 3) into
the Schmidt form |ψ〉 =

∑
i αi|φi〉1|φi〉2 · · · |φi〉N ,

but if the decomposition exists, its uniqueness is
guaranteed.

The tridecompositional uniqueness theorem ensures
that the expansion of the final state in Eq. (3.5) is unique,
which fixes the ambiguity in the choice of the set of pos-
sible outcomes. It demonstrates that the inclusion of (at
least) a third “system” (here referred to as the environ-
ment) is necessary to remove the basis ambiguity.

Of course, given any pure state in the composite
Hilbert space H1 ⊗ H2 ⊗ H3, the tridecompositional
uniqueness theorem neither tells us whether a Schmidt
decomposition exists nor specifies the unique expansion
itself (provided the decomposition is possible), and since
the precise states of the environment are generally not
known, an additional criterion is needed that determines
what the preferred states will be.

1. Stability criterion and pointer basis

The decoherence program has attempted to define such
a criterion based on the interaction with the environ-
ment and the idea of robustness and preservation of cor-
relations. The environment thus plays a double role in
suggesting a solution to the preferred-basis problem: it
selects a preferred pointer basis, and it guarantees its
uniqueness via the tridecompositional uniqueness theo-
rem.

In order to motivate the basis superselection approach
proposed by the decoherence program, we note that in
step (2) of Eq. (3.5) we tacitly assumed that interaction
with the environment does not disturb the established
correlation between the state of the system, |sn〉, and
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the corresponding pointer state |an〉. This assumption
can be viewed as a generalization of the concept of “faith-
ful measurement” to the realistic case in which the envi-
ronment is included. Faithful measurement in the usual
sense concerns step (1), namely, the requirement that the
measuring apparatus A act as a reliable “mirror” of the
states of the system S by forming only correlations of
the form |sn〉|an〉 but not |sm〉|an〉 with m 6= n. But
since any realistic measurement process must include the
inevitable coupling of the apparatus to its environment,
the measurement could hardly be considered faithful as a
whole if the interaction with the environment disturbed
the correlations between the system and the apparatus.9

It was therefore first suggested by Zurek (1981) that
the preferred pointer basis be taken as the basis which
“contains a reliable record of the state of the system S”
(Zurek, 1981, p. 1519), i.e., the basis in which the system-
apparatus correlations |sn〉|an〉 are left undisturbed by
the subsequent formation of correlations with the envi-
ronment (the stability criterion). One can then find a
sufficient criterion for dynamically stable pointer states
that preserve the system–apparatus correlations in spite
of the interaction of the apparatus with the environ-
ment by requiring all pointer state projection opera-

tors P̂
(A)
n = |an〉〈an| to commute with the apparatus-

environment interaction Hamiltonian ĤAE ,10

[P̂ (A)
n , ĤAE ] = 0 for all n. (3.21)

This implies that any correlation of the measured system
(or any other system, for instance an observer) with the
eigenstates of a preferred apparatus observable,

ÔA =
∑

n

λnP̂
(A)
n , (3.22)

is preserved, and that the states of the environment re-

liably mirror the pointer states P̂
(A)
n . In this case, the

environment can be regarded as carrying out a nonde-
molition measurement on the apparatus. The commu-
tativity requirement, Eq. (3.21), is obviously fulfilled if

ĤAE is a function of ÔA, ĤAE = ĤAE(ÔA). Conversely,
system-apparatus correlations in which the states of the
apparatus are not eigenstates of an observable that com-

mutes with ĤAE will in general be rapidly destroyed by
the interaction.

Put the other way around, this implies that the envi-
ronment determines through the form of the interaction

Hamiltonian ĤAE , a preferred apparatus observable ÔA,
Eq. (3.22), and thereby also the states of the system that

9 For fundamental limitations on the precision of von Neumann
measurements of operators that do not commute with a glob-
ally conserved quantity, see the Wigner-Araki-Yanase theorem
(Araki and Yanase, 1960; Wigner, 1952).

10 For simplicity, we assume here that the environment E interacts
directly only with the apparatus A, but not with the system S.

are measured by the apparatus, that is, reliably recorded
through the formation of dynamically stable quantum
correlations. The tridecompositional uniqueness theorem
then guarantees the uniqueness of the expansion of the
final state |ψ〉 =

∑
n cn|sn〉|an〉|en〉 (where no constraints

on the cn have to be imposed) and thereby the uniqueness
of the preferred pointer basis.

Other criteria similar to the commutativity require-
ment, Eq. (3.21), have been suggested for the selection
of the preferred pointer basis because it turns out that in
realistic cases the simple relation of Eq. (3.21) can usually
only be fulfilled approximately (Zurek, 1993; Zurek et al.,
1993). More general criteria, for example, have been
based on the von Neumann entropy −Trρ2

Ψ(t) ln ρ2
Ψ(t),

or the purity Trρ2
Ψ(t), with the goal of finding the most

robust states or the states which become least entan-
gled with the environment in the course of the evolution
(Zurek, 1993, 1998, 2003b; Zurek et al., 1993). Pointer
states are obtained by extremizing the measure (i.e., min-
imizing entropy, or maximizing purity, etc.) over the ini-
tial state |Ψ〉 and requiring the resulting states to be ro-
bust when varying the time t. Application of this method
leads to a ranking of the possible pointer states with re-
spect to their “classicality,” i.e., their robustness with
respect to interaction with the environment, and thus al-
lows for the selection of preferred pointer basis in terms
of the “most classical” pointer states (the “predictability
sieve”; see Zurek, 1993; Zurek et al., 1993). Although
the proposed criteria differ somewhat and other mean-
ingful criteria are likely to be suggested in the future,
it is hoped that in the macrosopic limit the resulting
stable pointer states obtained from different criteria will
turn out to be very similar (Zurek, 2003b). For some
toy models (in particular, for harmonic-oscillator mod-
els that lead to coherent states as pointer states), this
has already been verified explicitly (see, for example,
Diósi and Kiefer, 2000; Eisert, 2004; Joos et al., 2003;
Kübler and Zeh, 1973; Zurek, 1993).

2. Selection of quasiclassical properties

System-environment interaction Hamiltonians fre-
quently describe a scattering process of surrounding par-
ticles (photons, air molecules, etc.) interacting with the
system under study. Since the force laws describing such
processes typically depend on some power of distance
(such as ∝ r−2 in Newton’s or Coulomb’s force law),
the interaction Hamiltonian will usually commute with
the position basis, such that, according the commutativ-
ity requirement of Eq. (3.21), the preferred basis will be
in position space. The fact that position is frequently
the determinate property of our experience can then be
explained by referring to the dependence of most inter-
actions on distance (Zurek, 1981, 1982, 1991).

This holds, in particular, for mesoscopic and macro-
scopic systems, as demonstrated, for instance, by the
pioneering study of Joos and Zeh (1985), in which sur-
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rounding photons and air molecules are shown to contin-
uously “measure” the spatial structure of dust particles,
leading to rapid decoherence into an apparent (improper)
mixture of wave packets that are sharply peaked in po-
sition space. Similar results sometimes even hold for mi-
croscopic systems (usually found in energy eigenstates;
see below) when they occur in distinct spatial struc-
tures that couple strongly to the surrounding medium.
For instance, chiral molecules such as sugar are always
observed to be in chirality eigenstates (left-handed and
right-handed) which are superpositions of different en-
ergy eigenstates (Harris and Stodolsky, 1981; Zeh, 2000).
This is explained by the fact that the spatial structure
of these molecules is continuously “monitored” by the
environment, for example, through the scattering of air
molecules, which gives rise to a much stronger coupling
than could typically be achieved by a measuring device
that was intended to measure, say, parity or energy; fur-
thermore, any attempt to prepare such molecules in en-
ergy eigenstates would lead to immediate decoherence
into environmentally stable (“dynamically robust”) chi-
rality eigenstates, thus selecting position as the preferred
basis.

On the other hand, it is well known that many systems,
especially in the microsopic domain, are typically found
in energy eigenstates, even if the interaction Hamiltonian
depends on a different observable than energy, e.g., posi-
tion. Paz and Zurek (1999) have shown that this situa-
tion arises when the predominant frequencies present in
the environment are significantly lower than the intrinsic
frequencies of the system, that is, when the separation
between the energy states of the system is greater than
the largest energies available in the environment. Then,
the environment will only be able to monitor quantities
that are constants of motion. In the case of nondegener-
acy, this will be energy, thus leading to the environment-
induced superselection of energy eigenstates for the sys-
tem.

Another example of environment-induced superselec-
tion that has been studied is related to the fact that only
eigenstates of the charge operator are observed, but never
superpositions of different charges. The existence of the
corresponding superselection rules was first only postu-
lated (Wick et al., 1952, 1970), but could subsequently
be explained in the framework of decoherence by refer-
ring to the interaction of the charge with its own Coulomb
(far) field, which takes the role of an “environment,” lead-
ing to immediate decoherence of charge superpositions
into an apparent mixture of charge eigenstates (Giulini,
2000; Giulini et al., 1995).

In general, three different cases have typically been
distinguished (for example, in Paz and Zurek, 1999) for
the kind of pointer observable emerging from an inter-
action with the environment, depending on the relative

strengths of the system’s self-Hamiltonian ĤS and of the

system-environment interaction Hamiltonian ĤSE :

(1) When the dynamics of the system are dominated

by ĤSE , i.e., the interaction with the environment,

the pointer states will be eigenstates of ĤSE (and
thus typically eigenstates of position). This case
corresponds to the typical quantum measurement
setting; see, for example, the model of Zurek (1981,
1982), which is outlined in Sec. III.D.2 above.

(2) When the interaction with the environment is weak

and ĤS dominates the evolution of the system (that
is, when the environment is “slow” in the above
sense), a case that frequently occurs in the micro-
scopic domain, pointer states will arise that are en-

ergy eigenstates of ĤS (Paz and Zurek, 1999).

(3) In the intermediate case, when the evolution of

the system is governed by ĤSE and ĤS in roughly
equal strength, the resulting preferred states will
represent a “compromise” between the first two
cases; for instance, the frequently studied model
of quantum Brownian motion has shown the emer-
gence of pointer states localized in phase space,
i.e., in both position and momentum (Eisert, 2004;
Joos et al., 2003; Unruh and Zurek, 1989; Zurek,
2003b; Zurek et al., 1993).

3. Implications for the preferred-basis problem

The decoherence program proposes that the preferred
basis be selected by the requirement that correlations
be preserved in spite of the interaction with the en-
vironment, and thus be chosen through the form of
the system-environment interaction Hamiltonian. This
seems certainly reasonable, since only such “robust”
states will in general be observable—and, after all, we
solely seek an explanation for our experience (see the
discussion in Sec. II.B.3). Although only particular ex-
amples have been studied (for a survey and references,
see, for example, Blanchard et al., 2000; Joos et al., 2003;
Zurek, 2003b), the results thus far suggest that the se-
lected properties are in agreement with our observation:
for mesoscopic and macroscopic objects the distance-
dependent scattering interaction with surrounding air
molecules, photons, etc., will in general give rise to im-
mediate decoherence into spatially localized wave pack-
ets and thus select position as the preferred basis. On
the other hand, when the environment is comparably
“slow,” as is frequently the case for microsopic systems,
environment-induced superselection will typically yield
energy eigenstates as the preferred states.

The clear merit of the approach of environment-
induced superselection lies in the fact that the preferred
basis is not chosen in an ad hoc manner simply to
make our measurement records determinate or to match
our experience of which physical quantities are usually
perceived as determinate (for example, position). In-
stead the selection is motivated on physical, observer-free
grounds, that is, through the system-environment inter-
action Hamiltonian. The vast space of possible quantum-
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mechanical superpositions is reduced so much because
the laws governing physical interactions depend only on
a few physical quantities (position, momentum, charge,
and the like), and the fact that precisely these are the
properties that appear determinate to us is explained by
the dependence of the preferred basis on the form of the
interaction. The appearance of “classicality” is therefore
grounded in the structure of the physical laws—certainly
a highly satisfying and reasonable approach.

The above argument in favor of the approach of
environment-induced superselection could, of course, be
considered as inadequate on a fundamental level: All
physical laws are discovered and formulated by us, so
they can contain only the determinate quantities of our
experience. These are the only quantities we can perceive
and thus include in a physical law. Thus the derivation
of determinacy from the structure of our physical laws
might seem circular. However, we argue again that it
suffices to demand a subjective solution to the preferred-
basis problem—that is, to provide an answer to the ques-
tion of why we perceive only such a small subset of prop-
erties as determinate, not whether there really are de-
terminate properties (on an ontological level) and what
they are (cf. the remarks in Sec. II.B.3).

We might also worry about the generality of this
approach. One would need to show that any such
environment-induced superselection leads,in fact, to pre-
cisely those properties that appear determinate to us.
But this would require precise knowledge of the system
and the interaction Hamiltonian. For simple toy models,
the relevant Hamiltonians can be written down explicitly.
In more complicated and realistic cases, this will in gen-
eral be very difficult, if not impossible, since the form of
the Hamiltonian will depend on the particular system or
apparatus and the monitoring environment under consid-
eration, where, in addition, the environment is not only
difficult to define precisely, but also constantly changing,
uncontrollable, and, in essence, infinitely large.

But the situation is not as hopeless as it might sound,
since we know that the interaction Hamiltonian will, in
general, be based on the set of known physical laws
which, in turn, employ only a relatively small number
of physical quantities. So as long as we assume the sta-
bility criterion and consider the set of known physical
quantities as complete, we can automatically anticipate
that the preferred basis will be a member of this set. The
remaining, yet very relevant, question is then which sub-
set of these properties will be chosen in a specific physi-
cal situation (for example, will the system preferably be
found in an eigenstate of energy or position?), and to
what extent this will match the experimental evidence.
To give an answer, one will usually need a more detailed
knowledge of the interaction Hamiltonian and of its rela-
tive strength with respect to the self-Hamiltonian of the
system in order to verify the approach. Besides, as men-
tioned in Sec. III.E, there exist other criteria than the
commutativity requirement, and whether they all lead
to the same determinate properties is a question that

has not yet been fully explored.
Finally, a fundamental conceptual difficulty of the

decoherence-based approach to the preferred-basis prob-
lem is the lack of a general criterion for what defines the
systems and the “unobserved” degrees of freedom of the
environment (see the discussion in Sec. III.A). While in
many laboratory-type situations, the division into sys-
tem and environment might seem straightforward, it is
not clear a priori how quasiclassical observables can be
defined through environment-induced superselection on
a larger and more general scale, when larger parts of
the universe are considered where the split into subsys-
tems is not suggested by some specific system-apparatus-
surroundings setup.

To summarize, environment-induced superselection of
a preferred basis (i) proposes an explanation for why a
particular pointer basis gets chosen at all—by arguing
that it is only the pointer basis that leads to stable, and
thus perceivable, records when the interaction of the ap-
paratus with the environment is taken into account; and
(ii) argues that the preferred basis will correspond to a
subset of the set of the determinate properties of our
experience, since the governing interaction Hamiltonian
will depend solely on these quantities. But it does not tell
us precisely what the pointer basis will be in any given
physical situation, since it will usually be hardly possible
to write down explicitly the relevant interaction Hamil-
tonian in realistic cases. This also means that it will
be difficult to argue that any proposed criterion based
on the interaction with the environment will always and
in all generality lead to exactly those properties that we
perceive as determinate.

More work remains to be done, therefore, to fully ex-
plore the general validity and applicability of the ap-
proach of environment-induced superselection. But since
the results obtained thus far from toy models have been
in promising agreement with empirical data, there is little
reason to doubt that the decoherence program has pro-
posed a very valuable criterion for explaining the emer-
gence of preferred states and their robustness. The fact
that the approach is derived from physical principles
should be counted additionally in its favor.

4. Pointer basis vs instantaneous Schmidt states

The so-called Schmidt basis, obtained by diagonaliz-
ing the (reduced) density matrix of the system at each
instant of time, has been frequently studied with respect
to its ability to yield a preferred basis (see, for exam-
ple, Albrecht, 1992, 1993; Zeh, 1973), having led some to
consider the Schmidt basis states as describing “instan-
taneous pointer states” (Albrecht, 1992). However, as it
has been emphasized (for example, by Zurek, 1993), any
density matrix is diagonal in some basis, and this ba-
sis will in general not play any special interpretive role.
Pointer states that are supposed to correspond to qua-
siclassical stable observables must be derived from an
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explicit criterion for classicality (typically, the stability
criterion); the simple mathematical diagonalization pro-
cedure of the instantaneous density matrix will gener-
ally not suffice to determine a quasiclassical pointer basis
(see the studies by Barvinsky and Kamenshchik, 1995;
Kent and McElwaine, 1997).

In a more refined method, one refrains from comput-
ing instantaneous Schmidt states and instead allows for a
characteristic decoherence time τD to pass during which
the reduced density matrix decoheres (a process that can
be described by an appropriate master equation) and
becomes approximately diagonal in the stable pointer
basis, the basis that is selected by the stability crite-
rion. Schmidt states are then calculated by diagonalizing
the decohered density matrix. Since decoherence usually
leads to rapid diagonality of the reduced density matrix
in the stability-selected pointer basis to a very good ap-
proximation, the resulting Schmidt states are typically
very similar to the pointer basis except when the pointer
states are very nearly degenerate. The latter situation
is readily illustrated by considering the approximately
diagonalized decohered density matrix

ρ =

(
1/2 + δ ω∗

ω 1/2 − δ

)
, (3.23)

where |ω| ≪ 1 (strong decoherence) and δ ≪ 1 (near-
degeneracy; Albrecht, 1993). If decoherence led to exact
diagonality, ω = 0, the eigenstates would be, for any fixed
value of δ, proportional to (0, 1) and (1, 0) (correspond-
ing to the “ideal” pointer states). However, for fixed
ω > 0 (approximate diagonality) and δ → 0 (degener-
acy), the eigenstates become proportional to (±|ω|/ω, 1),
which implies that, in the case of degeneracy, the Schmidt
decomposition of the reduced density matrix can yield
preferred states that are very different from the stable
pointer states, even if the decohered, rather than the in-
stantaneous, reduced density matrix is diagonalized.

In summary, it is important to emphasize that stability
(or a similar criterion) is the relevant requirement for
the emergence of a preferred quasiclassical basis, which
cannot, in general, be achieved by simply diagonalizing
the instantaneous reduced density matrix. However, the
eigenstates of the decohered reduced density matrix will,
in many situations, approximate the quasiclassical stable
pointer states well, especially when these pointer states
are sufficiently nondegenerate.

F. Envariance, quantum probabilities, and the Born rule

In the following, we shall review an interesting
and promising approach introduced recently by Zurek
(2003b,c, 2004a,b) that aims to explain the emergence of
quantum probabilities and to deduce the Born rule based
on a mechanism termed “environment-assisted invari-
ance,” or “envariance” for short, a particular symmetry
property of entangled quantum states. The original expo-
sition of Zurek (2003b) was followed up by several articles

by other authors, who assessed the approach, pointed out
more clearly the assumptions entering into the deriva-
tion, and presented variants of the proof (Barnum, 2003;
Mohrhoff, 2004; Schlosshauer and Fine, 2005). An ex-
panded treatment of envariance and quantum probabili-
ties that addresses some of the issues discussed in these
papers and that offers an interesting outlook on fur-
ther implications of envariance can be found in Zurek
(2004a). In our outline of the theory of envariance, we
shall follow this most recent treatment, as it spells out
the derivation and the required assumptions more ex-
plicitly and in greater detail and clarity than in Zurek’s
earlier (2003b; 2003c; 2004b) papers (cf. also the remarks
of Schlosshauer and Fine, 2005).

We include a discussion of Zurek’s proposal here for
two reasons. First, the derivation is based on the in-
clusion of an environment E , entangled with the system
S of interest to which probabilities of measurement out-
comes are to be assigned, and thus it matches well the
spirit of the decoherence program. Second, and more
importantly, despite the contributions of decoherence to
explaining the emergence of subjective classicality from
quantum mechanics, a consistent derivation of classical-
ity (including a motivation for some of the axioms of
quantum mechanics, as suggested by Zurek, 2003b) re-
quires the separate derivation of the Born rule. The deco-
herence program relies heavily on the concept of reduced
density matrices and the related formalism and interpre-
tation of the trace operation, see Eq. (3.6), which presup-

pose Born’s rule. Therefore decoherence itself cannot be
used to derive the Born rule (as was tried, for example,
by Deutsch, 1999 and Zurek, 1998) since otherwise the
argument would be rendered circular (Zeh, 1997; Zurek,
2003b).

There have been various attempts in the past to re-
place the postulate of the Born rule by a derivation.
Gleason’s (1957) theorem has shown that if one im-
poses the condition that for any orthonormal basis of
a given Hilbert space the sum of the probabilities asso-
ciated with each basis vector must add up to one, the
Born rule is the only possibility for the calculation of
probabilities. However, Gleason’s proof provides little in-
sight into the physical meaning of the Born probabilities,
and therefore various other attempts, typically based on
a relative frequencies approach (i.e., on a counting ar-
gument), have been made towards a derivation of the
Born rule in a no-collapse (and usually relative-state)
setting (see, for example, Deutsch, 1999; DeWitt, 1971;
DeWitt and Graham, 1973; Everett, 1957; Farhi et al.,
1989; Geroch, 1984; Graham, 1973; Hartle, 1968). How-
ever, it was pointed out that these approaches fail due
to the use of circular arguments (Barnum et al., 2000;
Kent, 1990; Squires, 1990; Stein, 1984); cf. also Wallace
(2003b) and Saunders (2002).

Zurek’s recently developed theory of envariance pro-
vides a promising new strategy for deriving, given certain
assumptions, the Born rule in a manner that avoids the
circularities of the earlier approaches. We shall outline
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the concept of envariance in the following and show how
it can lead to Born’s rule.

1. Environment-assisted invariance

Zurek introduces his definition of envariance as follows.
Consider a composite state |ψSE〉 (where, as usual, S
refers to the “system” and E to some “environment”) in
a Hilbert space given by the tensor product HS ⊗ HE ,

and a pair of unitary transformations ÛS = ûS ⊗ ÎE and

ÛE = ÎS ⊗ ûE acting on S and E , respectively. If |ψSE〉 is

invariant under the combined application of ÛS and ÛE ,

ÛE(ÛS |ψSE〉) = |ψSE〉, (3.24)

|ψSE〉 is called envariant under ûS . In other words, the

change in |ψSE〉 induced by acting on S via ÛS can be

undone by acting on E via ÛE . Note that envariance is
a distinctly quantum feature, absent from pure classical
states, and a consequence of quantum entanglement.

The main argument of Zurek’s derivation is based on a
study of a composite pure state in the diagonal Schmidt
decomposition

|ψSE〉 =
1√
2

(
eiϕ1 |s1〉|e1〉 + eiϕ2 |s1〉|e1〉

)
, (3.25)

where the {|sk〉} and {|ek〉} are sets of orthonormal basis
vectors that span the Hilbert spaces HS and HE , respec-
tively. The case of higher-dimensional state spaces can
be treated similarly, and a generalization to expansion
coefficients of different magnitudes can be made by ap-
plication of a standard counting argument (Zurek, 2003c,
2004a). The Schmidt states |sk〉 are identified with the
outcomes, or “events” (Zurek, 2004b, p. 12), to which
probabilities are to be assigned.

Zurek now states three simple assumptions, called
“facts” (Zurek, 2004a, p. 4; see also the discussion in
Schlosshauer and Fine, 2005):

(A1) A unitary transformation of the form · · ·⊗ ÎS ⊗· · ·
does not alter the state of S.

(A2) All measurable properties of S, including probabil-
ities of outcomes of measurements on S, are fully
determined by the state of S.

(A3) The state of S is completely specified by the global
composite state vector |ψSE〉.

Given these assumptions, one can show that the state
of S and any measurable properties of S cannot be af-
fected by envariant transformations. The proof goes as

follows. The effect of an envariant transformation ûS⊗ÎE
acting on |ψSE〉 can be undone by a corresponding “coun-

tertransformation” ÎS⊗ûE that restores the original state
vector |ψSE〉. Since it follows from (A1) that the latter
transformation has left the state of S unchanged, but

(A3) implies that the final state of S (after the trans-
formation and countertransformation) is identical to the

initial state of S, the first transformation ûS ⊗ ÎE cannot
have altered the state of S either. Thus, using assump-
tion (A2), it follows that an envariant transformation

ûS⊗ ÎE acting on |ψSE〉 leaves any measurable properties
of S unchanged, in particular the probabilities associated
with outcomes of measurements performed on S.

Let us now consider two different envariant transfor-
mations: A phase transformation of the form

ûS(ξ1, ξ2) = eiξ1 |s1〉〈s1| + eiξ2 |s2〉〈s2| (3.26)

that changes the phases associated with the Schmidt
product states |sk〉|ek〉 in Eq. (3.25), and a swap trans-

formation

ûS(1 ↔ 2) = eiξ12 |s1〉〈s2| + eiξ21 |s2〉〈s1| (3.27)

that exchanges the pairing of the |sk〉 with the |el〉. Based
on the assumptions (A1)–(A3) mentioned above, envari-
ance of |ψSE〉 under these transformations means that
measurable properties of S cannot depend on the phases
ϕk in the Schmidt expansion of |ψSE〉, Eq. (3.25). Simi-
larily, it follows that a swap ûS(1 ↔ 2) leaves the state
of S unchanged, and that the consequences of the swap
cannot be detected by any measurement that pertains to
S alone.

2. Deducing the Born rule

Together with an additional assumption, this result
can then be used to show that the probabilities of the
“outcomes” |sk〉 appearing in the Schmidt decomposi-
tion of |ψSE〉 must be equal, thus arriving at Born’s rule
for the special case of a state-vector expansion with co-
efficients of equal magnitude. Zurek (2004a) offers three
possibilities for such an assumption. Here we shall limit
our discussion to one of these possible assumptions (see
also the comments in Schlosshauer and Fine, 2005):

(A4) The Schmidt product states |sk〉|ek〉 appearing in
the state-vector expansion of |ψSE〉 imply a direct
and perfect correlation of the measurement out-
comes associated with the |sk〉 and |ek〉. That is,

if an observable ÔS =
∑
skl|sk〉〈sl| is measured on

S and |sk〉 is obtained, a subsequent measurement

of ÔE =
∑
ekl|ek〉〈el| on E will yield |ek〉 with cer-

tainty (i.e., with probability equal to one).

This assumption explicitly introduces a probability
concept into the derivation. (Similarly, the two other pos-
sible assumptions suggested by Zurek establish a connec-
tion between the state of S and probabilities of outcomes
of measurements on S.)

Then, denoting the probability for the outcome |sk〉 by
p(|sk〉, |ψSE〉) when the composite system SE is described
by the state vector |ψSE〉, this assumption implies that

p(|sk〉; |ψSE〉) = p(|ek〉; |ψSE〉). (3.28)
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After acting on |ψSE〉 with the envariant swap transfor-

mation ÛS = ûS(1 ↔ 2) ⊗ ÎE [see Eq. (3.27)] and using
assumption (A4) again, we get

p(|s1〉; ÛS |ψSE〉) = p(|e2〉; ÛS |ψSE〉),
p(|s2〉; ÛS |ψSE〉) = p(|e1〉; ÛS |ψSE〉).

(3.29)

Now, when a “counterswap” ÛE = ÎS ⊗ uE(1 ↔ 2) is
applied to |ψSE〉, the original state vector |ψSE〉 is re-

stored, i.e., ÛE(ÛS |ψSE〉) = |ψSE〉. It then follows from
assumptions (A2) and (A3) listed above that

p(|sk〉; ÛEÛS |ψSE〉) = p(|sk〉; |ψSE〉). (3.30)

Furthermore, assumptions (A1) and (A2) imply that the
first and second swap cannot have affected the measur-
able properties of E and S, respectively, particularly not
the probabilities for outcomes of measurements on E (S),

p(|sk〉; ÛE ÛS |ψSE〉) = p(|sk〉; ÛS |ψSE〉),
p(|ek〉; ÛS |ψSE〉) = p(|ek〉; |ψSE〉).

(3.31)

Combining Eqs. (3.28)–(3.31) yields

p(|s1〉; |ψSE〉)
(3.30)
= p(|s1〉; ÛEÛS |ψSE〉)

(3.31)
= p(|s1〉; ÛS |ψSE〉)

(3.29)
= p(|e2〉; ÛS |ψSE〉)

(3.31)
= p(|e2〉; |ψSE〉)

(3.28)
= p(|s2〉; |ψSE〉), (3.32)

which establishes the desired result p(|s1〉; |ψSE〉) =
p(|s2〉; |ψSE〉). The general case of unequal coefficients in
the Schmidt decomposition of |ψSE〉 can then be treated
by means of a simple counting method (Zurek, 2003c,
2004a), leading to Born’s rule for probabilities that are
rational numbers. Using a continuity argument, this re-
sult can be further generalized to include probabilities
that cannot be expressed as rational numbers (Zurek,
2004a).

3. Summary and outlook

If one grants the stated assumptions, Zurek’s devel-
opment of the theory of envariance offers a novel and
promising way of deducing Born’s rule in a noncircular
manner. Compared to the relatively well-studied field of
decoherence, envariance and its consequences have only
begun to be explored. In this review, we have focused
on envariance in the context of a derivation of the Born
rule, but other far-reaching implications of envariance
have recently been suggested by Zurek (2004a). For
example, envariance could also account for the emer-
gence of an environment-selected preferred basis (that

is, for environment-induced superselection) without an
appeal to the trace operation or to reduced density ma-
trices. This could open up the possibility of a redevelop-
ment of the decoherence program based on fundamental
quantum-mechanical principles that do not require one to
presuppose the Born rule; this also might shed new light,
for example, on the interpretation of reduced density ma-
trices that has led to much controversy in discussions of
decoherence (see Sec. III.B). As of now, the development
of such ideas is at a very early stage, but we can expect
further interesting results derived from envariance in the
near future.

IV. THE ROLE OF DECOHERENCE IN

INTERPRETATIONS OF QUANTUM MECHANICS

It was not until the early 1970s that the importance
of the interaction of physical systems with their envi-
ronments for a realistic quantum-mechanical description
of these systems was realized and a proper viewpoint
on such interactions was established (Zeh, 1970, 1973).
It took another decade for the first concise formulation
of the theory of decoherence (Zurek, 1981, 1982) to be
worked out and for numerical studies to be made that
showed the ubiquity and effectiveness of decoherence ef-
fects (Joos and Zeh, 1985). Of course, by that time,
several interpretive approaches to quantum mechanics
had already been established, for example, Everett-style
relative-state interpretations (Everett, 1957), the con-
cept of modal interpretations introduced by van Fraassen
(1973, 1991), and the pilot-wave theory of de Broglie and
Bohm (Bohm, 1952).

When the relevance of decoherence effects was recog-
nized by (parts of) the scientific community, decoherence
provided a motivation for a fresh look at the existing in-
terpretations and for the introduction of changes and ex-
tensions to these interpretations, as well as for new inter-
pretations. Some of the central questions in this context
were, and still are, the following:

1. Can decoherence by itself solve certain foundational
issues at least for all practical purposes, such as
to make certain interpretive additives superfluous?
What, then, are the crucial remaining foundational
problems?

2. Can decoherence protect an interpretation from
empirical disproof?

3. Conversely, can decoherence provide a mechanism
to exclude an interpretive strategy as incompati-
ble with quantum mechanics and/or as empirically
inadequate?

4. Can decoherence physically motivate some of the
assumptions on which an interpretation is based
and give them a more precise meaning?
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5. Can decoherence serve as an amalgam that would
unify and simplify a spectrum of different interpre-
tations?

These and other questions have been widely discussed,
both in the context of particular interpretations and
with respect to the general implications of decoherence
for any interpretation of quantum mechanics. In par-
ticular, interpretations that uphold the universal va-
lidity of the unitary Schrödinger time evolution, most
notably relative-state and modal interpretations, have
frequently incorporated environment-induced superselec-
tion of a preferred basis and decoherence into their frame-
work. It is the purpose of this section to critically inves-
tigate the implications of decoherence for the existing in-
terpretations of quantum mechanics, with particular at-
tention to the questions outlined above.

A. General implications of decoherence for interpretations

When measurements are understood as ubiquitous in-
teractions that lead to the formation of quantum correla-
tions, the selection of a preferred basis becomes in most
cases a fundamental requirement. This also corresponds,
in general, to the question of what properties are being
ascribed to systems (or worlds, minds, etc.). Thus the
preferred-basis problem is at the heart of any interpreta-
tion of quantum mechanics. Some of the difficulties that
must be faced in solving the preferred-basis problem are

(i) to decide whether the selection of any preferred ba-
sis (or quantity or property) is justified at all or
only an artefact of our subjective experience;

(ii) if we decide on (i) in the positive, to select those
determinate quantity or quantities (what appears
determinate to us does not need to be appear de-
terminate to other kinds of observers, nor does it
need to be the “true” determinate property);

(iii) to avoid any ad hoc character of the choice and any
possible empirical inadequacy or inconsistency with
the confirmed predictions of quantum mechanics;

(iv) if a multitude of quantities is selected that apply
differently among different systems, to be able to
formulate specific rules that specify the determi-
nate quantity or quantities under every circum-
stance;

(v) to ensure that the basis is chosen such that if the
system is embedded in a larger (composite) system,
the principle of property composition holds, i.e., the
property selected by the basis of the original system
should also persist when the system is considered
as part of a larger composite system.11

11 This is a problem encountered in some modal interpretations (see

The hope is then that environment-induced super-
selection of a preferred basis can provide a universal
mechanism that fulfills the above criteria and solves the
preferred-basis problem on strictly physical grounds.

A popular reading of the decoherence program typi-
cally goes as follows. First, the interaction of the system
with the environment selects a preferred basis, i.e., a par-
ticular set of quasiclassical robust states that commute,
at least approximately, with the Hamiltonian governing
the system–environment interaction. Since the form of
the interaction Hamiltonians usually depends on familiar
“classical” quantities, the preferred states will typically
also correspond to the small set of “classical” properties.
Decoherence then quickly damps superpositions between
the localized preferred states when only the system is con-
sidered. This is taken as an explanation of the appear-
ance to a local observer of a “classical” world of determi-
nate, “objective” (in the sense of being robust) proper-
ties. The tempting interpretation of these achievements
is then to conclude that this accounts for the observation
of unique (via environment-induced superselection) and
definite (via decoherence) pointer states at the end of the
measurement, and the measurement problem appears to
be solved, at least for all practical purposes.

However, the crucial difficulty in the above reasoning
is justifying the second step: How is one to interpret the
local suppression of interference in spite of the fact that
full coherence is retained in the total state that describes
the system-environment combination? While the local
destruction of interference allows one to infer the emer-
gence of an (improper) ensemble of individually localized
components of the wave function, one still needs to im-
pose an interpretive framework that explains why only
one of the localized states is realized and/or perceived.
This has been done in various interpretations of quan-
tum mechanics, typically on the basis of the decohered
reduced density matrix to ensure consistency with the
predictions of the Schrödinger dynamics and thus empir-
ical adequacy.

In this context, one might raise the question whether
retention of full coherence in the composite state of
the system-environment combination could ever lead to
empirical conflicts with the ascription of definite val-
ues to (mesoscopic and macroscopic) systems in some
decoherence-based interpretive approach. After all, one
could think of enlarging the system so as to include the
environment in such a way that measurements could now
actually reveal the persisting quantum coherence even on
a macroscopic level. However, Zurek (1982) asserted that
such measurements would be impossible to carry out in
practice, a statement that was supported by a simple
model calculation by Omnès (1992, p. 356) for a body
with a macrosopic number (1024) of degrees of freedom.

Clifton, 1996).
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B. The standard and the Copenhagen interpretation

As is well known, the standard interpretation (“ortho-
dox” quantum mechanics) postulates that every measure-
ment induces a discontinuous break in the unitary time
evolution of the state through the collapse of the total
wave function onto one of its terms in the state-vector
expansion (uniquely determined by the eigenbasis of the
measured observable), which selects a single term in the
superposition as representing the outcome. The nature
of the collapse is not at all explained, and thus the defi-
nition of measurement remains unclear. Macroscopic su-
perpositions are not a priori forbidden, but are never
observed since any observation would entail a measure-
mentlike interaction. In the following, we shall also con-
sider a “Copenhagen” variant of the standard interpreta-
tion, which adds an additional key element, postulating
the necessity of classical concepts in order to describe
quantum phenomena, including measurements.

1. The problem of definite outcomes

The interpretive rule of orthodox quantum mechanics
that tells us when we can speak of outcomes is given by
the e-e link.12 This is an “objective” criterion since it
allows us to infer the existence of a definite state of the
system to which a value of a physical quantity can be as-
cribed. Within this interpretive framework (and without
presuming the collapse postulate) decoherence cannot
solve the problem of outcomes: Phase coherence between
macroscopically different pointer states is preserved in
the state that includes the environment, and we can al-
ways enlarge the system so as to include (at least parts of)
the environment. In other words, the superposition of dif-
ferent pointer positions still exists, coherence is only “de-
localized into the larger system” (Kiefer and Joos, 1999,
p. 5), that is, into the environment—or, as Joos and Zeh
(1985, p. 224) put it, “the interference terms still exist,
but they are not there”—and the process of decoherence
could in principle always be reversed. Therefore, if we
assume the orthodox e-e link to establish the existence
of determinate values of physical quantities, decoherence
cannot ensure that the measuring device actually ever is
in a definite pointer state (unless, of course, the system
is initially in an eigenstate of the observable), or that
measurements have outcomes at all. Much of the general
criticism directed against decoherence with respect to its
ability to solve the measurement problem (at least in the
context of the standard interpretation) has been centered
on this argument.

12 It is not particularly relevant for the subsequent discussion
whether the e-e link is assumed in its “exact” form, i.e., requir-
ing the exact eigenstates of an observable, or a “fuzzy” form that
allows the ascription of definiteness based on only approximate
eigenstates or on wave functions with (tiny) “tails.”

Note that, with respect to the global postmeasurement
state vector, given by the final step in Eq. (3.5), the in-
teraction with the environment has only led to additional
entanglement. it has not transformed the state vector in
any way, since the rapidly increasing orthogonality of the
states of the environment associated with the different
pointer positions has not influenced the state description
at all. In brief, the entanglement brought about by inter-
action with the environment could even be considered as
making the measurement problem worse. Bacciagaluppi
(2003a, Sec. 3.2) puts it like this:

Intuitively, if the environment is carrying out,

without our intervention, lots of approximate

position measurements, then the measurement

problem ought to apply more widely, also to these

spontaneously occurring measurements. (. . . )

The state of the object and the environment

could be a superposition of zillions of very well

localised terms, each with slightly different po-

sitions, and which are collectively spread over a

macroscopic distance, even in the case of every-

day objects. (. . . ) If everything is in interaction

with everything else, everything is entangled with

everything else, and that is a worse problem than

the entanglement of measuring apparatuses with

the measured probes.

Only once we have formed the reduced pure-state den-
sity matrix ρ̂SA, Eq. (3.8), can the orthogonality of the
environmental states have an effect; then, ρ̂SA dynami-
cally evolves into the improper ensemble ρ̂ dSA [Eq. (3.9)].
However, as pointed out in our general discussion of re-
duced density matrices in Sec. III.B, the orthodox rule of
interpreting superpositions prohibits regarding the com-
ponents in the sum of Eq. (3.9) as corresponding to in-
dividual well-defined quantum states.

Rather than considering the postdecoherence state of
the system (or, more precisely, of the system-apparatus
combination SA), we can instead analyze the influence
of decoherence on the expectation values of observables
pertaining to SA; after all, such expectation values are
what local observers would measure in order to arrive
at conclusions about SA. The diagonalized reduced
density matrix, Eq. (3.9), together with the trace rela-
tion, Eq. (3.6), implies that, for all practical purposes,
the statistics of the system SA will be indistinguish-
able from that of a proper mixture (ensemble) by any
local observation on SA. That is, given (i) the trace

rule 〈Ô〉 = Tr(ρ̂Ô) and (ii) the interpretation of 〈Ô〉 as

the expectation value of an observable Ô, the expecta-

tion value of any observable ÔSA restricted to the local
system SA will be for all practical purposes identical to
the expectation value of this observable if SA had been
in one of the states |sn〉|an〉 (as if SA were described
by an ensemble of states). In other words, decoherence
has effectively removed any interference terms (such as
|sm〉|am〉〈an|〈sn| where m 6= n) from the calculation of

the trace Tr(ρ̂SAÔSA) and thereby from the calculation
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of the expectation value 〈ÔSA〉. It has therefore been
claimed that formal equivalence—i.e., the fact that de-
coherence transforms the reduced density matrix into a
form identical to that of a density matrix representing an
ensemble of pure states—yields observational equivalence

in the sense above, namely, the (local) indistiguishability
of the expectation values derived from these two types of
density matrices via the trace rule.

But we must be careful in interpreting the correspon-
dence between the mathematical formalism (such as the
trace rule) and the common terms employed in describ-
ing “the world.” In quantum mechanics, the identifica-
tion of the expression “Tr(ρA)” as the expectation value
of a quantity relies on the mathematical fact that, when
writing out this trace, it is found to be equal to a sum
over the possible outcomes of the measurement, weighted
by the Born probabilities for the system to be “thrown”
into a particular state corresponding to each of these out-
comes in the course of a measurement. This certainly
represents our common-sense intuition about the mean-
ing of expectation values as the sum over possible values
that can appear in a given measurement, multiplied by
the relative frequency of actual occurrence of these val-
ues in a series of such measurements. This interpreta-
tion, however, presumes (i) that measurements have out-
comes, (ii) that measurements lead to definite “values,”
(iii) that measurable physical quantities are identified as
operators (observables) in a Hilbert space, and (iv) that
the modulus square of the expansion coefficients of the
state in terms of the eigenbasis of the observable can be
interpreted as representing probabilities of actual mea-
surement outcomes (Born rule).

Thus decoherence brings about an apparent (and ap-
proximate) mixture of states that seem, based on the
models studied, to correspond well to those states that we
perceive as determinate. Moreover, our observation tells
us that this apparent mixture indeed looks like a proper
ensemble in a measurement situation, as we observe that
measurements lead to the “realization” of precisely one
state in the “ensemble.” But within the framework of the
orthodox interpretation, decoherence cannot explain this
crucial step from an apparent mixture to the existence
and/or perception of single outcomes.

2. Observables, measurements, and environment-induced

superselection

In the standard and Copenhagen interpretationS,
property ascription is determined by an observable that
represents the measurement of a physical quantity and
that in turn defines the preferred basis. However, any
Hermitian operator can play the role of an observable,
and thus any given state has the potential for an in-
finite number of different properties whose attribution
is usually mutually exclusive unless the corresponding
observables commute (in which case they share a com-
mon eigenbasis which preserves the uniqueness of the pre-

ferred basis). What then determines the observable that
is being measured? As our discussion in Sec. II.C has
demonstrated, the derivation of the measured observable
from the particular form of a given state-vector expan-
sion can lead to paradoxial results since this expansion
is in general nonunique, so the observable must be cho-
sen by other means. In the standard and Copenhagen
interpretations, it is essentially the “user” who simply
“chooses” the particular observable to be measured and
thus determines which properties the system possesses.

This positivist point of view has, of course, led to a
lot of controversy, since it runs counter to the attempt to
establish an observer-independent reality that has been
the central pursuit of natural science since its beginning.
Moreover, in practice, one certainly does not have the
freedom to choose any arbitrary observable and mea-
sure it; instead, one has “instruments” (including one’s
senses) that are designed to measure a particular observ-
able. For most (and maybe all) practical purposes, this
will ultimately boil down to a single relevant observable,
namely, position. But what, then, makes the instruments
designed for such a particular observable?

Answering this crucial question essentially means
abandoning the orthodox view of treating measurements
as a “black box” process that has little, if any, relation
to the workings of actual physical measurements (where
measurements can here be understood in the broadest
sense of a “monitoring” of the state of the system). The
first key point, the formalization of measurements as a
formation of quantum correlations between system and
apparatus, goes back to the early years of quantum me-
chanics and is reflected in the measurement scheme of
von von Neumann (1932), but it does not resolve the
issue of how the choice of observables is made. The
second key point, the explicit inclusion of the environ-
ment in a description of the measurement process, was
brought into quantum theory by the studies of deco-
herence. Zurek’s (1981) stability criterion discussed in
Sec. III.E has shown that measurements must be of such
a nature as to establish stable records, where stability
is to be understood as preserving the system-apparatus
correlations in spite of the inevitable interaction with the
surrounding environment. The “user” cannot choose the
observables arbitrarily, but must design a measuring de-
vice whose interaction with the environment is such as to
ensure stable records in the sense above (which, in turn,
defines a measuring device for this observable). In the
reading of orthodox quantum mechanics, this can be in-
terpreted as the environment determining the properties
of the system.

In this sense, the decoherence program has embedded
the rather formal concept of measurement as proposed
by the standard and Copenhagen interpretations—with
its vague notion of observables that are seemingly freely
chosen by the observer—in a more realistic and physical
framework. This is accomplished via the specification of
observer-free criteria for the selection of the measured ob-
servable through the physical structure of the measuring
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device and its interaction with the environment, which
is, in most cases, needed to amplify the measurement
record and thereby to make it accessible to the external
observer.

3. The concept of classicality in the Copenhagen interpretation

The Copenhagen interpretation additionally postu-
lates that classicality is not to be derived from quan-
tum mechanics, for example, as the macroscopic limit
of an underlying quantum structure (as is in some sense
assumed, but not explicitely derived, in the standard in-
terpretation), but instead that it be viewed as an indis-
pensable and irreducible element of a complete quantum
theory—and, in fact, be considered as a concept prior to
quantum theory. In particular, the Copenhagen inter-
pretation assumes the existence of macroscopic measure-
ment apparatuses that obey classical physics and that
are not supposed to be described in quantum mechani-
cal terms (in sharp contrast to the von Neumann mea-
surement scheme, which rather belongs to the standard
interpretation); such a classical apparatus is considered
necessary in order to make quantum-mechanical phenom-
ena accessible to us in terms of the “classical” world of
our experience. This strict dualism between the system
S, to be described by quantum mechanics, and the appa-
ratus A, obeying classical physics, also entails the exis-
tence of an essentially fixed boundary between S and A,
which separates the microworld from the macroworld (the
“Heisenberg cut”). This boundary cannot be moved sig-
nificantly without destroying the observed phenomenon
(i.e., the full interacting compound SA).

Especially in the light of the insights gained from de-
coherence it seems impossible to uphold the notion of a
fixed quantum–classical boundary on a fundamental level
of the theory. Environment-induced superselection and
suppression of interference have demonstrated how qua-
siclassical robust states can emerge, or remain absent,
using the quantum formalism alone and over a broad
range of microscopic to macroscopic scales, and have es-
tablished the notion that the boundary between S and A
is to a large extent movable towards A. Similar results
have been obtained from the general study of quantum
nondemolition measurements (see, for example, Chap. 19
of Auletta, 2000) which include the monitoring of a sys-
tem by its environment. Also note that since the appa-
ratus is described in classical terms, it is macroscopic by
definition; but not every apparatus must be macrosopic:
the actual “instrument” could well be microscopic. Only
the “amplifier” must be macrosopic. As an example, con-
sider Zurek’s (1981) toy model of decoherence, outlined
in Sec. III.D.2, in which the instrument can be repre-
sented by a bistable atom while the environment plays
the role of the amplifier; a more realistic example is a
macrosopic detector of gravitational waves that is treated
as a quantum-mechanical harmonic oscillator.

Based on the progress already achieved by the decoher-

ence program, it is reasonable to anticipate that decoher-
ence embedded in some additional interpretive structure
could lead to a complete and consistent derivation of the
classical world from quantum mechanical principles. This
would make the assumption of an intrinsically classical
apparatus (which has to be treated outside of the realm
of quantum mechanics) appear as neither a necessary nor
a viable postulate. Bacciagaluppi (2003b, p. 22) refers to
this strategy as “having Bohr’s cake and eating it”: ac-
knowledging the correctness of Bohr’s notion of the ne-
cessity of a classical world (“having Bohr’s cake”), but
being able to view the classical world as part of and as
emerging from a purely quantum-mechanical world.

C. Relative-state interpretations

Everett’s original (1957) proposal of a relative-state
interpretation of quantum mechanics has motivated sev-
eral strands of interpretation, presumably owing to the
fact that Everett himself never clearly spelled out how
his theory was supposed to work. The system-observer
duality of orthodox quantum mechanics introduces into
the theory external “observers” who are not described by
the deterministic laws of quantum systems but instead
follow a stochastic indeterminism. This approach obvi-
ously runs into problems when the universe as a whole
is considered: by definition, there cannot be any exter-
nal observers. The central idea of Everett’s proposal is
then to abandon duality and instead (i) to assume the
existence of a total state |Ψ〉 representing the state of
the entire universe and (ii) to uphold the universal valid-
ity of the Schrödinger evolution, while (iii) postulating
that all terms in the superposition of the total state at
the completion of the measurement actually correspond
to physical states. Each such physical state can be un-
derstood as relative (a) to the state of the other part in
the composite system (as in Everett’s original proposal;
also see Mermin, 1998a; Rovelli, 1996), (b) to a particular
“branch” of a constantly “splitting” universe (the many-

worlds interpretations, popularized by DeWitt, 1970 and
Deutsch, 1985), or (c) to a particular “mind” in the set
of minds of the conscious observer (the many-minds in-

terpretation; see, for example, Lockwood, 1996). In other
words, every term in the final-state superposition can be
viewed as representing an equally “real” physical state of
affairs that is realized in a different “branch of reality.”

Decoherence adherents have typically been inclined
towards relative-state interpretations (for instance Zeh,
1970, 1973, 1993; Zurek, 1998), presumably because the
Everett approach takes unitary quantum mechanics es-
sentially “as is,” with a minimum of added interpretive
elements. This matches well the spirit of the decoher-
ence program, which attempts to explain the emergence
of classicality purely from the formalism of basic quan-
tum mechanics. It may also seem natural to identify the
decohering components of the wave function with differ-
ent Everett branches. Conversely, proponents of relative-
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state interpretations have frequently employed the mech-
anism of decoherence in solving the difficulties associ-
ated with this class of interpretations (see, for example,
Deutsch, 1985, 1996, 2002; Saunders, 1995, 1997, 1998;
Vaidman, 1998; Wallace, 2002, 2003a).

There are many different readings and versions of
relative-state interpretations, especially with respect to
what defines the “branches,” “worlds,” and “minds”;
whether we deal with one, a multitude, or an infinity
of such worlds and minds; and whether there is an ac-
tual (physical) or only perspectival splitting of the worlds
and minds into different branches corresponding to the
terms in the superposition. Does the world or mind split
into two separate copies (thus somehow doubling all the
matter contained in the orginal system), or is there just
a “reassignment” of states to a multitude of worlds or
minds of constant (typically infinite) number, or is there
only one physically existing world or mind in which each
branch corresponds to different “aspects” (whatever they
are). Regardless, in the following discussion of the key
implications of decoherence, the precise details and dif-
ferences of these various strands of interpretation will,
for the most part, be largely irrelevant.

Relative-state interpretations face two core difficulties.
First, the preferred-basis problem: If states are only rel-
ative, the question arises, relative to what? What deter-
mines the particular basis terms that are used to define
the branches, which in turn define the worlds or minds
in the next instant of time? When precisely does the
“splitting” occur? Which properties are made determi-
nate in each branch, and how are they connected to the
determinate properties of our experience? Second, what
is the meaning of probabilities, since every outcome ac-
tually occurs in some world or mind, and how can Born’s
rule be motivated in such an interpretive framework?

1. Everett branches and the preferred-basis problem

Stapp (2002, p. 1043) stated the requirement that
“a many-worlds interpretation of quantum theory exists
only to the extent that the associated basis problem is
solved.” In the context of relative-state interpretations,
the preferred-basis problem is not only much more severe
than in the orthodox interpretation, but also more fun-
damental for several reasons: (i) The branching occurs
continuously and essentially everywhere; in the general
sense of measurements understood as the formation of
quantum correlations, every newly formed correlation,
whether it pertains to microscopic or macroscopic sys-
tems, corresponds to a branching. (ii) The ontological
implications are much more drastic, at least in those
relative-state interpretations, which assume an actual
“splitting” of worlds or minds, since the choice of the
basis determines the resulting “world” or “mind” as a
whole.

The environment-based basis superselection criteria
of the decoherence program have frequently been em-

ployed to solve the preferred-basis problem of relative-
state interpretations (see, for example, Butterfield, 2001;
Wallace, 2002, 2003a; Zurek, 1998). There are several
advantages in a decoherence-related approach to select-
ing the preferred Everett bases: First, no a priori ex-
istence of a preferred basis needs to be postulated, but
instead the preferred basis arises naturally from the phys-
ical criterion of robustness. Second, the selection will
be likely to yield empirical adequacy, since the decoher-
ence program is derived solely from the well-confirmed
Schrödinger dynamics (modulo the possibility that ro-
bustness may not be the universally valid criterion).
Lastly, the decohered components of the wave function
evolve in such a way that they can be reidentified over
time (forming “trajectories” in the preferred state spaces)
and thus can be used to define stable, temporally ex-
tended Everett branches. Similarly, such trajectories can
be used to ensure robust observer record states and/or
environmental states that make information about the
state of the system of interest widely accessible to ob-
servers (see, for example, Zurek’s “existential interpreta-
tion,” outlined in Sec. IV.C.3 below).

While the idea of directly associating the environment-
selected basis states with Everett worlds seems natural
and straightforward, it has also been subject to criti-
cism. Stapp (2002) has argued that an Everett-type
interpretation must aim at determining a denumerable
set of distinct branches that correspond to the appar-
ently discrete events of our experience. Among these
branches one must be able to assign determinate values
and finite probabilities according to the usual rules and
therefore one would need to be able to specify a denu-
merable set of mutually orthogonal projection operators.
It is well known, however (Zurek, 1998), that the pre-
ferred states chosen through the interaction with the en-
vironment via the stability criterion frequently form an
overcomplete set of states—often a continuum of narrow
Gaussian-type wave packets, for example, the coherent
states of harmonic-oscillator models that are not neces-
sarily orthogonal (i.e., the Gaussians may overlap; see
Kübler and Zeh, 1973; Zurek et al., 1993). Stapp there-
fore considers this approach to the preferred-basis prob-
lem in relative-state interpretations to be unsatisfactory.
Zurek (2003a) has rebutted this criticism by pointing out
that a collection of harmonic oscillators that would lead
to such overcomplete sets of Gaussians cannot serve as an
adequate model of the human brain, and it is ultimately
only in the brain where the perception of denumerability
and mutual exclusiveness of events must be accounted
for (see Sec. II.B.3); when neurons are more appropri-
ately modeled as two-state systems, the issue raised by
Stapp disappears (for a discussion of decoherence in a
simple two-state model, see Sec. III.D.2).13

13 For interesting quantitative results on the role of decoherence in
neuronal processes, see Tegmark (2000).
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The approach of using environment-induced superse-
lection and decoherence to define the Everett branches
has also been critized on grounds of being “conceptually
approximate,” since the stability criterion generally leads
only to an approximate specification of a preferred basis
and therefore cannot give an “exact” definition of the Ev-
erett branches (see, for example, the comments of Kent,
1990; Zeh, 1973, and also the well-known “anti-FAPP”
position of Bell, 1982). Wallace (2003a, pp. 90–91) has
argued against such an objection as

(. . . ) arising from a view implicit in much dis-

cussion of Everett-style interpretations: that cer-

tain concepts and objects in quantum mechan-

ics must either enter the theory formally in its

axiomatic structure, or be regarded as illusion.

(. . . ) [Instead] the emergence of a classical world

from quantum mechanics is to be understood in

terms of the emergence from the theory of cer-

tain sorts of structures and patterns, and . . . this

means that we have no need (as well as no hope!)

of the precision which Kent [in his (1990) critique]

and others (. . . ) demand.

Accordingly, in view of our argument in Sec. II.B.3
for considering subjective solutions to the measurement
problem as sufficient, there is no a priori reason to doubt
that an “approximate” criterion for the selection of the
preferred basis can give a meaningful definition of the
Everett branches—one that is empirically adequate and
that accounts for our experiences. The environment-
superselected basis emerges naturally from the physically
very reasonable criterion of robustness together with the
purely quantum mechanical effect of decoherence. It
would be rather difficult to imagine rgar ab axiomatically
introduced “exact” rule could be able to select preferred
bases in a manner that is similarly physically motivated
and capable of ensuring empirical adequacy.

Besides using the environment-superselected pointer
states to describe the Everett branches, various authors
have directly used the instantaneous Schmidt decompo-
sition of the composite state (or, equivalently, the set of
orthogonal eigenstates of the reduced density matrix) to
define the preferred basis (see also Sec. III.E.4). This
approach is easier to implement than the explicit search
for dynamically stable pointer states since the preferred
basis follows directly from a simple mathematical diag-
onalization procedure at each instant of time. Further-
more, it has been favored by some (e.g., Zeh, 1973) since
it gives an “exact” rule for basis selection in relative-
state interpretations; the consistently quantum origin
of the Schmidt decomposition, which matches well the
“pure quantum-mechanics” spirit of Everett’s proposal
(where the formalism of quantum mechanics supplies its
own interpretation), has also been counted as an advan-
tage (Barvinsky and Kamenshchik, 1995). In an earlier
work, Deutsch (1985) attributed a fundamental role to
the Schmidt decomposition in relative-state interpreta-
tions as defining an “interpretation basis” that imposes

the precise structure that is needed to give meaning to
Everett’s basic concept.

However, as pointed out in Sec. III.E.4, emerging ba-
sis states based on the instantaneous Schmidt states
will frequently have properties that are very different
from those selected by the stability criterion and that
are undesirably nonclassical. For example, they may
lack the spatial localization of the robustness-selected
Gaussians (Stapp, 2002). The question to what ex-
tent the Schmidt basis states correspond to classical
properties in Everett-style interpretations was investi-
gated in detail by Barvinsky and Kamenshchik (1995).
The authors study the similarity of the states selected
by the Schmidt decomposition to coherent states (i.e.,
minimum-uncertainty Gaussians) that are chosen as
the “yardstick states” representing classicality (see also
Eisert, 2004). For the investigated toy models it is found
that only subsets of the Everett worlds corresponding
to the Schmidt decomposition exhibit classicality in this
sense; furthermore, the degree of robustness of classical-
ity in these branches is very sensitive to the choice of
the initial state and the interaction Hamiltonian, such
that classicality emerges typically only temporarily, and
the Schmidt basis generally lacks robustness under time
evolution. Similar difficulties with the Schmidt basis
approach have been described by Kent and McElwaine
(1997).

These findings indicate that a selection criterion based
on robustness provides a much more meaningful, phys-
ically transparent, and general rule for the selection of
quasiclassical branches in relative-state interpretations,
especially with respect to its ability to lead to wave-
function components representing quasiclassical proper-
ties that can be reidentified over time (which a simple
diagonalization of the reduced density matrix at each in-
stant of time does not, in general, allow for).

2. Probabilities in Everett interpretations

Various attempts unrelated to decoherence have been
made to find a consistent derivation of the Born probabil-
ities (for instance, Deutsch, 1999; DeWitt, 1971; Everett,
1957; Geroch, 1984; Graham, 1973; Hartle, 1968) in the
explicit or implicit context of a relative-state interpre-
tation, but several arguments have been presented that
show that these approaches fail.14 When the effects of
decoherence and environment-induced superselection are
included, it seems natural to identify the diagonal ele-
ments of the decohered reduced density matrix (in the
environment-superselected basis) with the set of possible

14 See, for example, the critiques of Barnum et al. (2000); Kent
(1990); Squires (1990); Stein (1984); however, also note the ar-
guments of Wallace (2003b) and Gill (2003), defending the ap-
proach of Deutsch (1999); see also Saunders (2002).
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elementary events and to interpret the corresponding co-
efficients as relative frequencies of worlds (or minds, etc.)
in the Everett theory, assuming a typically infinite mul-
titude of worlds, minds, etc. Since decoherence enables
one to reidentify the individual localized components of
the wave function over time (describing, for example, ob-
servers and their measurement outcomes attached to in-
dividual well-defined “worlds”), this leads to a natural
interpretation of the Born probabilities as empirical fre-
quencies.

However, decoherence cannot yield an actual deriva-
tion of the Born rule (for attempts in this direction, see
Deutsch, 1999; Zurek, 1998). As mentioned before, this
is so because the key elements of the decoherence pro-
gram, the formalism and the interpretation of reduced
density matrices and the trace rule, presume the Born
rule. Attempts to consistently derive probabilities from
reduced density matrices and from the trace rule are
therefore subject to the charge of circularity (Zeh, 1997;
Zurek, 2003b). In Sec. III.F, we outlined a recent pro-
posal by Zurek (2003c) that evades this circularity and
deduces the Born rule from envariance, a symmetry prop-
erty of entangled systems, and from certain assumptions
about the connection between the state of the system S
of interest, the state vector of the composite system SE
that includes an environment E entangled with S, and
probabilities of outcomes of measurements performed on
S. Decoherence combined with this approach provides a
framework in which quantum probabilities and the Born
rule can be given a rather natural motivation, definition,
and interpretation in the context of relative-state inter-
pretations.

3. The “existential interpretation”

A well-known Everett-type interpretation that relies
heavily on decoherence has been proposed by Zurek
(1993, 1998; see also the recent reevaluation in Zurek,
2004a). This approach, termed the “existential interpre-
tation,” defines the reality, or objective existence, of a
state as the possibility of finding out what the state is
and simultaneously leaving it unperturbed, similar to a
classical state.15 Zurek assigns a “relative objective ex-
istence” to the robust states (identified with elementary
“events”) selected by the environmental stability crite-
rion. By measuring properties of the system-environment
interaction Hamiltonian and employing the robustness
criterion, the observer can, at least in principle, deter-
mine the set of observables that can be measured on
the system without perturbing it and thus find out its

15 This intrinsically requires the notion of open systems, since in
isolated systems, the observer would need to know in advance
what observables commute with the state of the system, in order
to perform a nondemolition measurement that avoids repreparing
the state of the system.

“objective” state. Alternatively, the observer can take
advantage of the redundant records of the state of the
system as monitored by the environment. By intercept-
ing parts of this environment, for example, a fraction
of the surrounding photons, he can determine the state
of the system essentially without perturbing it (cf. also
the related recent ideas of “quantum Darwinism” and the
role of the environment as a “witness,” see Ollivier et al.,
2003; Zurek, 2000, 2003b, 2004b).16

Zurek emphasizes the importance of stable records
for observers, i.e., robust correlations between the
environment-selected states and the memory states of the
observer. Information must be represented physically,
and thus the “objective” state of the observer who has
detected one of the potential outcomes of a measurement
must be physically distinct and objectively different from
the state of an observer who has recorded an alternative
outcome (since the record states can be determined from
the outside without perturbing them—see the previous
paragraph). The different objective states of the ob-
server are, via quantum correlations, attached to differ-
ent branches defined by the environment-selected robust
states; they thus ultimately label the different branches of
the universal state vector. This is claimed to lead to the
perception of classicality; the impossibility of perceiving
arbitrary superpositions is explained via the quick sup-
pression of interference between different memory states
induced by decoherence, where each (physically distinct)
memory state represents an individual observer identity.

A similar argument has been given by Zeh (1993) who
employs decoherence together with an (implicit) branch-
ing process to explain the perception of definite out-
comes:

[A]fter an observation one need not necessarily

conclude that only one component now exists

but only that only one component is observed.

(. . . ) Superposed world components describing

the registration of different macroscopic proper-

ties by the “same” observer are dynamically en-

tirely independent of one another: they describe

different observers. (. . . ) He who considers this

conclusion of an indeterminism or splitting of the

observer’s identity, derived from the Schrödinger

equation in the form of dynamically decoupling

(“branching”) wave packets on a fundamental

global configuration space, as unacceptable or

“extravagant” may instead dynamically formal-

ize the superfluous hypothesis of a disappearance

of the “other” components by whatever method

he prefers, but he should be aware that he may

thereby also create his own problems: Any devia-

tion from the global Schrödinger equation must in

16 The partial ignorance is necessary to avoid redefinition of the
state of the system.
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principle lead to observable effects, and it should

be recalled that none have ever been discovered.

The existential interpretation has recently been con-
nected to the theory of envariance (see Zurek, 2004a,
and Sec. III.F). In particular, the derivation of Born’s
rule based on envariance as outlined in Sec. III.F can
be recast in the framework of the existential interpreta-
tion such that probabilities refer explicitly to the future
record state of an observer. Such a concept of proba-
bility bears similarities with classical probability theory
(for more details on these ideas, see Zurek, 2004a).

The existential interpretation continues Everett’s goal
of interpreting quantum mechanics using the quantum-
mechanical formalism itself. Zurek takes the standard
no-collapse quantum theory “as is” and explores to what
extent the incorporation of environment-induced supers-
election and decoherence (and recently also envariance)
could form a viable interpretation that would, with a
minimal additional interpretive framework, be capable
of accounting for the perception of definite outcomes and
of explaining the origin and nature of probabilities.

D. Modal interpretations

The first type of modal interpretation was suggested
by van Fraassen (1973, 1991), based on his program of
“constructive empiricism,” which proposes to take only
empirical adequacy, but not necessarily “truth,” as the
goal of science. Since then, a large number of interpre-
tations of quantum mechanics have been suggested that
can be considered as modal (for a review and discussion
of some of the basic properties and problems of such in-
terpretations, see Clifton, 1996).

In general, the approach of modal interpretations con-
sists in weakening the orthodox e-e link by allowing for
the assignment of definite measurement outcomes even
if the system is not in an eigenstate of the observable
representing the measurement. In this way, one can pre-
serve a purely unitary time evolution without the need
for an additional collapse postulate to account for definite
measurement results. Of course, this immediately raises
the question of how physical properties that are per-
ceived through measurements and measurement results
are connected to the state, since the bidirectional link is
broken between the eigenstate of the observable (which
corresponds to the physical property) and the eigenvalue
(which represents the manifestation of the value of this
physical property in a measurement). The general goal
of modal interpretations is then to specify rules that de-
termine a catalog of possible properties of a system de-
scribed by the density matrix ρ at time t. Two different
views are typically distinguished: a semantic approach
that only changes the way of talking about the connec-
tion between properties and state; and a realistic view
that provides a different specification of what the pos-
sible properties of a system really are, given the state
vector (or the density matrix).

Such an attribution of possible properties must ful-
fill certain requirements. For instance, probabilities for
outcomes of measurements should be consistent with the
usual Born probabilities of standard quantum mechan-
ics; it should be possible to recover our experience of
classicality in the perception of macroscopic objects; and
an explicit time evolution of properties and their prob-
abilities should be definable that is consistent with the
results of the Schrödinger equation. As we shall see in
the following, decoherence has frequently been employed
in modal interpretations to motivate and define rules for
property ascription. Dieks (1994a,b) has argued that one
of the central goals of modal approaches is to provide an
interpretation for decoherence.

1. Property assignment based on environment-induced

superselection

The intrinsic difficulty of modal interpretations is to
avoid any ad hoc character of the property assignment,
yet to find generally applicable rules that lead to a selec-
tion of possible properties that include the determinate
properties of our experience. To solve this problem, var-
ious modal interpretations have embraced the results of
the decoherence program. A natural approach would be
to employ the environment-induced superselection of a
preferred basis—since it is based on an entirely physical
and very general criterion (namely, the stability require-
ment) and has, for the cases studied, been shown to give
results that agree well with our experience, thus match-
ing van Fraassen’s goal of empirical adequacy—to yield
sets of possible quasiclassical properties associated with
the correct probabilities.

Furthermore, since the decoherence program is based
solely on Schrödinger dynamics, the task of defining a
time evolution of the “property states” and their asso-
ciated probabilities that is in agreement with the re-
sults of unitary quantum mechanics would presumably
be easier than in a model of property assignment in
which the set of possibilities does not arise dynami-
cally via the Schrödinger equation alone (for a detailed
proposal for modal dynamics of the latter type, see
Bacciagaluppi and Dickson, 1999). The need for explicit
dynamics of property states in modal interpretations is
controversial. One can argue that it suffices to show
that at each instant of time, the set of possibly possessed
properties that can be ascribed to the system is empiri-
cally adequate, in the sense of containing the properties
of our experience, especially with respect to the proper-
ties of macroscopic objects (this is essentially the view
of, for example, van Fraassen, 1973, 1991). On the other
hand, this cannot ensure that these properties behave
over time in agreement with our experience (for instance,
that macroscopic objects that are left undisturbed do
not change their position in space spontaneously in an
observable manner). In other words, the emergence of
classicality is to be tied not only to determinate prop-
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erties at each instant of time, but also to the existence
of quasiclassical “trajectories” in property space. Since
decoherence allows one to reidentify components of the
decohered density matrix over time, this could be used
to derive property states with continuous, quasiclassical
trajectorylike time evolution based on Schrödinger dy-
namics alone. For some discussions of this approach, see
Hemmo (1996) and Bacciagaluppi and Dickson (1999).

The fact that the states emerging from decoherence
and the stability criterion are sometimes nonorthogonal
or form a continuum will presumably be of even less rel-
evance in modal interpretations than in Everett-style in-
terpretations (see Sec. IV.C) since the goal here is solely
to specify sets of possible properties, of which only one
set actually gets assigned to the system. Hence an “over-
lap” of the sets is not necessarily a problem (modulo
the potential difficulty of a straightforward assignment
of probabilities in such a situation).

2. Property assignment based on instantaneous Schmidt

decompositions

Since it is usually rather difficult to determine explic-
itly the robust “pointer states” through the stability (or
a similar) criterion, it would not be easy to specify a gen-
eral rule for property assignment based on environment-
induced superselection. To simplify this situation, sev-
eral modal interpretations have restricted themselves to
the orthogonal decomposition of the density matrix to
define the set of properties that can be assigned (see, for
instance, Bub, 1997; Dieks, 1989; Healey, 1989; Kochen,
1985; Vermaas and Dieks, 1995). For example, the ap-
proach of Dieks (1989) recognizes, by referring to the
decoherence program, the relevance of the environment
by considering a composite system-environment state
vector and its diagonal Schmidt decomposition, |ψ〉 =∑

k

√
pk |φSk 〉|φEk 〉, which always exists. Possible proper-

ties that can be assigned to the system are then repre-

sented by the Schmidt projectors P̂k = λk|φSk 〉〈φSk |. Al-
though all terms are present in the Schmidt expansion
(that Dieks calls the “mathematical state”), the “phys-
ical state” is postulated to be given by only one of the
terms, with probability pk. A generalization of this ap-
proach to a decomposition into any number of subsystems
has been described by Vermaas and Dieks (1995). In this
sense, the Schmidt decomposition itself is taken to define
an interpretation of quantum mechanics. Dieks (1995)
suggested a physical motivation for the Schmidt decom-
position in modal interpretations based on the assumed
requirement of a one-to-one correspondence between the
properties of the system and its environment. For a com-
ment on the violation of the property composition prin-
ciple in such interpretations, see the analysis of Clifton
(1996).

A central problem associated with the approach of
orthogonal decomposition is that it is not at all clear
that the properties determined by the Schmidt diago-

nalization represent the determinate properties of our
experience. As outlined in Sec. III.E.4, the states se-
lected by the (instantaneous) orthogonal decomposition
of the reduced density matrix will in general differ from
the robust “pointer states” chosen by the stability cri-
terion of the decoherence program and may have dis-
tinctly nonclassical properties. That this will be the
case especially when the states selected by the orthog-
onal decomposition are close to degeneracy has already
been indicated in Sec. III.E.4. It has also been explored
in more detail in the context of modal interpretations
by Bacciagaluppi et al. (1995) and Donald (1998), who
showed that in the case of near degeneracy (as it typically
occurs for macroscopic systems with many degrees of
freedom), the resulting projectors will be extremely sensi-
tive to the precise form of the state (Bacciagaluppi et al.,
1995). Clearly such sensitivity is undesired since the pro-
jectors, and thus the properties of the system, will not
be well behaved under the inevitable approximations em-
ployed in physics (Donald, 1998).

3. Property assignment based on decompositions of the

decohered density matrix

Other authors therefore have appealed to the or-
thogonal decomposition of the decohered reduced den-
sity matrix (instead of the decomposition of the in-
stantaneous density matrix) which has led to notewor-
thy results. When the system is represented by only
a finite-dimensional Hilbert space, a discrete model of
decoherence, the resulting states were indeed found to
be typically close to the robust states selected by the
stability criterion (for macroscopic systems, this typi-
cally meant localization in position space), unless again
the final composite state was very nearly degenerate
(Bacciagaluppi and Hemmo, 1996; Bene, 2001; see also
Sec. III.E.4). Thus, in sufficiently nondegenerate cases,
decoherence can ensure that the definite properties se-
lected by modal interpretations of the Dieks type will be
appropriately close to the properties corresponding to the
ideal pointer states if the modal properties are based on
the orthogonal decomposition of the reduced decohered
density matrix.

On the other hand, Bacciagaluppi (2000) showed that
in the more general and realistic case of an infinite-
dimensional state space of the system, when one em-
ploys a continuous model of decoherence (namely, that
of Joos and Zeh, 1985), the predictions of the modal ap-
proach (Dieks, 1989; Vermaas and Dieks, 1995) and those
of decoherence can differ significantly. It was demon-
strated that the definite properties obtained from the
orthogonal decomposition of the decohered density ma-
trix were highly delocalized (that is, smeared out over
the entire spread of the state), although the coherence
length of the density matrix itself was shown to be very
small, so that decoherence indicated very localized prop-
erties. Thus, based on these results (and similar ones
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of Donald, 1998), decoherence can be used to argue for
the physical inadequacy of the rule for the assignment
of definite properties as proposed by Dieks (1989) and
Vermaas and Dieks (1995).

More generally, if the definite properties selected by the
modal interpretation fail to mesh with the results of de-
coherence (in particular, when they also lack the desired
classicality and correspondence to the determinate prop-
erties of our experience), we are given reason to doubt
whether the proposed rules for property assignment have
sufficient physical motivation, legitimacy, or generality.

4. Concluding remarks

There are many different proposals that can be
grouped under the heading of modal interpretations.
They all share the problem of motivating and verifying
a consistent system of property assignment. Using the
robust pointer states selected by interaction with the en-
vironment and by the stability criterion is a step in the
right direction, but the difficulty remains to derive a gen-
eral rule for property assignment from this method that
would yield explicitly the sets of possibilities in every
situation. In certain cases, for example, close to degen-
eracy and in Hilbert-state spaces of infinite dimension,
the simpler approach of deriving the possible properties
from the orthogonal decomposition of the decohered re-
duced density matrix fails to yield the sharply localized,
quasiclassical pointer states as selected by environmental
robustness criteria. These are the cases in which decoher-
ence can play a vital role in helping to identify inadequate
rules for property assignment in modal interpretations.

E. Physical collapse theories

The basic idea of physical collapse theories is to in-
troduce an explicit modification of the Schrödinger time
evolution to achieve a physical mechanism for state-
vector reduction (for an extensive recent review, see
Bassi and Ghirardi, 2003). This is in general motivated
by a “realist” interpretation of the state vector, that is,
the state vector is directly identified with a physical state,
which then requires reduction to one of the terms in the
superposition to establish equivalence to the observed de-
terminate properties of physical states, at least as far as
the macroscopic realm is concerned.

The first proposals for theories of this type were made
by Pearle (1976, 1982, 1979) and Gisin (1984), who de-
veloped dynamical reduction models that modify unitary
dynamics such that a superposition of quantum states
evolves continuously into one of its terms (see also the
review by Pearle, 1999). Typically, terms represent-
ing external white noise are added to the Schrödinger
equation, causing the squared amplitudes |cn(t)|2 in the
state-vector expansion |Ψ(t)〉 =

∑
n cn(t)|ψn〉 to fluctu-

ate randomly in time, while maintaining the normaliza-

tion condition
∑

n |cn(t)|2 = 1 for all t. This process
is known as stochastic dynamical reduction. Eventually
one amplitude |cn(t)|2 → 1, while all other squared co-
efficients → 0 (the “gambler’s ruin game” mechanism),
where |cn(t)|2 → 1 with probability |cn(t = 0)|2 (the
squared coefficients in the initial precollapse state-vector
expansion) in agreement with the Born probability inter-
pretation of the expansion coefficients.

These early models exhibit two main difficulties. First,
the preferred-basis problem: What determines the terms
in the state-vector expansion into which the state vector
gets reduced? Why does reduction lead to precisely the
distinct macroscopic states of our experience and not su-
perpositions thereof? Second, how can one account for
the fact that the effectiveness of collapsing superpositions
increases when going from microscopic to macroscopic
scales?

These problems motivated spontaneous localization

models, initially proposed by Ghirardi, Rimini, and We-
ber (GRW; Ghirardi et al., 1986). Here state-vector re-
duction is not implemented as a dynamical process (i.e.,
as a continuous evolution over time), but instead oc-
curs instantaneously and spontaneously, leading to a
spatial localization of the wave function. To be pre-
cise, the N -particle wave function ψ(x1, . . . ,xN ) is at
random intervals multiplied by a Gaussian of the form
exp

[
−(X−xk)

2/2∆2
]

(this process is often called a “hit”
or a “jump”), and the resulting product is subsequently
normalized. The occurrence of these hits is not explained,
but rather postulated as a new fundamental physical
mechanism. Both the coordinate xk and the “center of
the hit” X are chosen at random, but the probability for
a specific X is postulated to be given by the squared inner
product of ψ(x1, . . . ,xN ) with the Gaussian (and there-
fore hits are more likely to occur where |ψ|2, viewed as a
function of xk only, is large). The mean frequency ν of
hits for a single microscopic particle is chosen so as to ef-
fectively preserve unitary time evolution for microscopic
systems, while ensuring that for macroscopic objects con-
taining a very large number N of particles the localiza-
tion occurs rapidly (on the order of Nν), in such a way as
to preclude the persistence of spatially separated macro-
scopic superpositons (such as the pointer’s being in a
superpositon of “up” and “down”) on time scales shorter
than realistic observations could resolve. Ghirardi et al.

(1986) chose ν ≈ 10−16 s−1, so a macrosopic system with
N ≈ 1023 particles undergoes localization on average ev-
ery 10−7 s. Inevitable coupling to the environment can in
general be expected to lead to a further drastic increase
of N and therefore to an even higher localization rate.
Note, however, that the localization process itself is in-
dependent of any interaction with environment, in sharp
contrast to the decoherence approach.

Subsequently, the ideas of the stochastic dynamical
reduction and GRW theory were combined into con-

tinuous spontaneous localization models (Ghirardi et al.,
1990; Pearle, 1989) in which localization of the GRW type
can be shown to emerge from a nonunitary, nonlinear Itô
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stochastic differential equation, namely, the Schrödinger
equation augmented by spatially correlated Brownian
motion terms (see also Diósi, 1988, 1989). The partic-
ular choice of stochastic term determines the preferred
basis. Frequently, the stochastic term has been based on
the mass density which yields a GRW-type spatial local-
ization (Diósi, 1989; Ghirardi et al., 1990; Pearle, 1989),
but stochastic terms driven by the Hamiltonian, leading
to a reduction on an energy basis, have also been stud-
ied (Adler, 2002; Adler et al., 2001; Adler and Horwitz,
2000; Bedford and Wang, 1975, 1977; Fivel, 1997;
Hughston, 1996; Milburn, 1991; Percival, 1995, 1998). If
we focus on the first type of term, the Ghirardi-Rimini-
Weber theory and continuous spontaneous localization
become phenomenologically similar, and we shall refer to
them jointly as “spontaneous localization” models in the
following discussion whenever it is unnecessary to distin-
guish them explicitly.

1. The preferred-basis problem

Physical reduction theories typically remove wave-
function collapse from the restrictive context of the or-
thodox interpretation (where the external observer arbi-
trarily selects the measured observable and thus deter-
mines the preferred basis), and rather understand reduc-
tion as a universal mechanism that acts constantly on
every state vector regardless of an explicit measurement
situation. In view of this it is particularly important to
provide a definition for the states into which the wave
function collapses.

As mentioned before, the original stochastic dynamical
reduction models suffer from this preferred-basis prob-
lem. Taking into account environment-induced supers-
election of a preferred basis could help resolve this is-
sue. Decoherence has been shown to occur, especially for
mesoscopic and macroscopic objects, on extremely short
time scales, and thus would presumably be able to bring
about basis selection much faster than the time required
for dynamical fluctuations to establish a “winning” ex-
pansion coefficient.

In contrast, the GRW theory solves the preferred-basis
problem by postulating a mechanism that leads to re-
duction to a particular state vector in an expansion on a
position basis, i.e., position is assumed to be the univer-
sal preferred basis. State-vector reduction then amounts
to simply modifying the functional shape of the pro-
jection of the state vector |ψ〉 onto the position basis
〈x1, . . . ,xN |. This choice can be motivated by the in-
sight that essentially all (human) observations must be
grounded in a position measurement.17

17 This measurement may ultimately occur only in the brain
of the observer; see the objection to the GRW model by
Albert and Vaidman (1989). With respect to the general pref-
erence for position as the basis of measurements, see also the

On the one hand, the selection of position as the pre-
ferred basis is supported by the decoherence program,
since physical interactions frequently are governed by
distance-dependent laws. Given the stability criterion
or a similar requirement, this leads to position as the
preferred observable. In this sense, decoherence provides
a physical motivation for the assumption of the GRW
model. On the other hand, it makes this assumption ap-
pear as too restrictive as it cannot account for cases in
which position is not the preferred basis—for instance,
in microscopic systems where typically energy is the ro-
bust observable, or in the superposition of (macroscopic)
currents in SQUIDs. The GRW model simply excludes
such cases by choosing the parameters of the spontaneous
localization process such that microscopic systems re-
main generally unaffected by any state vector reduction.
The basis selection approach proposed by the decoher-
ence program is therefore much more general and also
avoids the ad hoc character of the GRW theory by allow-
ing for a range of preferred observables and motivating
their choice on physical grounds.

A similar argument can be made with respect to the
continuous spontaneous localization approach. Here,
one essentially preselects a preferred basis through the
particular choice of the stochastic terms added to the
Schrödinger equation. This allows for a greater range of
possible preferred bases, for instance by combining terms
driven by the Hamiltonian and by the mass density, lead-
ing to a competition between localization in energy and
position space (corresponding to the two most frequently
observed eigenstates). Nonetheless, any particular choice
of terms will again be subject to the charge of possessing
an ad hoc flavor, in contrast to the physical definition
of the preferred basis derived from the structure of the
unmodified Hamiltonian as suggested by environment-
induced selection.

2. Simultaneous presence of decoherence and spontaneous

localization

Since decoherence can be considered as an omnipresent
phenomenon that has been extensively verified both theo-
retically and experimentally, the assumption that a phys-
ical collapse theory holds means that the evolution of a
system must be guided by both decoherence effects and

the reduction mechanism.

Let us first consider the situation in which decoherence
and the localization mechanism act constructively in the
same direction, i.e., towards a common preferred basis.
This raises the question in which order these two effects
influence the evolution of the system (Bacciagaluppi,
2003a). If localization occurs on a shorter time scale than
environment-induced superselection of a preferred basis

comment by Bell (1982).
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and suppression of local interference, decoherence will in
most cases have very little influence on the evolution of
the system, since typically the system will already have
evolved into a reduced state. Conversely, if decoherence
effects act more quickly on the system than the local-
ization mechanism, the interaction with the environment
will presumably lead to the preparation of quasiclassical
robust states that are subsequently chosen by the local-
ization mechanism. As pointed out in Sec. III.D, decoher-
ence usually occurs on extremely short time scales, which
can be shown to be significantly smaller than the action
of the spontaneous localization process for most cases
(for studies related to the GRW model, see Tegmark,
1993 and Benatti et al., 1995). This indicates that deco-
herence will typically play an important role even in the
presence of physical wave-function reduction.

The second case occurs when decoherence leads to the
selection of a different preferred basis than the reduc-
tion basis specified by the localization mechanism. As
remarked by Bacciagaluppi (2003a,b) in the context of
the GRW theory, one might then imagine the collapse ei-
ther to occur only at the level of the environment (which
would then serve as an amplifying and recording device
with different localization properties than the system un-
der study), or to lead to an explicit competition between
decoherence and localization effects.

3. The tails problem

The clear advantage of physical collapse models over
the consideration of decoherence-induced effects alone for
a solution to the measurement problem lies in the fact
that an actual state reduction is achieved such that one
may be tempted to conclude that at the conclusion of
the reduction process the system actually is in a deter-
minate state. However, all collapse models achieve only
an approximate (“for all practical purposes”) reduction
of the wave function. In the case of dynamical reduc-
tion models, the state will always retain small interfer-
ence terms for finite times. Similarly, in the GRW the-
ory the width ∆ of the multiplying Gaussian cannot be
made arbitrarily small, and therefore the reduced wave
packet cannot be made infinitely sharply localized in po-
sition space, since this would entail an infinitely large en-
ergy gain by the system via the time-energy uncertainty
relation, which would certainly show up experimentally
(Ghirardi et al., 1986, chose ∆ ≈ 10−5 cm). This need
for only an approximate reduction leads to wave function
“tails” (Albert and Loewer, 1996), that is, in any region
in space and at any time t > 0, the wave function will
remain nonzero if it has been nonzero at t = 0 (before
the collapse), and thus there will be always a part of the
system that is not “here.”

Physical collapse models that achieve reduction only
“for all practical purposes” require a modification,
namely, a weakening, of the orthodox e-e link to allow
one to speak of the system’s actually being in a defi-

nite state, and thereby to ensure the objective attribu-
tion of determinate properties to the system.18 In this
sense, collapse models are as much “fine for all practi-
cal purposes” (to paraphrase Bell, 1990) as decoherence
is, where perfect orthogonality of the environment states
is only attained as t → ∞. The severity of the conse-
quences, however, is not equivalent for the two strate-
gies. Since collapse models directly change the state vec-
tor, a single outcome is at least approximately selected,
and it only requires a “slight” weakening of the e-e link
to make this state of affairs correspond to the (objec-
tive) existence of a determinate physical property. In the
case of decoherence, the lack of a precise destruction of
interference terms is not the main problem; even if ex-
act orthogonality of the environment states were ensured
at all times, the resulting reduced density matrix would
represent an improper mixture, with no outcome having
been singled out according to the e-e link. This would be
the case regardless of whether the e-e link is expressed in
the strong or weakened form, and we would still have to
supply some additional interpretative framework to ex-
plain our perception of outcomes (see also the comment
by Ghirardi et al., 1987).

4. Connecting decoherence and collapse models

It was realized early that there exists a striking formal
similarity of the equations that govern the time evolu-
tion of density matrices in the GRW approach and in
models of decoherence. For example, the GRW equation
for a single free mass point reads [Ghirardi et al., 1986,
Eq. (3.5)]

i
∂ρ(x, x′, t)

∂t
=

1

2m

[
∂2

∂x2
− ∂2

∂x′2

]
ρ− iΛ(x− x′)2ρ, (4.1)

where the second term on the right-hand side accounts
for the destruction of spatially separated interference
terms. A simple model for environment-induced decoher-
ence yields a very similar equation [Joos and Zeh, 1985,
Eq. (3.75); see also the comment by Joos, 1987]. Thus the
physical justification for an ad hoc postulate of an explicit
reduction-inducing mechanism could be questioned (of
course modulo the important interpretive difference be-
tween the approximately proper ensembles arising from
collapse models and the improper ensembles resulting
from decoherence; see also Ghirardi et al., 1987). More
constructively, the similarity of the governing equations
might enable one to choose the free parameters in collapse
models on physical grounds rather than on the basis of
empirical adequacy. Conversely, this similiarity can also

18 It should be noted, however, that such “fuzzy” e-e links may in
turn lead to difficulties, as the discussion of Lewis’s “counting
anomaly” has shown (Lewis, 1997).
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be viewed as leading to a “protection” of physical col-
lapse theories from empirical disproof. This is so because
the inevitable and ubiquitous interaction with the envi-
ronment will always, for all practical purposes of obser-
vation (that is, of statistical prediction), result in (local)
density matrices that are formally very similar to those of
collapse models. What is measured is not the state vector
itself, but the probability distribution of outcomes, i.e.,
values of a physical quantity and their frequency, and
this information is equivalently contained in the state
vector and the density matrix. Measurements with their
intrinsically local character will presumably be unable to
distinguish between the probability distribution given by
the decohered reduced density matrix and the probability
distribution defined by an (approximately) proper mix-
ture obtained from a physical collapse. In other words, as
long as the free parameters of collapse theories are cho-
sen in agreement with those determined from decoher-
ence, models for state-vector reduction can be expected
to be empirically adequate since decoherence is an effect
that will be present with near certainty in every realistic
(especially macroscopic) physical system.

One might of course speculate that the simultaneous
presence of both decoherence and reduction effects might
actually allow for an experimental disproof of collapse
theories by preparing states that differ in an observ-
able manner from the predictions of the reduction mod-
els.19 If we acknowledge the existence of interpretations
of quantum mechanics that employ only decoherence-
induced suppression of interference to explain the per-
ception of apparent collapses (as is, for example, claimed
by the “existential interpretation” of Zurek, 1993, 1998;
see Sec. IV.C.3), we will not be able to distinguish exper-
imentally between a “true” collapse and a mere suppres-
sion of interference as explained by decoherence. Instead,
an experimental situation is required in which the col-
lapse model predicts a collapse, but in which no suppres-
sion of interference through decoherence arises. Again,
the problem in the realization of such an experiment is
that it is very difficult to shield a system from decoher-
ence effects, especially since we will typically require a
mesoscopic or macroscopic system in which the reduction
is efficient enough to be observed. For example, based on
explicit numerical estimates, Tegmark (1993) has shown
that decoherence due to scattering of environmental par-
ticles such as air molecules or photons will have a much
stronger influence than the proposed GRW effect of spon-
taneous localization (see also Bassi and Ghirardi, 2003;
Benatti et al., 1995; for different results for energy-driven
reduction models, cf. Adler, 2002).

19 For proposed experiments to detect the GRW collapse, see for
example Squires (1991) and Rae (1990). For experiments that
could potentially demonstrate deviations from the predictions
of quantum theory when dynamical state-vector reduction is
present, see Pearle (1984, 1986).

5. Summary and outlook

Decoherence has the distinct advantage of being de-
rived directly from the laws of standard quantum me-
chanics, whereas current collapse models are required to
postulate their reduction mechanism as a new fundamen-
tal law of nature. On the other hand, collapse models
yield, at least for all practical purposes, proper mixtures,
so they are capable of providing an “objective” solution
to the measurement problem. The formal similarity be-
tween the time evolution equations of the collapse and
decoherence models nourishes hopes that the postulated
reduction mechanisms of collapse models could possibly
be derived from the ubiquituous and inevitable interac-
tion of every physical system with its environment and
the resulting decoherence effects. We may therefore re-
gard collapse models and decoherence not as mutually
exclusive alternatives for a solution to the measurement
problem, but rather as potential candidates for a fruitful
unification. For a vague proposal along these lines, see
Pessoa (1998); cf. also Diósi (1989) and Pearle (1999)
for speculations that quantum gravity might act as a
collapse-inducing universal “environment.”

F. Bohmian mechanics

Bohm’s approach (Bohm, 1952; Bohm and Bub,
1966; Bohm and Hiley, 1993) is a modification of
de Broglie’s (1930) original “pilot-wave” proposal. In
Bohmian mechanics, a system containing N (nonrela-
tivistic) particles is described by a wave function ψ(t)
and the configuration Q(t) =

(
q1(t), . . . ,qN (t)

)
∈ R

3N

of particle positions qi(t), i.e., the state of the system is
represented by (ψ,Q) for each instant t. The evolution of
the system is guided by two equations. The wave function
ψ(t) is transformed as usual via the standard Schrödinger

equation, i~(∂/∂t)ψ = Ĥψ, while the particle positions
qi(t) of the configuration Q(t) evolve according to the
“guiding equation”

dqi
dt

= v
ψ
i (q1, . . . ,qN ) ≡ ~

mi
Im

ψ∗∇qi
ψ

ψ∗ψ
(q1, . . . ,qN ),

(4.2)
where mi is the mass of the ith particle. Thus the par-
ticles follow determinate trajectories described by Q(t),
with the distribution of Q(t) being given by the quantum
equilibrium distribution ρ = |ψ|2.

1. Particles as fundamental entities

Bohm’s theory has been critized for ascribing funda-
mental ontological status to particles. General arguments
against particles on a fundamental level of any relativis-
tic quantum theory have been frequently given (see, for
instance, Malament, 1996, and Halvorson and Clifton,
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2002).20 Moreover, and this is the point we would like
to discuss in this section, it has been argued that the ap-
pearance of particles (“discontinuities in space”) could be
derived from the continuous process of decoherence, lead-
ing to claims that no fundamental role need be attributed
to particles (Zeh, 1993, 1999, 2003). Based on decohered
density matrices of mesoscopic and macroscopic systems
that essentially always represent quasi-ensembles of nar-
row wave packets in position space, Zeh (1993, p. 190)
holds that such wave packets can be viewed as represent-
ing individual “particle” positions:21

All particle aspects observed in measurements of

quantum fields (like spots on a plate, tracks in

a bubble chamber, or clicks of a counter) can be

understood by taking into account this decoher-

ence of the relevant local (i.e., subsystem) density

matrix.

The first question is then whether a narrow wave packet
in position space can be identified with the subjective ex-
perience of a “particle.” The answer appears to be yes:
our notion of “particles” hinges on the property of local-
izability, i.e., the definition of a region of space Ω ∈ R

3

in which the system (that is, the support of the wave
function) is entirely contained. Although the nature of
the Schrödinger dynamics implies that any wave func-
tion will have nonvanishing support (“tails”) outside of
any finite spatial region Ω and therefore exact localizat-
ibility will never be achieved, we only need to demand
approximate localizability to account for our experience
of particle aspects.

However, to interpret the ensembles of narrow wave
packets resulting from decoherence as leading to the per-
ception of individual particles, we must embed standard
quantum mechanics (with decoherence) into an addi-
tional interpretive framework that explains why only one
of the wavepackets is perceived;22 that is, we do need
to add some interpretive rule to get from the improper
ensemble emerging from decoherence to the perception
of individual terms, so decoherence alone does not nec-
essarily make Bohm’s particle concept superfluous. But
it suggests that the postulate of particles as fundamental
entities could be unnecessary, and taken together with
the difficulties in reconciling such a particle theory with

20 On the other hand, there are proposals for a “Bohmian mechan-
ics of quantum fields,” i.e., a theory that embeds quantum field
theory into a Bohmian-style framework (Dürr et al., 2003, 2004).

21 Schrödinger (1926) had made an attempt into a similar direction
but had failed since the Schrödinger equation tends to continu-
ously spread out any localized wavepacket when it is considered
as describing an isolated system. The inclusion of an interact-
ing environment and thus decoherence counteracts the spread
and opens up the possibility of maintaining narrow wave packets
over time (Joos and Zeh, 1985).

22 Zeh himself, like Zurek (1998), adheres to an Everett-style
branching to which distinct observers are attached (Zeh, 1993);
see also the quote in Sec. IV.C.

a relativistic quantum field theory, Bohm’s a priori as-
sumption of particles at a fundamental level of the theory
appears seriously challenged.

2. Bohmian trajectories and decoherence

A well-known property of Bohmian mechanics is the
fact that its trajectories are often highly nonclassical (see,
for example, Appleby, 1999b; Bohm and Hiley, 1993;
Holland, 1993). This poses the serious problem of how
Bohm’s theory can explain the existence of quasiclassical
trajectories on a macroscopic level.

Bohm and Hiley (1993) considered the scattering of a
beam of environmental particles on a macroscopic sys-
tem, a process that is known to give rise to decoherence
(Joos and Zeh, 1985; Joos et al., 2003). The authors
demonstrate that this scattering yields quasiclassical tra-
jectories for the system. It has further been shown that
for isolated systems, the Bohm theory will typically not
give the correct classical limit (Appleby, 1999b). It was
thus suggested that the inclusion of the environment and
of the resulting decoherence effects might be helpful in re-
covering quasiclassical trajectories in Bohmian mechanics
(Allori, 2001; Allori et al., 2002; Allori and Zangh̀ı, 2001;
Appleby, 1999a; Sanz and Borondo, 2003; Zeh, 1999).

We mentioned before that the interaction between a
macroscopic system and its environment will typically
lead to a rapid approximate diagonalization of the re-
duced density matrix in position space, and thus to spa-
tially localized wave packets that follow (approximately)
Hamiltonian trajectories. [This observation also provides
a physical motivation for the choice of position as the fun-
damental preferred basis in Bohm’s theory, in agreement
with Bell’s (1982) well-known comment that “in physics
the only observations we must consider are position ob-
servations, if only the positions of instrument pointers.”]
The intuitive step is then to associate these trajectories
with the particle trajectories Q(t) of the Bohm theory.
As pointed out by Bacciagaluppi (2003b), a great ad-
vantage of this strategy lies in the fact that the same
approach would allow for a recovery of both quantum
and classical phenomena.

However, a careful analysis by Appleby (1999a) showed
that this decoherence-induced diagonalization in the po-
sition basis alone will in general not suffice to yield quasi-
classical trajectories in Bohm’s theory; only under certain
additional assumptions will processes that lead to deco-
herence also give correct quasiclassical Bohmian trajecto-
ries for macroscopic systems (Appleby described the ex-
ample of the long-time limit of a system that has initially
been prepared in an energy eigenstate). Interesting re-
sults were also reported by Allori and co-workers (Allori,
2001; Allori et al., 2002; Allori and Zangh̀ı, 2001). They
demonstrated that decoherence effects can play the role
of preserving classical properties of Bohmian trajecto-
ries. Furthermore, they showed that while in standard
quantum mechanics it is important to maintain narrow
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wave packets to account for the emergence of classicality,
the Bohmian description of a system by both its wave
function and its configuration allows for the derivation
of quasiclassical behavior from highly delocalized wave
functions. Sanz and Borondo (2003) studied the double-
slit experiment in the framework of Bohmian mechan-
ics and in the presence of decoherence and showed that
even when coherence is fully lost, and thus interference is
absent, nonlocal quantum correlations remain that influ-
ence the dynamics of the particles in the Bohm theory,
demonstrating that in this example decoherence does not
suffice to achieve the classical limit in Bohmian mechan-
ics.

In conclusion, while the basic idea of employing
decoherence-related processes to yield the correct classi-
cal limit of Bohmian trajectories seems reasonable, many
details of this approach still need to be worked out.

G. Consistent histories interpretations

The consistent- (or decoherent-) histories approach
was introduced by Griffiths (1984, 1993, 1996) and fur-
ther developed by Omnès (1988a,b,c, 1990, 1992, 1994,
2002), Gell-Mann and Hartle (1990, 1991a, 1993, 1991b),
Dowker and Halliwell (1992), and others. Reviews of
the program can be found in the papers by Omnès
(1992) and Halliwell (1993, 1996), as well as in the
recent book by Griffiths (2002). Thoughtful critiques
investigating key features and assumptions of the ap-
proach have been given, for example, by d’Espagnat
(1989), Dowker and Kent (1995, 1996), Kent (1998),
and Bassi and Ghirardi (1999). The basic idea of the
consistent-histories approach is to eliminate the funda-
mental role of measurements in quantum mechanics, and
instead study quantum histories, defined as sequences of
events represented by sets of time-ordered projection op-
erators, and to assign probabilities to such histories. The
approach was originally motivated by quantum cosmol-
ogy, i.e., the study of the evolution of the entire universe,
which, by definition, represents a closed system. There-
fore no external observer (which is, for example, an indis-
pensable element of the Copenhagen interpretation) can
be invoked.

1. Definition of histories

We assume that a physical system S is described by
a density matrix ρ0 at some initial time t0 and define a
sequence of arbitrary times t1 < t2 < · · · < tn with t1 >
t0. For each time point ti in this sequence, we consider an

exhaustive set P(i) = {P̂ (i)
αi

(ti) |αi = 1 · · ·mi}, 1 ≤ i ≤ n,
of mutually orthogonal Hermitian projection operators

P̂
(i)
αi

(ti), obeying
∑

αi

P̂ (i)
αi

(ti) = 1, P̂ (i)
αi

(ti)P̂
(i)
βi

(ti) = δαi,βi
P̂ (i)
αi

(ti),

(4.3)
and evolving, using the Heisenberg picture, according to

P̂ (i)
αi

(t) = U †(t0, t)P̂
(i)
αi

(t0)U(t0, t), (4.4)

where U(t0, t) is the operator that dynamically propa-
gates the state vector from t0 to t.

A possible, “maximally fine-grained” history is defined
by the sequence of times t1 < t2 < · · · < tn and by the
choice of one projection operator in the set P(i) for each
time point ti in the sequence, i.e., by the set

H{α} = {P̂ (1)
α1

(t1), P̂
(2)
α2

(t2), . . . , P̂
(n)
αn

(tn)}. (4.5)

We also define the set H = {H{α}} of all possible histories
for a given time sequence t1 < t2 < · · · < tn. The natural
interpretation of a history H{α} is then to take it as a
series of propositions of the form “the system S was, at

time ti, in a state of the subspace spanned by P̂
(i)
αi

(ti).”

Maximally fine-grained histories can be combined to
form “coarse-grained” sets which assign to each time
point ti a linear combination

Q̂
(i)
βi

(ti) =
∑

αi

π(i)
αi
P̂ (i)
αi

(ti), π(i)
αi

∈ {0, 1} (4.6)

of the original projection operators P̂
(i)
αi

(ti).

So far, the projection operators P̂
(i)
αi

(ti) chosen at a
certain instant ti in time in order to form a history H{α}

were independent of the choice of the projection opera-
tors at earlier times t0 < t < ti in H{α}. This situation
was generalized by Omnès (1988a,b,c, 1990, 1992) to in-
clude “branch-dependent” histories of the form (see also
Gell-Mann and Hartle, 1993)

H{α} = {P̂ (1)
α1

(t1), P̂
(2,α1)
α2

(t2), . . . , P̂
(n,α1,...,αn−1)
αn

(tn)}.
(4.7)

2. Probabilities and consistency

In standard quantum mechanics, we can always assign
probabilities to single events, represented by the eigen-

states of some projection operator P̂ (i)(t), via the rule

p(i, t) = Tr
[
P̂ (i)†(t)ρ(t0)P̂

(i)(t)
]
. (4.8)

The natural extension of this formula to the calculation
of the probability p(H{α}) of a history H{α} is given by

p(H{α}) = D(α, α), (4.9)

where the so-called decoherence functional D(α, β) is de-
fined by (Gell-Mann and Hartle, 1990)

D(α, β) = Tr
[
P̂ (n)
αn

(tn) · · · P̂ (1)
α1

(t1)ρ0P̂
(1)
β1

(t1) · · · P̂ (n)
βn

(tn)
]
.

(4.10)
If we instead work in the Schrödinger picture, the deco-
herence functional is
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D(α, β) = Tr
[
P̂ (n)
αn

U(tn−1, tn) · · · P̂ (1)
α1
ρ(t1)P̂

(1)
β1

· · ·U †(tn−1, tn)P̂
(n)
βn

(tn)
]
. (4.11)

Consider now the coarse-grained history that arises from a combination of the two maximally fine-grained histories
H{α} and H{β},

H{α∨β} = {P̂ (1)
α1

(t1) + P̂
(1)
β1

(t1), P̂
(2)
α2

(t2) + P̂
(2)
β2

(t2), . . . , P̂
(n)
αn

(tn) + P̂
(n)
βn

(tn)}. (4.12)

We interpret each combined projection operator P̂
(i)
αi

(ti) + P̂
(i)
βi

(ti) as stating that, at time ti, the system was in the

range described by the union of P̂
(i)
αi

(ti) and P̂
(i)
βi

(ti). Accordingly, we would like to require that the probability for a
history containing such a combined projection operator be equivalently calculable from the sum of the probabilities

of the two histories containing the individual projectors P̂
(i)
αi

(ti) and P̂
(i)
βi

(ti), that is,

Tr
[
P̂ (n)
αn

(tn) · · ·
(
P̂ (i)
αi

(ti) + P̂
(i)
βi

(ti)
)
· · · P̂ (1)

α1
(t1)ρ0P̂

(1)
α1

(t1) · · ·
(
P̂ (i)
αi

(ti) + P̂
(i)
βi

(ti)
)
· · · P̂ (n)

αn
(tn)

]

!
= Tr

[
P̂ (n)
αn

(tn) · · · P̂ (i)
αi

(ti) · · · P̂ (1)
α1

(t1)ρ0P̂
(1)
α1

(t1) · · · P̂ (i)
αi

(ti) · · · P̂ (n)
αn

(tn)
]

+ Tr
[
P̂ (n)
αn

(tn) · · · P̂ (i)
βi

(ti) · · · P̂ (1)
α1

(t1)ρ0P̂
(1)
α1

(t1) · · · P̂ (i)
βi

(ti) · · · P̂ (n)
αn

(tn)
]
.

It can be easily shown that this relation holds if and only if

Re
{
Tr

[
P̂ (n)
αn

(tn) · · · P̂ (i)
αi

(ti) · · · P̂ (1)
α1

(t1)ρ0P̂
(1)
α1

(t1) · · · P̂ (i)
βi

(ti) · · · P̂ (n)
αn

(tn)
]}

= 0 if αi 6= βi. (4.13)

Generalizing this two-projector case to the coarse-grained
history H{α∨β} of Eq. (4.12), we arrive at the (sufficient
and necessary) consistency condition for two histories
H{α} and H{β} (Griffiths, 1984; Omnès, 1990, 1992),

Re[D(α, β)] = δα,βD(α, α). (4.14)

If this relation is violated, the usual sum rule for calcu-
lating probabilities does not apply. This situation arises
when quantum interference between the two combined
histories H{α} and H{β} is present. Therefore, to ensure
that the standard laws of probability theory also hold for
coarse-grained histories, the set H of possible histories
must be consistent in the above sense.

However, Gell-Mann and Hartle (1990) have pointed
out that when decoherence effects are included to model
the emergence of classicality, it is more natural to require

D(α, β) = δα,βD(α, α). (4.15)

Condition (4.14) has often been referred to as weak de-

coherence, and Eq. (4.15) as medium decoherence (for
a proposal of a criterion for strong decoherence, see
Gell-Mann and Hartle, 1998). The set H of histories
is called consistent (or decoherent) when all its mem-
bers H{α} fulfill the consistency condition, Eqs. (4.14) or
(4.15), i.e., when they can be regarded as independent
(noninterfering).

3. Selection of histories and classicality

Even when the stronger consistency criterion (4.15) is
imposed on the set H of possible histories, the number of
mutually incompatible consistent histories remains rela-
tively large (d’Espagnat, 1989; Dowker and Kent, 1996).
It is not at all clear a priori that at least some of these
histories should represent any meaningful set of proposi-
tions about the world of our observation. Even if a col-
lection of such “meaningful” histories is found, it leaves
open the question how to select such histories and which
additional criteria would need to be invoked.

Griffith’s (1984) original aim in formulating the con-
sistency criterion was only to allow for a consistent
description of sequences of events in closed quan-
tum systems without running into logical contradic-
tions.23 Commonly, however, consistency has also
been tied to the emergence of classicality. For ex-
ample, the consistency criterion corresponds to the
demand for the absence of quantum interference—a
property of classicality—between two combined histo-
ries. It has become clear that most consistent histo-
ries are in fact flagrantly nonclassical (Albrecht, 1993;
Dowker and Kent, 1995, 1996; Gell-Mann and Hartle,
1990, 1991b; Paz and Zurek, 1993; Zurek, 1993). For in-

23 However, Goldstein (1998) used a simple example to argue that
the consistent-histories approach can lead to contradictions with
respect to a combinination of joint probabilities, even if the con-
sistency criterion is imposed; see also the subsequent exchange
of letters in the February 1999 issue of Physics Today.
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stance, when the projection operators P̂
(i)
αi

(ti) are chosen
to be the time-evolved eigenstates of the initial density
matrix ρ(t0), the consistency condition will automatically
be fulfilled, yet the histories composed of these projection
operators have been shown to result in highly nonclassical
macroscopic superpositions when applied to standard ex-
amples such as quantum measurement or Schrödinger’s
cat. This demonstrates that the consistency condition
cannot serve as a sufficient criterion for classicality.

4. Consistent histories of open systems

Various authors have appealed to interaction with the
environment and the resulting decoherence effects in
defining additional criteria that would select quasiclassi-
cal histories and would also lead to a physical motivation
for the consistency criterion (see, for example, Albrecht,
1992, 1993; Anastopoulos, 1996; Dowker and Halliwell,
1992; Finkelstein, 1993; Gell-Mann and Hartle, 1990,
1998; Halliwell, 2001; Paz and Zurek, 1993; Twamley,
1993b; Zurek, 1993). This approach intrinsically requires
the notion of local, open systems and the split of the uni-
verse into subsystems, in contrast to the original aim of
the consistent-histories approach to describe the evolu-
tion of a single closed, undivided system (typically the
entire universe). The decoherence-based studies then as-
sume the usual decomposition of the total Hilbert space
H into a space HS , corresponding to the system S, and
HE of an environment E . One then describes the histo-
ries of the system S by employing projection operators
that act only on the system, i.e., that are of the form

P̂
(i)
αi

(ti) ⊗ ÎE , where P̂
(i)
αi

(ti) acts only on HS and ÎE is
the identity operator in HE .

This raises the question of when, i.e., under which cir-
cumstances, the reduced density matrix ρS = TrEρSE of
the system S suffices to calculate the decoherence func-
tional. The reduced density matrix arises from a nonuni-
tary trace over E at every time point ti, whereas the de-
coherence functional of Eq. (4.11) employs the full, uni-
tarily evolving density matrix ρSE for all times ti < tf
and only applies a nonunitary trace operation (over both
S and E) at the final time tf . Paz and Zurek (1993) have
answered this (rather technical) question by showing that
the decoherence functional can be expressed entirely in
terms of the reduced density matrix if the time evolu-
tion of the reduced density matrix is independent of the
correlations dynamically formed between the system and
the environment. A necessary (but not always sufficient)
condition for this requirement to be satisfied is given by
demanding that the reduced dynamics be governed by a
master equation that is local in time.

When a “reduced” decoherence functional exists, at
least to a good approximation, i.e., when the reduced
dynamics are sufficiently insensitive to the formation
of system-environment correlations, the consistency of
whole-universe histories, described by a unitarily evolv-
ing density matrix ρSE and sequences of projection oper-

ators of the form P̂
(i)
αi

(ti)⊗ ÎE , will be directly related to
that of open-system histories, represented by a nonuni-
tarily evolving reduced density matrix ρS(ti) and “re-

duced” projection operators P̂
(i)
αi

(ti) (Zurek, 1993).

5. Schmidt states vs pointer basis as projectors

The ability of the instantaneous eigenstates of the
reduced density matrix (Schmidt states; see also
Sec. III.E.4) to serve as projectors for consistent histo-
ries and possibly to lead to the emergence of quasiclassi-
cal histories has been studied in much detail (Albrecht,
1992, 1993; Kent and McElwaine, 1997; Paz and Zurek,
1993; Zurek, 1993). Paz and Zurek (1993) have shown

that Schmidt projectors P̂
(i)
αi

, defined by their commuta-
tivity with the evolved, path-projected reduced density
matrix,

[
P̂ (i)
αi
, U(ti−1, ti){· · ·U(t1, t2)P̂

(1)
α1
ρS(t1)

× P̂ (1)
α1
U †(t1, t2) · · · }U †(ti−1, ti)

]
= 0, (4.16)

will always give rise to an infinite number of sets of con-
sistent histories (“Schmidt histories”). However, these
histories are branchdependent [see Eq. (4.7)] and usually
extremely unstable, since small modifications of the time
sequence used for the projections (for instance by delet-
ing a time point) will typically lead to drastic changes
in the resulting history, indicating that Schmidt histo-
ries are usually very nonclassical (Paz and Zurek, 1993;
Zurek, 1993).

This situation is changed when the time points ti are
chosen such that the intervals (ti+1 − ti) are larger than
the typical decoherence time τD of the system over which
the reduced density matrix becomes approximately di-
agonal in the preferred pointer basis chosen through
environment-induced superselection (see also the discus-
sion in Sec. III.E.4). When the resulting pointer states,
rather than the instantaneous Schmidt states, are used to
define the projection operators, stable quasiclassical his-
tories will typically emerge (Paz and Zurek, 1993; Zurek,
1993). In this sense, it has been suggested that inter-
action with the environment can provide the missing se-
lection criterion that ensures the quasiclassicality of his-
tories, i.e., their stability (predictability), and the corre-
spondence of the projection operators (the pointer basis)
to the preferred determinate quantities of our experience.

The approximate noninterference, and thus consis-
tency, of histories based on local density operators (en-
ergy, number, momentum, charge etc.) as quasiclassi-
cal projectors (the so-called hydrodynamic observables,
see Dowker and Halliwell, 1992; Gell-Mann and Hartle,
1991b; Halliwell, 1998) has been attributed to the dy-
namical stability exhibited by the eigenstates of the local
density operators. This stability leads to decoherence
in the corresponding basis (Halliwell, 1998, 1999). It has
been argued by Zurek (2003b) that this behavior and thus
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the special quasiclassical properties of hydrodynamic ob-
servables can be explained by the fact that these observ-
ables obey the commutativity criterion, Eq. (3.21), of the
environment-induced superselection approach.

6. Exact vs approximate consistency

In the idealized case where the pointer states lead to an
exact diagonalization of the reduced density matrix, his-
tories composed of the corresponding pointer projectors

will automatically be consistent. However, under real-
istic circumstances decoherence will typically lead only
to approximate diagonality in the pointer basis. This
implies that the consistency criterion will not be ful-
filled exactly and that hence the probability sum rules
will only hold approximately—although usually, due to
the efficiency of decoherence, to a very good approxima-
tion (Albrecht, 1992, 1993; Gell-Mann and Hartle, 1991b;
Griffiths, 1984; Omnès, 1992, 1994; Paz and Zurek, 1993;
Twamley, 1993b; Zurek, 1993). Hence, the consistency
criterion has been viewed both as overly restrictive, since
the quasiclassical pointer projectors rarely obey the con-
sistency equations exactly, and as insufficient, because it
does not give rise to constraints that would single out
quasiclassical histories.

A relaxation of the consistency criterion has therefore
been suggested, leading to “approximately consistent his-
tories” whose decoherence functional would be allowed to
contain nonvanishing off-diagonal terms (corresponding
to a violation of the probability sum rules) as long as the
net effect of all the off-diagonal terms was “small” in the
sense of remaining below the experimentally detectable
level (see, for example, Dowker and Halliwell, 1992;
Gell-Mann and Hartle, 1991b). Gell-Mann and Hartle
(1991b) have even ascribed a fundamental role to such
approximately consistent histories, a move that has
sparked much controversy and has been considered as
unnecessary and irrelevant by some (Dowker and Kent,
1995, 1996). Indeed, if only approximate consistency is
demanded, it is difficult to regard this condition as a fun-
damental concept of a physical theory, and the question
of how much consistency is required will inevitably arise.

7. Consistency and environment-induced superselection

The relationship between consistency and
environment-induced superselection, and therefore
the connection between the decoherence functional
and the diagonalization of the reduced density matrix
through environmental decoherence, has been investi-
gated by various authors. The basic idea, promoted, for
example, by Zurek (1993) and Paz and Zurek (1993),
is to suggest that if the interaction with the environ-
ment leads to rapid superselection of a preferred basis,
which approximately diagonalizes the local density
matrix, coarse-grained histories defined in this basis will

automatically be (approximately) consistent.

This approach has been explored by Twamley (1993b),
who carried out detailed calculations in the context of
a quantum optical model of phase-space decoherence
and compared the results with two-time projected phase-
space histories of the same model system. It was found
that when the parameters of the interacting environment
were changed such that the degree of diagonality of the
reduced density matrix in the emerging preferred pointer
basis was increased, histories in that basis also became
more consistent. For a similar model, however, Twamley
(1993a) also showed that consistency and diagonality in
a pointer basis as possible criteria for the emergence of
quasiclassicality may exhibit a very different dependence
on the initial conditions.

Extensive studies on the connection between Schmidt
states, pointer states and consistent quasiclassical his-
tories have also been made by Albrecht (1992, 1993),
based on analytical calculations and numerical simula-
tions of toy models for decoherence, including detailed
numerical results on the violation of the sum rule for
histories composed of different (Schmidt and pointer)
projector bases. It was demonstrated that the presence
of stable system-environment correlations (“records”),
as demanded by the criterion for the selection of the
pointer basis, was of great importance in making cer-
tain histories consistent. The relevance of “records” for
the consistent-histories approach in ensuring the “perma-
nence of the past” has also been emphasized by other au-
thors, for example, by Paz and Zurek (1993) and Zurek
(1993, 2003b), and in the “strong decoherence” criterion
by Gell-Mann and Hartle (1998). The redundancy with
which information about the system is recorded in the
environment and can thus be found out by different ob-
servers without measurably disturbing the system itself
has been suggested to allow for the notion of “objec-
tively existing histories,” based on environment-selected
projectors that represent sequences of “objectively exist-
ing” quasiclassical events (Paz and Zurek, 1993; Zurek,
1993, 2003b, 2004b).

In general, damping of quantum coherence caused by
decoherence will necessarily lead to a loss of quantum
interference between individual histories (but not vice
versa—see the discussion by Twamley, 1993b), since
the final trace operation over the environment in the
decoherence functional will make the off-diagonal ele-
ments very small due to the decoherence-induced approx-
imate mutual orthogonality of the environmental states.
Finkelstein (1993) has used this observation to propose a
new decoherence condition that coincides with the origi-
nal definition, Eqs. (4.10) and (4.11), except for restrict-
ing the trace to E , rather than tracing over both S and
E . It was shown that this condition not only implies the
consistency condition of Eq. (4.15), but also characterizes
those histories that decohere due to interaction with the
environment and that lead to the formation of “records”
of the state of the system in the environment.
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8. Summary and discussion

The core difficulty associated with the consistent-
histories approach has been to explain the emergence of
the classical world of our experience from the underlying
quantum nature. Initially, it was hoped that classical-
ity could be derived from the consistency criterion alone.
Soon, however, the status and the role of this criterion
in the formalism and its proper interpretation became
rather unclear and diffuse, since exact consistency was
shown to provide neither a necessary nor a sufficient cri-
terion for the selection of quasiclassical histories.

The inclusion of decoherence effects into the consis-
tent histories approach, leading to the emergence of sta-
ble quasiclassical pointer states, has been found to yield
a highly efficient mechanism and a sensitive criterion
for singling out quasiclassical observables that simulta-
neously fulfill the consistency criterion to a very good
approximation due to the suppression of quantum coher-
ence in the state of the system. The central question
is then: What is the meaning and the remaining role
of an explicit consistency criterion in the light of such
“natural” mechanisms for the decoherence of histories?
Can one dispose of this criterion as a key element of the
fundamental theory by noting that for all “realistic” his-
tories consistency will be likely to arise naturally from
environment-induced decoherence alone?

The answer to this question may actually depend on
the viewpoint one takes with respect to the aim of the
consistent-histories approach. As we have noted be-
fore, the original goal was simply to provide a formalism
in which one could, in a measurement-free context, as-
sign probabilities to certain sequences of quantum events
without logical inconsistencies. The more recent and
rather opposite aim would be to provide a formalism
that selects only a very small subset of “meaningful” qua-
siclassical histories, all of which are consistent with our
world of experience, and whose projectors can be directly
interpreted as objective physical events.

The consideration of decoherence effects that can give
rise to effective superselection of possible quasiclassical
(and consistent) histories certainly falls into the latter
category. It is interesting to note that this approach has
also led to a departure from the original “closed systems
only” view to the study of local open quantum systems
and thus to the decomposition of the total Hilbert space
into subsystems, within the consistent-histories formal-
ism. Besides the fact that decoherence intrinsically re-
quires the openness of systems, this move might also re-
flect the insight that the notion of classicality itself can
be viewed as only arising from a conceptual division of
the universe into parts (see the discussion in Sec. III.A).

Therefore environment-induced decoherence and su-
perselection have played a remarkable role in consistent-
histories interpretations: a practical one by suggesting a
physical selection mechanism for quasiclassical histories;
and a conceptual one by contributing to a shift in our
view of originally rather fundamental concepts, such as

consistency, and of the aims of the consistent-histories
approach, like the focus on description of closed systems.

V. CONCLUDING REMARKS

We have presented an extensive discussion of the role
of decoherence in the foundations of quantum mechanics,
with a particular focus on the implications of decoherence
for the measurement problem in the context of various
interpretations of quantum mechanics.

A key achievement of the decoherence program is the
recognition that openness in quantum systems is impor-
tant for their realistic description. The well-known phe-
nomenon of quantum entanglement had already, early
in the history of quantum mechanics, demonstrated that
correlations between systems can lead to “paradoxical”
properties of the composite system that cannot be com-
posed from the properties of the individual systems.
Nonetheless, the viewpoint of classical physics that the
idealization of isolated systems is necessary to arrive at
an “exact description” of physical systems has influenced
quantum theory for a long time. It is the great merit of
the decoherence program to have emphasized the ubiq-
uity and essential inescapability of system-environment
correlations and to have established the important role
of such correlations as factors in the emergence of “clas-
sicality” from quantum systems. Decoherence also pro-
vides a realistic physical modeling and a generalization of
the quantum measurement process, thus enhancing the
“black-box” view of measurements in the standard (“or-
thodox”) interpretation and challenging the postulate of
fundamentally classical measuring devices in the Copen-
hagen interpretation.

With respect to the preferred-basis problem of quan-
tum measurement, decoherence provides a very promis-
ing definition of preferred pointer states via a physically
meaningful requirement, namely, the robustness crite-
rion, and it describes methods for selecting operationally
such states, for example, via the commutativity crite-
rion or by extremizing an appropriate measure such as
purity or von Neumann entropy. In particular, the fact
that macroscopic systems virtually always decohere into
position eigenstates gives a physical explanation for why
position is the ubiquitous determinate property of the
world of our experience.

We have argued that, within the standard interpre-
tation of quantum mechanics, decoherence cannot solve
the problem of definite outcomes in quantum measure-
ment: We are still left with a multitude of (albeit indi-
vidually well-localized quasiclassical) components of the
wave function, and we need to supplement or other-
wise to interpret this situation in order to explain why
and how single outcomes are perceived. Accordingly, we
have discussed how environment-induced superselection
of quasiclassical pointer states together with the local
suppression of interference terms can be put to great use
in physically motivating, or potentially disproving, rules
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and assumptions of alternative interpretive approaches
that change (or altogether abandon) the strict orthodox
eigenvalue-eigenstate link and/or modify the unitary dy-
namics to account for the perception of definite outcomes
and classicality in general. For example, to name just a
few applications, decoherence can provide a universal cri-
terion for the selection of the branches in relative-state
interpretations and a physical argument for the noninter-
ference between these branches from the point of view of
an observer; in modal interpretations, it can be used to
specify empirically adequate sets of properties that can
be ascribed to systems; in collapse models, the free pa-
rameters (and possibly even the nature of the reduction
mechanism itself) might be derivable from environmental
interactions; decoherence can also assist in the selection
of quasiclassical particle trajectories in Bohmian mechan-
ics, and it can serve as an efficient mechanism for singling
out quasiclassical histories in the consistent-histories ap-
proach. Moreover, it has become clear that decoherence
can ensure the empirical adequacy and thus empirical
equivalence of different interpretive approaches, which
has led some to the claim that the choice, for exam-
ple, between the orthodox and the Everett interpretation
becomes “purely a matter of taste, roughly equivalent
to whether one believes mathematical language or hu-
man language to be more fundamental” (Tegmark, 1998,
p. 855).

It is fair to say that the decoherence program sheds new
light on many foundational aspects of quantum mechan-
ics. It paves a physics-based path towards motivating
solutions to the measurement problem; it imposes con-
straints on the strands of interpretations that seek such a
solution and thus makes them also more and more similar
to each other. Decoherence remains an ongoing field of
intense research, in both the theoretical and experimen-
tal domain, and we can expect further implications for
the foundations of quantum mechanics from such studies
in the near future.
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Diósi, L., and C. Kiefer, 2000, Phys. Rev. Lett. 85, 3552.
Donald, M., 1998, in The Modal Interpretation of Quantum

Mechanics, edited by D. Dieks and P. Vermaas (Kluwer,
Dordrecht), pp. 213–222.

Dowker, F., and J. J. Halliwell, 1992, Phys. Rev. D 46, 1580.
Dowker, F., and A. Kent, 1995, Phys. Rev. Lett. 75, 3038.
Dowker, F., and A. Kent, 1996, J. Stat. Phys. 82, 1575.
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